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Abstract

We discuss the use of K-terminal networks to represent arbitrary
clutters. A given clutter has many di¤erent representations, and
there does not seem to be any set of simple transformations that
can be used to transform one representation of a clutter into any
other. We observe that for t � 2 the class of clutters that can be
represented using no more than t terminals is closed under minors,
and has in�nitely many forbidden minors.

1. Introduction

A clutter on a �nite set S is a family of subsets of S, none of which con-
tains any other. A graph naturally gives rise to many clutters, including
the families of minimal edge- or vertex-cuts, edge- or vertex-sets of simple
circuits, edge-sets of spanning trees, edge- or vertex-sets of simple paths
between two given vertices, and so on.

A less familiar construction associates a clutter C(G;K) to aK-terminal
network (G;K) consisting of a graph G and a subset K � V (G) of termi-
nals: C(G;K) is the clutter on S = V (G) nK which contains every mini-
mal subset M � S such that the full subgraph of G induced by M [K is
connected. The elements of C(G;K) are minpaths of (G;K), and (G;K)
is a graphical representation of C(G;K). A K-terminal network may be
thought of as a model of a real-world structure, perhaps a computer or
telephone network; the terminals represent users of the network and the
non-terminal vertices represent elements of the network which may or may
not operate. Note that this interpretation does not explicitly allow for the
failure of network elements represented by the edges of G; the possibility of
such failures may be incorporated by inserting vertices of degree 2 in edges
whose failure is possible. We refer the interested reader to [1] for a general
discussion of K-terminal networks and network reliability.
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Our interest in the construction of C(G;K) does not lie in the modeling
of real-world networks, however. Rather, we are interested in the following
result of [12, 13].

Theorem 1. Every clutter is C(G;K) for some K-terminal network
(G;K).

Theorem 1 is not di¢ cult to prove. The trivial clutters f;g and ; are
represented by edgeless 1-terminal and 2-terminal networks, respectively. A
graphical representation of a nontrivial clutter C may be constructed using
the dual or blocker C�, de�ned by: ;� = f;g, f;g� = ;, and if ; 6= C 6= f;g
then the elements of C� are minimal among sets which intersect all the
elements of C. A clutter C with jC�j = 1 and ; =2 C� is simply a collection
of singletons; it is represented by a K-terminal network with jKj = 2
which has a non-terminal vertex for each element of an element of C, in
which every non-terminal vertex is adjacent to both terminals and the two
terminal vertices are not adjacent to each other. If C is a clutter on S
and jC�j � 2 then there is a K-terminal network with C = C(G;K) which
has K = C� and V (G) nK = S; all of the non-terminal vertices of G are
adjacent to each other, none of the terminal vertices are adjacent to each
other, and each terminal vertex B 2 C� is adjacent to each non-terminal
vertex v 2 B. That C = C(G;K) follows from the fact that C�� = C [3].

We call the graphical representations mentioned in the preceding para-
graph standard. There is generally a great variety of other graphical repre-
sentations of a given clutter. In Section 2 of the paper we discuss several
simple ways to transform a graphical representation of a clutter into another
representation of the same clutter. These transformations may be applied
to an arbitrary graphical representation (G;K) of a clutter C to obtain a
representation (G0;K 0) with jK 0j � jKj which is reduced in the sense that
there are no loops, every non-isolated non-terminal vertex appears in some
minpath, no two terminals are adjacent or have the same neighbor-set, and
every terminal�s neighbor-set is an element of C�.

In some contexts it happens that related combinatorial structures can
be changed into each other incrementally, using simple transformations;
consider the basis exchange property of matroids [5], or the Reidemeister
moves in knot theory [6]. Examples indicate that there is no set of �simple�
transformations which can be used to obtain all reduced graphical represen-
tations of a clutter from a given reduced representation, at least if �simple�
is interpreted in a reasonable way. For instance in Theorem 3.9 we show
that for n � 4 the clutter Un�1;n = f(n�1)-element subsets of an n-element
setg has reduced representations (G;K) with jKj = n and jKj =

�
n
2

�
, but
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no reduced representation with n < jKj <
�
n
2

�
; consequently any trans-

formation used to obtain one of these representations from another must
involve the simultaneous introduction or removal of

�
n
2

�
� n terminals.

The terminal number of a K-terminal network is jKj and the minimum
terminal number of a clutter, term(C), is the minimum of the terminal
numbers of graphical representations of C; the standard representations
show that in general term(C) � maxf2; jC�jg. We think of term(C) as a
measure of the complexity of C.

