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Bollobás and Riordan introduce a Tutte polynomial for coloured graphs and matroids in

[3]. We observe that this polynomial has an expansion as a sum indexed by the subsets

of the ground-set of a coloured matroid, generalizing the subset expansion of the Tutte

polynomial. We also discuss similar expansions of other contraction–deletion invariants of

graphs and matroids.

1. The coloured Tutte polynomial

The Tutte polynomial or dichromate is an invariant of graphs and matroids which has been

found to be associated with a variety of important and seemingly unrelated matters –

vertex colourings, acyclic orientations and flows in graphs, reliability of communication

networks, statistical mechanics and knot theory. In several of these instances it is natural

to modify the Tutte polynomial to reflect weights associated with the matroid elements

or graph edges being considered; for instance, consider the reliability of a network whose

edges function with various probabilities, or an invariant of a knot diagram in which

it is necessary to distinguish overpassing arcs from underpassing arcs. In [3] Bollobás

and Riordan construct a ‘universal’ Tutte polynomial of weighted and coloured graphs,

and mention that the invariant is easily extended to matroids. The purpose of this note

is to observe that part of the theory of the ordinary (unweighted) Tutte polynomial

generalizes to their universal invariant. Although we can direct the reader to several

sources of background information – [1, 7] for graph theory, [5, 9] for matroid theory,

and [1, 7, 8, 10] for the Tutte polynomial – [3] is our primary reference.

For the sake of convenience, we discuss matroids rather than graphs in this section;

in Section 2 below we briefly discuss other contraction–deletion invariants, including

non-matroidal invariants of graphs. Suppose (M, c) is a coloured matroid, i.e., a matroid

M on a finite set E together with a function c mapping E into some set Λ of colours.

Let ZΛ be the polynomial ring Z[{Xλ, Yλ, xλ, yλ : λ ∈ Λ}]. Then Bollobás and Riordan



270 L. Traldi

define W (M, c) to be an element of a quotient ring ZΛ/I0, calculated by a recursion which

involves removing the elements of E one at a time as follows.

Definition 1. If e ∈ E is a loop of M and λ= c(e) then W (M, c) =YλW (M − e, c); if e ∈ E

is an isthmus of M and λ= c(e) then W (M, c) =XλW (M/e, c); and if e ∈ E is neither a

loop nor an isthmus of M and λ= c(e) then W (M, c) = yλW (M − e, c) + xλW (M/e, c).

The initial condition of the recursion is that the empty matroid ∅ has W (∅, c) = 1.

It does not suit the purpose of this brief note to give a detailed summary of [3], but

we recall several facts. Bollobás and Riordan do not actually discuss W (M, c) in detail;

instead they focus on a closely related invariant W (G, c) = α|V (G)| · W (M, c) of coloured

graphs, where M is the cycle matroid of G. The purpose of considering the quotient ring

ZΛ/I0 is to ensure that W (M, c) is independent of the order in which the elements of

E are removed. Bollobás and Riordan prove that W (M, c) is universal among matroid

invariants satisfying recursions similar to that of Definition 1; this result is related to

earlier work of Zaslavsky [12].

Suppose E is ordered as E = {e1, . . . , em} and we perform the recursive calculation of

Definition 1 by removing em first, then em−1, and so on until finally e1 is removed. The

result is a formula for W (M, c) as a sum; we associate with each term of the sum the

subset of E consisting of those elements which are contracted in obtaining that term. Then

we have a term for each subset B ⊆ E such that when one contracts the elements of B

and deletes the elements of E − B, no elements of B become loops and no elements of

E − B become isthmuses. It turns out that these subsets B of E are precisely the bases of

M. If B is a basis of M then an element ei ∈ B which contributes a power of Xλ to this

term must be an isthmus at the time of its contraction; equivalently, i must be the least

index of any element of the unique bond contained in (E − B) ∪ {ei}. Such an element of

B is internally active with respect to B. Similarly, if ei �∈ B contributes a power of Yλ to

the term, then ei must be a loop at the time of its deletion, so i must be the least index

of any element of the unique circuit contained in B ∪ {ei}; such an ei �∈ B is externally

active with respect to B. We see that the recursive application of Definition 1 results in

the following.

