Graphing Worksheet 3

Let \(f(x) = x^4 - 2x^2 + 8 \).

1. Find the domain of \(f(x) \).

2. Find all vertical and horizontal asymptotes of \(f(x) \)

3. Find the \(x \) and \(y \) intercepts of \(f(x) \), if possible

4. Find \(f' \) and \(f'' \)

5. Determine the intervals on which \(f \) is increasing and decreasing

6. Determine if \(f \) has any local or absolute extremes

7. Find the intervals of concavity of \(f \)

8. Determine if \(f \) has any inflection points

9. Plot asymptotes and key points on the graph of \(f \), including but not limited to intercepts, local max/mins, and inflection points

10. Draw the curve using your knowledge of its behavior with regards to increasing/decreasing behavior and concavity.
Graphing Worksheet 3

Let $f(x) = x\sqrt{8 - x^2}$.

1. Find the domain of $f(x)$.

2. Find all vertical and horizontal asymptotes of $f(x)$.

3. Find the x and y intercepts of $f(x)$, if possible.

4. Find f' and f''.

5. Determine the intervals on which f is increasing and decreasing.

6. Determine if f has any local or absolute extremes.

7. Find the intervals of concavity of f.

8. Determine if f has any inflection points.

9. Plot asymptotes and key points on the graph of f, including but not limited to intercepts, local max/mins, and inflection points.

10. Draw the curve using your knowledge of its behavior with regards to increasing/decreasing behavior and concavity.