If C is a clutter on S and S1; S2 are disjoint subsets of S then (C=S1) n
S2 = (C n S2)=S1 is the clutter on S n (S1 [ S2) consisting of the minimal
subsets N � Sn(S1[S2) with the property that N[S1 contains an element
of C. This clutter is the minor of C obtained by contracting S1 and deleting
S2. It is common to simplify notation when contracting or deleting single
elements: C=x for C=fxg and C n x for C n fxg. Two simple properties of
the minor operations are order-independence (i.e., (((C=S1)nS2)=S3)nS4 =
(C=(S1[S3))n (S2[S4) ) and duality (i.e., ((C=S1)nS2)� = (C�=S2)nS1).

As noted in [13], the minor operations are compatible with graphical rep-
resentations. If C = C(G;K) then a (G0;K) with (C=S1) n S2 = C(G0;K)
may be obtained by removing each non-terminal vertex v 2 S2 and all edges
incident on v, and replacing each non-terminal vertex v 2 S1 with edges
connecting all the pairs of neighbors of v. To motivate these representations
of deletion and contraction, recall that we may think of (G;K) as a network
whose function is to provide communication among the elements of K, and
whose non-terminal vertices are vulnerable to failure. In (C=S1) n S2 each
non-terminal vertex v 2 S2 has failed, and each non-terminal vertex v 2 S1
has become invulnerable to failure and hence is logically equivalent to a
clique of its neighbors. (G;K) and (G0;K) have the same terminals, so we
conclude that term(C) � term(C 0) for any minor C 0 of C. It follows that
for each �xed t � 2 the class of clutters satisfying term(C) � t is closed
under minors, and hence is determined by a family of forbidden minors.

Theorem 2. For every t � 2 the family of clutters satisfying term(C) � t
has in�nitely many forbidden minors.

We have not completely determined any of these families of forbidden
minors, but in Section 3 we present forbidden minors for various minimum
terminal numbers; in particular we show that if t � 2 then the forbidden
minors for term(C) � t include all the degenerate projective planes Js with
s � t.

In Section 5 we brie�y discuss the properties of 2-terminal clutters.
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2. Clutter-preserving transformations

It is not unusual for nonisomorphic K-terminal networks to represent the
same clutter. For instance, each of the following transformations of a K-
terminal network (G;K) does not a¤ect C(G;K). We denote by N(v) the
set of vertices adjacent to v, excluding v itself.

1. A loop at any vertex may be adjoined or deleted.

2. If v and w are non-terminal vertices with a common terminal neigh-
bor, an edge between v and w may be adjoined or deleted.

3. If v is a non-terminal vertex which does not appear in any minpath
of (G;K) then any edge incident on v may be removed; conversely an edge
incident on such a v may be adjoined, so long as the edge does not create
a minpath involving v.

4. If (G;K) has two terminal vertices with precisely the same neighbors
then one of these terminals may be removed; conversely a new terminal
may be introduced with the same neighbors as an existing terminal.

5. If two terminal vertices are adjacent, the edge connecting them may
be contracted; that is, the two terminals may be combined into a single
terminal adjacent to all the neighbors of the original terminals. Conversely,
a terminal vertex � may be replaced by two adjacent terminals �1 and �2
such that ((N(�1) n f�2g)) [ (N(�2) n f�1g)) = N(�).

6. If �1 and �2 are terminal vertices such that neither is adjacent to any
terminal and N(�1) � N(�2), edges connecting all pairs of neighbors of �2
may be adjoined and then �2 may be removed.

7. If � is a terminal cutpoint and G n f�g has terminals in separate
components, edges connecting all pairs of neighbors of � may be adjoined
and � may then be removed.

8. Given a terminal � and a B 2 C(G;K)� such that B � N(�), edges
connecting all pairs of neighbors of � may be adjoined and then � may be
replaced with a terminal � 0 such that B = N(� 0).

We prove that transformations 6 and 8 do not a¤ect C(G;K), and
leave the other proofs to the reader. Observe �rst that adjoining edges
connecting all pairs of neighbors of �2 does not a¤ect C(G;K) because
it is a combination of instances of transformation 2; we presume that all
these edges are present in (G;K). Let (G0;K 0) be obtained from (G;K)
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by removing �2. Suppose M 2 C(G;K); then the full subgraph H of G
induced by M [ K is connected. The full subgraph H 0 of G0 induced by
M [ K 0 is also connected, because a path in H which does not end at
�2 has a corresponding path in H 0, in which any appearance of �2 has
been replaced either by an appearance of �1 or by an edge connecting two
neighbors of �2. IfM 0 2 C(G0;K 0) then the full subgraph H 0 of G0 induced
by M 0 [ K 0 is connected; the full subgraph H of G induced by M 0 [ K
is also connected because every neighbor of �1 is adjacent to �2. This
veri�es that transformation 6 does not a¤ect C(G;K). In the situation of
transformation 8, adjoining � 0 to (G;K) does not a¤ect C(G;K), because
every M 2 C(G;K) intersects B and hence contains a non-terminal vertex
adjacent to � 0. Transformation 6 may then be applied to adjoin edges
connecting all pairs of neighbors of � and remove � .

