Lab 2 Supplement: Programming in Stata
Short Course on Poverty & Development for Nordic Ph.D. Students
University of Copenhagen
June 13-23, 2000

To take full advantage of the strengths of Stata, it’s work taking some time to learn the
basics of programming. In the labs, we will primarily use programming for looping
through the data. But you can also write programs to estimate models or to create your
own commands (see Lab 3).

1. Defining, running and dropping programs

Let’sjust start with avery simple program to see how they work. Suppose you type the
following three lines in the Stata Command window (you can also submit themina'*.do’
file),

program define hello

di splay “Hello!”
end

andthentype hel |l o . Statawill respond with

Hel | o!

There. You just wrote and ran aprogam in Stata. If youtype hel | o again, Stataagain
will respond with

Hel | o!

So until you tell Statato drop the program, or until you exit the program, Stata will keep
it in memory (asit does with matrices, scalars, and saved results from built in
commands).

Now type,
program define hello

di splay “Greetings!”
end

andthentype hel |l o . Statawill respond with

Hel | o!

The reason that it doesn’t respond with Gr eet i ngs! isthat the previous version of the
programis still in memory. Now if you type



program drop hello
program define hello
di splay “Greetings!”
end

andthentype hel |l o . Statawill respond with

Gr eet i ngs!

Note that Stata does not execute commands like di spl ay when they appear in a program
until the program isinvoked. Sometimes this makes debugging programs (I don’t know
anyonewho is able to get all of his’/her programs doing what he/she wants on the first try)
difficult. It especialy becomes difficult if you forget to drop the previously saved
version of your program. A common way around thisisto type

capture program drop prognane

before you define your progam. Thistells Stata to recognize new versions of the program
and to drop the version in memory if another is defined with the same name. Now you
will get the following

capture programdrop hello
program define hello

di splay “Hello!”

end

hell o
Hel | o!
capture programdrop hello
program define hello
di splay “Greetings!”
end

hell o

Gr eeti ngs!

2. Program argumentsand locals

Suppose that | want to write a program that will find the mean of avariable which I'll
identify when | run the program (thisis aready abuilt in program in Stata, but we'll just
use this redundant program as an example). There are a couple of things that we need to
learn about to do this. First, we'll look at a program that does this, and then we'll see
what’ s going on (note: you can't give your program the same name as existing programs



because there’ s a hierarcy of how Statalooks for programs— and user-written ones are at
the bottom of the list — in other words, Statawill apply the built in command)

capture program drop mysum
program defi ne mysum

| ocal var "1’

sunmari ze "var’
end

mysum haz

you will get the following result (given a dataset that has the variable “haz” init),

Vari abl e | Obs Mean Std. Dev. M n Max
T har | essei 1472182  14losls 589 2. 98
| can also type

mysum whz

whz | 68560 -. 458337 1.192863 -4 6

Thefirst thing to note is that we defined a“local” which isavariable or scalar (we can
also define local matrices) that exists solely within the program. Once the program is
finished running, Stata drops all locals from memory. We can define locals by using the
following syntax

| ocal nane targetname

for variableswheret ar get nane isthe name of the variable who' s values are being
assigned to the local variable, or in the case of scalars,

| ocal nane = targetnane

Note that in the fourth line when the local isbeing called, the nameis put in paretheses
(theseare™ and ’ , respectively)

Tvar

Thistells Statato look for the local with the namevar , and to ignore existing variables
or scalars with the same name. Note that when you define alocal, you do not include the

and ' aroundit.



What thenisthe™ 1’ ? Thistells Statato use the first argument of the program (here we
only have one argument —e.g. nysum whz). Of course, we could have written the
program as follows,

capture program drop mysum

program defi ne mysum
summari ze "1

end

but when your programs become more complicated, you will find that it is much easier to
to keep track of what you are doing if you give names to your locals.

3. Do loops

Now suppose that we want to find the means of this variable for each value of another
indicator variable, for example by region, then we can modify our program to include a
loop (again you can do thisby simply typing by ur ban: sum haz).

capture program drop mysum
program defi ne mysum

| ocal var "1

| ocal byvar "2

qui etly sum " byvar'

| ocal max = r(max)

local i = r(mn)
while “i' <= "max' {
sum “var' if “byvar' = "i'
local i = "i'" + 1
}
end

Hereiswhat it looks like in the Stata Results window:

capture program drop nysum

program defi ne mysum
1. local var "1

2. local byvar "2

3. quietly sum " byvar'
4. local max = r(nax)
5. local i = r(mn)

6. while "i' <= "max' {
7. sum “var' if “byvar' == "i'
8. local i ="i" +1
9. }

10. end



mysum haz ur ban

Vari abl e | bs Mean Std. Dev. M n Max
T har | assos 1504447  14lszs 584 289
Vari abl e | Obs Mean Std. Dev M n Max
T haz | 10756 -1.170138 1344784 -5.89 2,08

The novelty hereisthe following,

while "i' <= "max' {

.. commands. .
local i ="i' + 1
}

Thistells Statato carry out the commands within the curly brackets, { }, until the whi | e
condition is satisfied. Note that thelocal " i ' isaugmented in the following fashion

local i ="i' + 1

Thissaysto definethelocal i again, but now assignit’s present value (i.e. i’ ) and
add 1 toit. Thefollowing will result in errors

i+ 1
+ 1

local "i' =
local i =i
(except for the second line if you have anon-local variable or scalar with the namei —
which, of course, is not what you want anyway).

With these basic programming commands under your belt, you should have no problem
understanding the programs that we' [l encounter in Labs 2, 3 and 4.