Definition 2. For each basis B of M let IA(B) and EA(B) be the subsets of E consisting

of the elements which are internally and externally active with respect to B, respectively.

Then

W (M, c) =
∑
B


 ∏

e∈IA(B)

Xλ





 ∏

e∈B−IA(B)

xλ





 ∏

e∈EA(B)

Yλ





 ∏

e∈E−B−EA(B)

yλ


,

with λ= c(e) throughout.

Bollobás and Riordan prove in [3] that, in addition to being universal with respect

to Definition 1, W (M, c) is universal among invariants that possess coloured activities

expansions like that of Definition 2.
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By the way, it is not necessary to implement Definition 1 according to a fixed order

of E. For instance, after em is removed there is nothing in Definition 1 which requires

that the same element em−1 be removed from both M/em and M − em. In general an

implementation of Definition 1 follows some binary tree, which records the deletions and

contractions that are performed. Activities may be defined with respect to the binary tree

instead of a fixed order, and the resulting version of Definition 2 is verified just as in

the discussion above. This modified version of Definition 2 is not crucial in the present

discussion, but we shall see in Section 2 that activities defined with respect to binary trees

are valuable when considering contraction–deletion invariants other than W (M, c).

Definitions 1 and 2 are coloured versions of well-known descriptions of the Tutte

polynomial, discussed in the introduction of [3]. The Tutte polynomial may also be

described as a sum indexed by the subsets of E; this description is the subset expansion

or co-rank–nullity expansion and is closely related to the formula for the Whitney–Tutte

dichromatic polynomial mentioned in the introduction of [3]. Bollobás and Riordan do

not give an analogous definition for W (M, c), though they do observe in Sections 4 and

5 of [3] that some evaluations of W (M, c) have subset expansions.

Following [4], we adopt the convention that M − e=M/e whenever e is a loop or

isthmus of M. It is this convention which makes it convenient for us to use matroids

rather than graphs: the deletion and contraction of an isthmus from a graph do not result

in the same graph, though there is certainly a very simple relationship between the two.

Definition 1′. W (M, c) may be calculated recursively using these three reduction prop-

erties: if e ∈ E is an isthmus of M and λ= c(e) then W (M, c) = (Xλ − a)W (M/e, c) +

aW (M − e, c) for any a; if e ∈ E is a loop of M and λ= c(e) then W (M, c) = aW (M −
e, c) + (Yλ − a)W (M/e, c) for any a; and if e ∈ E is neither a loop nor an isthmus of M

and λ= c(e) then W (M, c) = yλW (M − e, c) + xλW (M/e, c). The initial condition of the

recursion is that W (∅, c) = 1.

Different ways of choosing a will lead to different generalized activities expansions of

W (M, c); see [4] for examples of such expansions of the Tutte polynomial. Especially

interesting is the choice of a=Xλ − xλ for an isthmus with c(e) = λ and a= yλ for a loop

with c(e) = λ. An implementation of Definition 1′ which involves removing the elements

of E according to some order or binary tree, and using these choices of a, leads to the

following subset expansion for W (M, c).

Theorem 1.1.

W (M, c) =
∑
S⊆E


 ∏

e∈EI(S )

(Xλ − xλ)





 ∏

e∈E−S−EI(S )

yλ





 ∏

e∈IL(S )

(Yλ − yλ)





 ∏

e∈S−IL(S )

xλ


.

The term of the sum indexed by a subset S ⊆ E is the term obtained by deleting the elements

of E − S and contracting the elements of S . EI(S) consists of the elements of E − S which

are deleted as isthmuses in obtaining this term, and IL(S) consists of the elements of S which

are contracted as loops.
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Like Definitions 1 and 2, Theorem 1.1 does not make it obvious that W (M, c) is

independent of the order in which the elements of E are removed during the recursion.

Also, the connection between W (M, c) and the matroid structure of M is hidden in the

definitions of EI(S) and IL(S). These features are more easily seen in two corollaries of

Theorem 1.1.