Transformations 1�8 may be applied to a graphical representation (G;K)
of a clutter C to obtain a representation (G0;K 0) with jK 0j � jKj which
is reduced in the sense mentioned in the introduction: there are no loops,
every non-isolated non-terminal vertex appears in some minpath, no two
terminals are adjacent or have the same neighbor-set, and every termi-
nal�s neighbor-set is an element of C�. We call two reduced representations
equivalent if the same elements of C� appear as neighbor-sets of terminals
in both.

Transformations 1�8 cannot generally be used to obtain an inequivalent
reduced representation from the standard one. A ninth transformation may
sometimes be used to obtain inequivalent reduced representations.

9. Suppose B 2 C(G;K)� and every two elements of B are either
adjacent or connected by a path whose internal vertices are all terminals.
Then a terminal � with N(�) = B may be adjoined.

Transformations 1�9 are certainly not �complete�in the sense of being
adequate to generate all the graphical representations of a given clutter from
any one. For example, we prove in Theorem 3.9 below that the uniform
clutters Un�1;n have many di¤erent reduced representations; transforma-
tions 1�9 cannot be used to change any one of these reduced representations
into an inequivalent one.

3. Some forbidden minors

Any clutter C can be represented by a K-terminal network (G;K) with
maxf2; jC�jg terminals, and many clutters can be represented byK-terminal
networks with fewer than maxf2; jC�jg terminals. A clutter that actually
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requires maxf2; jC�jg terminals seems especially interesting because it has
no graphical representation which is essentially simpler than the standard
one.

Some preliminary de�nitions and results will be convenient in our dis-
cussion of examples.

De�nition 3.1. Two vertices of a K-terminal network have perfect com-
munication if they are equal, adjacent, or connected by a path whose inter-
nal vertices are all terminals.

The terminology re�ects the idea that the only elements of a K-terminal
network which are vulnerable to failure are the non-terminal vertices; ver-
tices which communicate perfectly may be connected with a path which is
invulnerable or �perfect.�

Lemma 3.2. If two vertices have perfect communication then they appear
in the same connected component of G nB for every B 2 C(G;K)� which
does not contain either of them.

Proof: The assertion follows immediately from the fact thatB 2 C(G;K)�
is a vertex cut consisting of non-terminal vertices. �

Corollary 3.3. If all elements of V (G) nK have perfect communication,
then jKj � jC(G;K)�j.

Proof: Let B 2 C�. All of the non-terminals in G n B are in one com-
ponent of G n B, so there is a component �B of G n B with only termi-
nal vertices. If B0 6= B 2 C(G;K)� then �B cannot intersect �B0 , for if
� 2 �B \ �B0 then �B = fterminals � for which there is a �� path which
contains only terminalsg = �B0 and hence B = fnon-terminal neighbors of
elements of �Bg = B0. �

For s > 1, the degenerate projective plane Js is the clutter ffx1; yg,
fx2; yg, :::, fxs; yg, fx1; x2; :::; xsgg; note that J�s = Js. These clutters are
well-known as forbidden minors for binary clutters [7], for matroid ports
[8], and for the width-length property [4]. They play a similar role here: Js
is a forbidden minor for term(C) � t whenever 2 � t � s.

Theorem 3.4. For every s � 2, term(Js) = jJ�s j = s + 1. Every proper
minor of Js has a 2-terminal representation.
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Proof: Let (G;K) represent Js. Consider B = fx1; :::; xsg 2 J�s . Only
one non-terminal vertex, y, remains in G n B. But B 2 J�s , so G n B has
at least two components; at least one component must consist entirely of
terminals. This component provides perfect communication among the el-
ements of B. Now consider fxi; yg, where 1 � i � s. The non-terminals
not in fxi; yg have perfect communication, so Lemma 3.2 implies that they
all appear in one component of G n fxi; yg. There must be another compo-
nent whose vertices are all terminals, and this component provides perfect
communication between xi and y. Corollary 3.3 implies that jKj � jJ�s j.

