The Mean Value Theorem

In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle’s Theorem and the Mean Value Theorem.

Rolle’s Theorem

Rolle’s Theorem gives us information about $f'(x)$ on the interval $[a, b]$ if $f(a) = f(b)$. Consider the three examples below:

- The function graphed below is $f(x) = \cos x$, $\pi/4 \leq x \leq 9\pi/4$:

![Graph of cos(x) from pi/4 to 9pi/4](image)

- The function graphed below is $g(x) = x^2 + 3$, $-1 \leq x \leq 1$:

![Graph of x^2 + 3 from -1 to 1](image)

- Next, we have $h(x) = 4$, $-2 \leq x \leq 2$:
Even though the three graphs are significantly different, they have a commonality: each starts and ends at the same height. They have another common feature, which we can see by comparing the three following graphs:
Each of the three functions has at least one point at which there is a horizontal tangent line, i.e. the derivative is 0. In fact, it turns out that it is impossible to graph a differentiable function $f(x)$ whose starting and ending points have the same height without forcing $f'(x) = 0$ at some point.

This phenomenon is described by the following theorem:

Rolle's Theorem. Suppose that $f(x)$ is a function satisfying the three conditions below:

- $f(x)$ is continuous on $[a, b]$,
- $f(x)$ is differentiable on (a, b),
- $f(a) = f(b)$

Then there is a number c in (a, b) so that $f'(c) = 0$.

Notice that Rolle’s Theorem doesn’t work if the two endpoints of the interval have different y coordinates; for example, on the interval $[1, 2]$, the function $f(x) = x$ has $f(1) = 1 \neq 2 = f(2)$; clearly $f(x)$ has no points with $f'(x) = 0$:

Mean Value Theorem

Recall that the **average rate of change** of a function \(f(x) \) over an interval \([a, b] \) is the same as the slope of a secant line joining \((a, f(a))\) to \((b, f(b))\), and is calculated using the formula

\[
\frac{f(b) - f(a)}{b - a}.
\]

On the other hand, **instantaneous rate of change** of \(f(x) \) at the number \(x = c \) is the same as the slope of a tangent line to \(f(x) \) at the point \((c, f(c))\), and is calculated using the formula

\[
\lim_{h \to 0} \frac{f(c + h) - f(c)}{h} = f'(c).
\]

Example. As a motivating example for the ideas behind the Mean Value Theorem, suppose you manage to drive your car a total of 35 miles in 1/2 hr. Can we draw any conclusions about your instantaneous velocity from this information?

We can easily calculate your **average velocity** over the 30 minute time period; since you drove 35 miles in 1/2 hr, your average velocity was

\[
\frac{35 - 0}{\frac{1}{2} - 0} = 70 \text{ mi/hr}.
\]

Now we’ve only found your **average velocity** over the time period; can we draw any conclusions about your **instantaneous velocity** from this information? It seems reasonable to guess that you were traveling 70 mi/hr at some point in time. This is precisely what is predicted by the Mean Value Theorem below.

The Mean Value Theorem below tells us that we can make predictions about a function’s instantaneous rate of change on an interval if we know the function’s average rate of change. In fact, Rolle’s Theorem is actually just a special case of this theorem:

Mean Value Theorem. If \(f(x) \) is continuous on \([a, b] \) and differentiable on \((a, b)\), then there is a number \(c \) in the interval \((a, b)\) so that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

The Mean Value Theorem simply says that a function must attain its average rate of change over an interval as the instantaneous rate of change at some point in the interval. As an example, consider the function \(f(x) = -x^3 + 6x - 2 \), graphed below on the interval \([-3, 3]\):
The average rate of change of $f(x)$ on the interval $[-3, 3]$ is precisely the slope of the secant line joining $(-3, f(-3))$ to $(3, f(3))$:

The Mean Value Theorem says that there is at least one number c between -3 and 3 so that the slope of the tangent line to $f(x)$ at c (i.e. $f'(c)$) matches up with the slope of this secant. In this example, there are actually two such points, marked below:
Notice that the tangent lines at these points appear to be parallel to the secant line, meaning that their slopes are the same:

Example. Given the function $f(x) = -x^3 + 6x - 2$ on the interval $[-3, 3]$, find the point(s) c guaranteed by the Mean Value Theorem so that

$$f'(c) = \frac{f(3) - f(-3)}{3 - (-3)}.$$
Let’s start by computing the average rate of change of $f(x)$ on the interval $[-3, 3]$:

$$
\frac{f(3) - f(-3)}{3 - (-3)} = \frac{-11 - 7}{6} = \frac{-18}{6} = -3.
$$

The Mean Value Theorem says that there is a number c between -3 and 3 so that $f'(c) = -3$. To find c, we’ll need to know $f'(x)$. Since

$$
f'(x) = -3x^2 + 6,
$$
we want to find c so that

$$
-3c^2 + 6 = -3;
$$
solving, we see that

$$
-3c^2 + 6 = -3
$$

$$
-3c^2 = -9
$$

$$
c^2 = 3
$$

$$
c = \pm\sqrt{3}.
$$

Thus we know that $x = -3$ and $x = 3$ are numbers so that

$$
f'(-3) = \frac{f(3) - f(-3)}{3 - (-3)} \quad \text{and} \quad f'(3) = \frac{f(3) - f(-3)}{3 - (-3)};
$$
equivalently, the slopes of tangent lines to $f(x)$ at $x = -3$ and $x = 3$ match up with the slope of the secant line joining the endpoints of $f(x)$ on $[-3, 3]$:
Example. Sheriff Smith clocks a car going 50 mi/h in a 55 mi/h zone on Highway 22; 30 minutes later, Deputy Jones, who is 35 miles down Highway 22, clocks the same car going 50 mi/hr. After conferring with the Sheriff, Deputy Jones decides to give the driver a ticket. Why?

We can easily calculate the car’s average rate of change over the 30 minute time period; since the car drove 35 miles in 1/2 hr, its average rate of change was

\[
\frac{35 - 0}{\frac{1}{2} - 0} = 70 \text{ mi/hr.}
\]

The Mean Value Theorem says that, at some point between time \(t = 0 \) and time \(t = .5 \), the car’s instantaneous velocity was the same as its average velocity over the 1/2 hour time period. Since the average velocity was 70, there was some point in time where the car was actually driving 70 mi/hr.