Corollary 1.2. Let λ0 ∈ Λ and let Zλ0
be Xλ0

or Yλ0
. Then

x
|E|
λ0
y

|E|
λ0
Zλ0

W (M, c) = Zλ0

∑
S⊆E

(∏
e∈S

xλ

) ( ∏
e∈E−S

yλ

)
x

|E|−|S |+r(S )
λ0

y
|E|−r(E)+r(S )
λ0

×
(
Xλ0

− xλ0

)r(E)−r(S )(
Yλ0

− yλ0

)|S |−r(S )
.

Proof. The definition of the ideal I0 [3] implies that Zλ0
(Xλ − xλ)yλ0

=Zλ0
(Xλ0

− xλ0
)yλ

and Zλ0
(Yλ − yλ)xλ0

=Zλ0
(Yλ0

− yλ0
)xλ for each λ ∈ Λ. Applying these identities repeatedly,

we deduce from Theorem 1.1 that

x
|E|
λ0
y

|E|
λ0
Zλ0

W (M, c) = Zλ0

∑
S⊆E

(∏
e∈S

xλ

)( ∏
e∈E−S

yλ

)
x

|E|−|IL(S )|
λ0

y
|E|−|EI(S )|
λ0

×
(
Xλ0

− xλ0

)|EI(S )|(
Yλ0

− yλ0

)|IL(S )|
.

Corollary 1.2 now follows from Theorem 1 of [4], which states that |EI(S)| = r(E) − r(S)

and |IL(S)| = |S | − r(S) for every S ⊆ E.

Corollary 1.3 concerns an evaluation of W (M, c), which Zaslavsky [12] calls the normal

function. Let X and Y be individual indeterminates, let Z
′
Λ be the polynomial ring

Z[{X,Y } ∪ {xλ, yλ : λ ∈ Λ}], and let f : ZΛ → Z
′
Λ be the homomorphism with f(Xλ) = xλ +

(X − 1)yλ and f(Yλ) = yλ + (Y − 1)xλ for each λ ∈ Λ.

Corollary 1.3.

f(W (M, c)) =
∑
S⊆E

(∏
e∈S

xλ

) ( ∏
e∈E−S

yλ

)
(X − 1)r(E)−r(S )(Y − 1)|S |−r(S ).

This evaluation of W (M, c) is independent of the choice of an order on E, i.e., the ideal I0
is contained in ker f. Moreover if c : E → Λ is injective then c and f(W (M, c)) determine M

and W (M, c).

Proof. The assertion that I0 ⊆ ker f may be verified directly from the definition of I0 [3].

The formula for f(W (M, c)) follows from Corollary 1.2, after cancellation of f(x
|E|
λ0
y

|E|
λ0
Zλ0

).

Finally, the assertion that if c : E → Λ is injective then c and f(W (M, c)) determine M and

W (M, c) follows from the observation that if c is injective then one can use the coefficient

(
∏

e∈S xλ)(
∏

e∈E−S yλ) to single out the term of the sum that corresponds to a given S ⊆ E,

and then one can use the exponent of either X − 1 or Y − 1 to determine r(S). The rank

function determines the matroid structure of M, and along with c, the matroid structure

of M determines W (M, c).



A Subset Expansion of the Coloured Tutte Polynomial 273

2. Generalizations

Suppose M is a matroid on a finite set E, S is a subset of E, and we remove the elements

of E one at a time in any order, contracting the elements of S and deleting the elements of

E − S . Let EI(S) be the set of elements of E − S deleted as isthmuses during this process,

and IL(S) the set of elements of S contracted as loops. Theorem 1 of [4] tells us that

then |EI(S)| = r(E) − r(S) and |IL(S)| = |S | − r(S). This implies a broad generalization of

Theorem 1.1 above.

Any contraction–deletion calculation on a matroid or graph in which isthmuses and/or

loops play a special role is tied to the matroid structure.

It may be surprising that it is not necessary that the result of the calculation be a

matroid isomorphism invariant: a contraction–deletion recursion involving the edges of a

graph is essentially tied to the cycle matroid even if the initial information of the recursion

is non-matroidal. As we remarked in Section 1, it is also not necessary that the calculation

rigidly follow an order of E; a calculation may follow any binary tree on E.