Js=y = ffx1g; :::; fxsgg may be graphically represented with two non-
adjacent terminals, each adjacent to every xi. Js=xj = ffyg, fxi : 1 � i �
s; i 6= jgg may be represented by a 2-terminal network, with y adjacent
to both terminals and all the xi other than xj appearing on a path con-
necting the two terminals. Js n y = ffx1; :::; xsgg may be represented by a
2-terminal network with all the xi as vertices of a path connecting the two
terminals. Js n xj = ffy; xig : 1 � i � s; i 6= jg may be represented by a
2-terminal network in which y is the only neighbor of one terminal, and all
the xi other than xj are adjacent to y and the second terminal. �

We denote by Ua;n the uniform clutter consisting of the a-element sub-
sets of an n-element set; note that U�a;n = Un�a+1;n. U0;n = f;g may
be represented with just one terminal. U1;n is represented by a K-terminal
network (G;K) with two nonadjacent terminals, both of which are adjacent
to all n non-terminal vertices. Un;n may be represented with two terminals,
connected by a path of length n.

A lemma will be useful in analyzing the Ua;n with 1 < a < n� 1:

Lemma 3.5. Suppose 1 < a < n � 1, and let (G;K) be a K-terminal
network representing Ua;n. If there is an X � S = V (G) n K such that
jXj � a� 1 and every element of X has perfect communication with every
other, then jKj � jU�a;nj.

Proof: Suppose jXj > a � 1 and let Y = S n X; then jY j < n � a + 1.
Consider any D � S with jDj = n � a + 1 and Y � D; note that D 2
U�a;n. Every non-terminal of G nD is an element of X and so has perfect
communication with all the others; hence every non-terminal is in the same
component of G n D. Another component of G n D must consist entirely
of terminals; it provides perfect communication among the elements of D.
Iterating over all possible choices of D provides perfect communication
within Y and between any element of Y and any element of X. Thus every
non-terminal has perfect communication with every other, so Corollary 3.3
applies.
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Suppose jXj = a�1, and again let Y = S nX; then jY j = n�a+1 and
hence Y 2 U�a;n. All of the non-terminals in G n Y are elements of X and
therefore in the same component of G n Y ; any other component of G n Y
must consist entirely of terminals, and such a component provides perfect
communication among the elements of Y . If jY j > jXj the conclusion of the
lemma is obtained by applying the argument of the preceding paragraph to
Y in place of X.

Suppose jY j � jXj, and choose a �xed subset A � X with jAj = n� a;
then A [ fyg 2 U�a;n for every y 2 Y . We claim that there is at least one
yA 2 Y such that the elements of A [ fyAg have perfect communication.
The elements of X communicate perfectly, so Lemma 3.2 tells us that for
any y 2 Y there is one component of G n (A [ fyg) which contains all the
elements of X nA; choose yA 2 Y so that Gn(A[fyAg) has a component H
which contains no vertices from X, and contains as few vertices from Y as
possible given that it contains none from X. Suppose y 2 V (H)\Y . Every
component of Gn(A[fyAg) contains a vertex adjacent to yA, because GnA
is connected; consequently all the components of G n (A[fyAg) other than
H will be contained in the one component of G n (A [ fyg) which contains
yA. The non-terminal vertices which appear in the remaining component(s)
of G n (A [ fyg) include only those from V (H) n fyg, contradicting the
minimality of H. It follows that V (H)\Y = ;, and hence that H contains
no non-terminal vertices, so H provides perfect communication among the
elements of A [ fyAg.

Suppose x 2 X and consider B = (Y [ fxg) n fyAg 2 U�a;n. The
component of G n B which contains yA also contains A n fxg, because the
elements of A communicate perfectly with yA; observe that a < n�1 implies
that jAj = n�a > 1, guaranteeing that Anfxg 6= ;. This component ofGnB
also contains the other elements of X, because they communicate perfectly
with the elements of A n fxg. Any other component of G n B contains
only terminal vertices, and hence provides perfect communication among
the elements of B. This shows that every x 2 X communicates perfectly
with every element of Y other than yA. The elements of Y communicate
perfectly with each other, so there is perfect communication between any
two elements of X [ (Y n fyAg). This set is strictly larger than X, so the
argument of the �rst paragraph may be applied to it. �

Theorem 3.6. If 1 < a < n� 1 then term(Ua;n) = jU�a;nj =
�

n
n�a+1

�
.

Proof: Consider any terminal vertex � in a graphical representation (G;K)
of Ua;n. Let T be the set of terminals which are connected to � by paths
whose internal vertices are all terminals. Then X = N(T ) consists entirely
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of non-terminals, and T provides perfect communication among the ele-
ments of X. Observe that T is separated from the rest of K in G nX, so
X contains an element of U�a;n; hence jXj � n� a+ 1.

If jV (G) n (K [X)j = n�jXj � n�a+1 then jXj � a�1 and Lemma
3.5 tells us that jKj �

��U�a;n��.
Otherwise jV (G) n (K [X)j = n � jXj > n � a + 1. Suppose Y �

V (G) n (K [ X) and jY j = n � a + 1. The elements of X communicate
perfectly through T , so they appear in one component of G n Y ; any other
component of G n Y contains no elements of X. Choose such a Y so that a
componentH ofGnY which does not contain any member ofX contains the
smallest possible number of non-terminal vertices. Suppose v 2 V (H) nK
and y 2 Y , and let V = fvg[ (Y nfyg). Gn (Y nfyg) is connected, so every
component of G n Y contains a vertex adjacent to y; hence the component
of GnV which contains y contains every component of GnY other than H.
The vertex-set of any other component of GnV is contained in V (H)nfvg,
contradicting the minimality of H; hence there is no v 2 V (H) nK. Thus
V (H) � K, and H provides perfect communication among the elements of
Y .

Recall that X [ Y is a proper subset of S, because n� jXj > n� a+1.
Let Z = S n (X [ Y ), and suppose ; 6= A � X and ; 6= B � Y have
jAj+ jBj = n�a. If z 2 Z then A[B[fzg 2 U�a;n; Lemma 3.2 tells us that
all the elements of Y appear in a single component of G n (A [ B [ fzg).
Choose z 2 Z so that a component H of G n (A [ B [ fzg) which doesn�t
contain any element of Y has the smallest possible number of non-terminals.
Suppose v 2 V (H) \ Z. G n (A [ B) is connected, so every component
of G n (A [ B [ fzg) contains a vertex adjacent to z; consequently the
component of G n (A [ B [ fvg) containing z contains all the components
of G n (A[B [ fzg) other than H. The vertex-set of any other component
of G n (A[B [fvg) is contained in V (H) n fvg, violating the minimality of
H. We conclude that V (H) contains no element of Z. V (H) also contains
no element of Y , so all the non-terminal vertices of H are elements of X.

If V (H)\X = ; thenH contains no non-terminals, so it provides perfect
communication among the elements of A [B [ fzg.

On the other hand, suppose V (H) \ X 6= ;; Lemma 3.2 tells us that
X n A � V (H). G n (A [ B) is connected and H is a component of G n
(A [ B [ fzg), so H must have a vertex u adjacent to z. If u may be
chosen in X then we may also choose x 6= u 2 X n A, because jX �Aj �
n � a + 1 � (n � a � 1) = 2. If u cannot be chosen in X then u is a
terminal. H is connected, so there is a path in H from u to an element
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of X; by shortening the path if necessary we may assume that its internal
vertices are all terminals. jX �Aj � 2, so we may choose an x 2 X n A
which is not the element of X which appears on this path. Either way,
u is a vertex of H which is adjacent to z, x 2 V (H) \ X, and u has
perfect communication with an element of V (H)\X in H nx. G n (A[B)
is connected, so every component of G n (A [ B [ fzg) contains a vertex
adjacent to z; consequently all the components of G n (A [B [ fzg) other
thanH are contained in the component of Gn(A[B[fxg) which contains z.
V (H) n fxg contains u which is adjacent to z, and also contains an element
of X which communicates perfectly with u in H nx; because there is perfect
communication among the elements of X, Lemma 3.2 tells us that every
element of (V (H)\X)nfxg is contained in the component ofGn(A[B[fxg)
which contains z. Any other component of G n (A[B [ fxg) contains only
vertices from V (H)n(V (H)\X). The non-terminals appearing in H are all
elements of X, so any other component of G n (A [B [ fxg) contains only
terminal vertices and provides perfect communication among the elements
of A [B [ fxg.

We conclude that whether V (H) \ X = ; or V (H) \ X 6= ; there
is perfect communication between any element of A and any element of
B. We can repeat this for all nonempty A � X and B � Y such that
jAj+jBj = n�a, and conclude that there is perfect communication between
any element of X and any element of Y . There is perfect communication
among the elements of X and also among the elements of Y , so there is
perfect communication among the elements of X [ Y .

Denote X [Y by X1. We may apply the argument above, starting with
the second paragraph of the proof, to X1 in place of X. We conclude that
either jV (G) n (K [X1)j = n�jX1j � n�a+1 (in which case jX1j � a�1
and Lemma 3.5 tells us that jKj �

��U�a;n��) or jV (G) n (K [X1)j = n �
jX1j > n� a+ 1 (in which case the argument produces a Y1 2 U�a;n which
is contained in V (G) n (K [X1) and has the property that there is perfect
communication among the elements of X2 = X1 [ Y1). Repeating as many
times as necessary, we conclude that jKj �

��U�a;n��.
The standard representation shows that term(Ua;n) �

��U�a;n��. �
Corollary 3.7. If n � 6, 2 < a < n � 2 and maxf

�
n�1
n�a+1

�
;
�
n�1
n�a

�
g < t <�

n
n�a+1

�
then Ua;n is a forbidden minor for term(C) � t.