Consider for instance the most thoroughly studied contraction–deletion invariant of

graphs, the chromatic polynomial P (G). It can be determined through the following

contraction–deletion calculation.

(1) If e is not a loop then P (G) =P (G − e) − P (G/e).

(2) If e is a loop then P (G) = 0.

(3) If E(G) = ∅ then P (G) = λ|V (G)|.

If the definition is implemented according to some order or binary tree on E(G) then the

result is a formula for P (G) as a sum indexed by the subsets S ⊆ E(G) with the property

that in the portion of the calculation corresponding to the contraction of elements of S

and deletion of elements of E − S , no loop is ever encountered. That is, both IL(S) and

EL(S) = {elements of E − S which are deleted as loops in this part of the calculation} are

empty. The resulting formula for P (G),

P (G) =
∑

IL(S ) = ∅
EL(S ) = ∅

(−1)|S |λ|V (G/S )|,

is the broken circuits expansion [11]. Observe that the sets S which contribute to the sum

are determined by the cycle matroid, even though the contribution of each such S reflects

non-matroidal information.

A more general invariant is the universal V-function Z(G) [2, 6], which may be defined

as follows; let x0, x1, . . . be independent indeterminates.

(1) If e is not a loop then Z(G) =Z(G − e) + Z(G/e).

(2) If G has no non-loop edges and for each v ∈ V (G) we let L(v) = {loops of G incident

on v} and d(v) = |L(v)| then

Z(G) =
∑

T⊆E(G)


 ∏

v∈V (G)

x|T∩L(v)|


,
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or equivalently

Z(G) =
∏

v∈V (G)

(
d(v)∑
i=0

(
d(v)

i

)
xi

)
.

The definition cannot be implemented strictly following an order of E(G), because

part (1) of the definition cannot remove loops. Instead an implementation follows a

binary tree whose leaves represent loop graphs (i.e., graphs all of whose edges are loops).

Part (1) of the definition yields an expansion indexed by the independent sets of the cycle

matroid:

Z(G) =
∑

IL(S )=∅

Z(G/S).

Once again, the sum is indexed by sets which are determined by the cycle matroid, but

the contribution of each set is not determined by the cycle matroid.

By the way, this expansion of Z(G) connects two others which are already known.

Using the second form of part (2) of the definition, this expansion yields the formula

for Z(G) that appears in Theorem 9 of [2]. If instead the first form of part (2) is used,

then we associate the summand corresponding to T ⊆ E(G/S) with S ∪ T , and obtain an

expansion of Z(G) indexed by the subsets of E(G); this expansion is the original definition

of Z(G) [6].

Corollary 1.3 may also be generalized.

Any invariant which results from a coloured contraction–deletion calculation on a matroid

or graph will provide enough information to determine the matroid structure, if the cal-

culation singles out isthmuses and/or loops for special attention and the colour map c is

injective.

For instance, the coloured version of Z(G) [2] is defined using the recursion: if e is not

a loop then Zc(G) = yc(e)Zc(G − e) + xc(e)Zc(G/e). For our purposes it is necessary only

to observe that this recursion defines Zc(G) as a linear function of the values of Zc on

loop graphs; we refer the reader to [2] for details about these values. If c : E(G) → Λ is

injective and the various xc(e) and yc(e) are independent indeterminates then a recursive

calculation of Zc(G) follows a binary tree just like one representing a calculation of

Z(G). Inspecting the tree we may identify, for each S ⊆ E(G), the edges which become

loops when non-loop elements of S are contracted and non-loop elements of E(G) − S

are deleted; consequently the binary tree determines IL(S) and EL(S) for each S ⊆ E(G).

This information is preserved in Zc(G), because c is injective. Theorem 1 of [4] tells us that

|IL(S)| = |S | − r(S) and consequently Zc(G) determines the rank of each S ⊆ E(G). That

is, even though Zc(G) is not a matroid invariant it does contain sufficient information

to determine the cycle matroid; it also contains additional information which is non-

matroidal, reflecting the values of Zc on loop graphs.
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