Proof: Theorem 3.6 states that term(Ua;n) =
��U�a;n�� = � n

n�a+1
�
. A dele-

tion Ua;n n x consists of the a-element subsets of S which do not contain
x, and hence is isomorphic to Ua;n�1. It follows that term(Ua;n n x) =
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��U�a;n�1�� = �n�1n�a
�
. On the other hand, a contraction Ua;n=x consists of the

(a� 1)-element subsets of S n fxg, and hence is isomorphic to Ua�1;n�1. It
follows that term(Ua;n=x) =

��U�a�1;n�1�� = � n�1
n�a+1

�
. �

Corollary 3.8. If n � 3 then U2;n is a forbidden minor for term(C) � n�1.

Proof: If n � 4 then Theorem 3.6 states that term(U2;n) =
��U�2;n�� =�

n
n�1

�
= n. It is a simple matter to determine directly that term(U2;2) = 2

and term(U2;3) = 3.

Observe that if n � 3 then a deletion U2;n n x consists of the 2-element
subsets of S which do not contain x, and hence is isomorphic to U2;n�1.
It follows that term(U2;n n x) = n � 1. On the other hand, a contraction
Ua;n=x consists of the 1-element subsets of S nfxg, and hence is 2-terminal.
�

It is not hard to verify that all reduced graphical representations of U1;2
and U2;3 are standard. This property is not shared by the larger clutters
Un�1;n.

Theorem 3.9. If n � 4 then Un�1;n has precisely one type of nonstandard
reduced graphical representation: a cycle in which n terminals and n non-
terminals appear alternately, which may have an edge between the two
neighbors of any terminal. Consequently, term(Un�1;n) = n.

Proof: Suppose (G;K) is a reduced graphical representation of Un�1;n.
U�n�1;n = U2;n, so every terminal vertex in (G;K) is of degree 2.

Suppose P is a simple path v1; �1; v2; �2, ..., � c�1; vc in G which involves
non-terminals vi and terminals � i. Note that c � n, for there are only n
non-terminal vertices in G. We claim that there is a terminal adjacent to
one of the ends of the path.

Suppose c < n, and let Z = S nfv1; :::; vcg contain all the non-terminals
not in P . Every 2-element subset of S is a vertex cut ofG, because U�n�1;n =
U2;n. If z 2 Z then a single component of G n fv1; zg contains the path
�1; v2; �2, ..., � c�1; vc. Choose z 2 Z so that a component H of G n fv1; zg
which does not intersect P contains the smallest possible number of non-
terminals. Suppose u 2 V (H)nK; then u 2 Z. Consider the mincut fv1; ug.
Every component of G n fv1; zg contains a vertex adjacent to z, because
G n fv1g is connected; hence all of the components of G n fv1; zg other
than H are contained in the component of G n fv1; ug which contains z.
Any other component of Gnfv1; ug contains only vertices from V (H)nfug,
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contradicting the minimality of H. Therefore H contains no non-terminals.
H is connected and (G;K) is reduced, soH is just a single terminal adjacent
only to v1 and z.

If c = n then all the non-terminals appear in P . Consider the mincut
fv1; vcg. One component of G n fv1; vcg contains the path �1; v2; �2, ...,
� c�1, which includes all the non-terminal vertices of G n fv1; vcg. Any
other component of G n fv1; vcg cannot contain any non-terminals; (G;K)
is reduced, so such a component is simply a single terminal adjacent to v1
and vc.

This completes the proof of the claim. Observe that we have actually
proven a more detailed assertion: if c < n there is a terminal adjacent to
v1 and some z 2 S n fv1; :::; vcg, and if c = n there is a terminal adjacent
to v1 and vc. If �1 is any terminal then �1 is of degree 2, and hence there
is a path v1; �1; v2 in G; applying the assertion repeatedly, we extend this
path until we obtain a cycle v1; �1; v2; �2, ..., � c�1; vc; � c; v1 with c = n.

To complete the proof we show that if (G;K) has any terminal which
does not appear in this cycle �, or any edge which does not appear in � and
does not connect two non-terminal vertices adjacent to a given terminal,
then (G;K) is equivalent to the standard representation of Un�1;n.

Suppose �rst that (G;K) has a terminal � which does not appear in �;
say N(�) = fv1; vig with 2 < i < n. If 1 < a < i and i < b � n then
fva; vbg 2 U�n�1;n. The component of G n fva; vbg which contains � also
contains paths within � which connect all the non-terminals other than va
and vb to either v1 or vi. Another component of Gnfva; vbg cannot contain
any non-terminal vertex and hence must be simply a single terminal with
neighbor-set fva; vbg. Applying the same argument to the various values
of a and b instead of 1 and i, we conclude that every pair of non-terminals
fvp; vqg is the neighbor-set of a terminal, i.e., (G;K) is equivalent to the
standard representation.

Suppose now that every terminal of (G;K) appears in �. Suppose
further that there is an edge in G between two non-terminal vertices vi
and vj which are not adjacent to the same terminal. Then fvi�1; vi+1g is
not a cut, contradicting the fact that fvi�1; vi+1g 2 U�n�1;n. �

Corollary 3.10. If n � 3 then Un�1;n is a forbidden minor for term(C) �
n� 1.

12



Proof: Contracting one element from Un�1;n yields Un�2;n�1, whose min-
imum terminal number is n � 1. Deleting one element from Un�1;n yields
Un�1;n�1, whose minimum terminal number is 2. �

Corollary 3.11. If n � 5 and
�
n�1
3

�
< t <

�
n
3

�
then Un�2;n is a forbidden

minor for term(C) � t.

Proof: Theorem 3.6 implies term(Un�2;n) =
�
n
3

�
. Contracting one ele-

ment from Un�2;n yields Un�3;n�1, and deleting one element yields Un�2;n�1.
The corollary follows, because term(Un�3;n�1) =

�
n�1
3

�
� term(Un�2;n�1) =

n� 1. �

If 1 � k � n then the circulant clutter Ckn contains all the sets of k
consecutive elements of Zn. We use consecutive in the natural sense in Zn;
for instance, C35 = ff0; 1; 2g, f1; 2; 3g, f2; 3; 4g, f3; 4; 0g, f4; 0; 1gg. The
particular circulant clutters C2n with n odd are forbidden minors for the
width-length inequality [4], and they turn out to be forbidden minors here
as well.

Theorem 3.12. If n > 1 is odd then the circulant clutter C2n has no non-
standard reduced representation.

Proof: Any B 2 (C2n)� must contain at least one of every two consecutive
elements of Zn; otherwise it would miss an element of C2n. It follows that
every B 2 (C2n)� must contain at least one pair of consecutive elements
of Zn, because n is odd. In addition, a B 2 (C2n)� cannot contain three
consecutive elements of Zn, because if x1; x2; x3 2 B are consecutive then
B n x2 also intersects all the elements of C2n and thus B is non-minimal.
These two conditions � that B must contain one of every two consecu-
tive elements of Zn and cannot contain any three consecutive elements �
completely characterize the elements of (C2n)

�:

Let (G;K) be a reduced graphical representation of C2n. Certainly
(G;K) has at least one terminal �0; suppose N(�0) = B0 2 (C2n)�. Let
B1 = fx + 1 : x 2 B0g, where we interpret + in Zn. Clearly B1 2 (C2n)�,
for it inherits the two characterizing properties from B0. Every x =2 B1
is an element of B0, for if x =2 B1 then x + 1 2 B1 and hence x 2 B0.
Therefore the component of G nB1 which contains �0 also contains all the
non-terminal vertices of G nB1. Any other component of G nB1 must have
only terminal vertices; (G;K) is reduced, so such a component must consist
of a single, isolated terminal �1. Then N(�1) � B1 and hence N(�1) = B1;
(G;K) is reduced, so there is a unique such �1.
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We de�ne B2, B3, ..., Bn�1 in the corresponding fashion. From identical
arguments, applied �rst to B2 and then in succession to the others, we
conclude that for each i there is a terminal � i with N(� i) = Bi. It is
not necessarily the case that these n blocker elements are distinct � for
instance if n = 9 then B0 = f0; 1; 3; 4; 6; 7g = B3 � but this is irrelevant
to our argument.

We now show that these terminals �0; :::; �n�1 provide perfect com-
munication among the non-terminal vertices of G; suppose x is a non-
terminal vertex. Some consecutive pair fa� 1; ag is contained in B0; then
fx � 1; xg = fa � 1 + x � a; a + x � ag � Bx�a. Clearly x has perfect
communication, through �x�a, with all other elements of Bx�a. Every
y =2 Bx�a is an element of Bx�a+1, for if y =2 Bx�a then y + 1 =2 Bx�a+1
and Bx�a+1 must contain at least one of y and y + 1. Since x� 1 2 Bx�a,
x 2 Bx�a+1, so x has perfect communication, through �x�a+1, with all
other elements of Bx�a+1. It follows that x has perfect communication
with every non-terminal vertex.

The theorem now follows from Corollary 3.3. �

The reader can easily verify that in contrast, if n > 1 is even then
term(C2n) = 2.

Corollary 3.13. If n > 1 is odd and 2 � t <
��(C2n)��� then the circulant

clutter C2n is a forbidden minor for term(C) � t.

Proof: We leave it to the reader to verify that contracting or deleting a
single element from C2n results in a 2-terminal clutter. �

The circulant clutters C2n have the property that
��(C2n)��� = ��(C2n�2)���+��(C2n�3)��� for n > 4. It follows that ��(C2n)��� is monotonically increasing for

n > 4, and hence for every t � 2 the circulant clutters C2n with n odd and
su¢ ciently large are all forbidden minors for term(C) � t. The only other
family of clutters we know to have this property is the family of degenerate
projective planes.

4. Some other examples

Di¤erent clutters have very di¤erent assortments of reduced graphical rep-
resentations; we leave it to the interested reader to analyze the following
examples.
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a clutter with six inequivalent reduced representations

a clutter with three inequivalent reduced representations

a clutter with two inequivalent reduced representations
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5. 2-terminal clutters

In this section we brie�y summarize the special properties of clutters which
can be represented using two terminals. Some of these properties have been
studied extensively in the literature; see [2] for a survey.

Menger�s Theorem tells us that if a clutter has a 2-terminal representa-
tion then the maximum number of pairwise disjoint elements of the clutter
is the minimum cardinality of an element of its blocker. That is, in the ter-
minology of [10] a 2-terminal clutter packs. A more complicated-seeming
property is the width-length inequality. According to [4, 11] this property
de�nes a class of clutters which is closed under minors, and none of whose
forbidden minors packs. Consequently any minor-closed class of clutters
whose elements all pack also has the property that its elements all satisfy
the width-length inequality; the 2-terminal clutters constitute such a class.

The clutter Q6 of edge-sets of triangles in K4 is ffa; b; dg, fb; c; eg,
fa; e; fg, fc; d; fgg; it does not pack. Consider the clutter Q+6 obtained
from Q6 by adjoining a common element x to every minpath. Given any
graphical representation of Q6, we obtain a representation of Q

+
6 by replac-

ing some terminal � by a non-terminal vertex x with N(x) = N(�) and a
terminal � 0 with N(� 0) = fxg; this shows that term(Q6) � term(Q+6 ). The
reverse inequality follows from the fact that Q6 = Q+6 =x, so term(Q

+
6 ) =

term(Q6) > 2. This example shows that not all clutters which pack and
satisfy the width-length inequality have 2-terminal representations, for Q+6
has both properties [2].

By the way, all the minors of Q6 and its dual are 2-terminal. It turns
out that Q6 is a forbidden minor for term(C) � t, 2 � t � 6, and Q�6 is a
forbidden minor for term(C) � t, 2 � t � 3.

While studying this material we often jokingly quoted the motto �Every-
thing is a forbidden minor,� because so many of the clutters which have
appeared in the literature turn out to be forbidden minors for term(C) �
t for some t. One exception is the clutter of lines in the Fano plane,
F7 = ffa; b; dg, fb; c; eg, fc; d; fg, fd; e; gg, fe; f; ag, ff; g; bg, fg; a; cgg.
The reader might like to verify that Q6 is the minor of F7 obtained by
deleting a single element and that term(Q6) = 7 = term(F7).

If (G;K) is a 2-terminal network with K = fs; tg then the clutter of
st-paths in (G;K) is the clutter on E(G) whose elements are the edge-sets
of simple paths connecting s to t in G. As remarked in [10], these clutters
are all 2-terminal.
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Figure 5.1: the clutter P4

Proposition 5.1. Clutters of st-paths constitute a proper subclass of the
class of 2-terminal clutters.

Proof: Let (G;K) be a 2-terminal network and C the associated clutter of
st-paths, de�ned on S = E(G). To represent C with a 2-terminal network
we insert into each edge e of G a degree-2 vertex named e, and replace
each non-terminal vertex v of G with the edges of a clique consisting of the
newly introduced vertices e such that v is incident on the edge e in G.

To verify that not all 2-terminal clutters are clutters of st-paths, consider
the 2-terminal network given in Figure 5.1. It represents the clutter P4 =
ff1; 2g; f2; 3g; f3; 4gg, which is not a clutter of st-paths [9]. �
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