
Lab 2 Supplement: Programming in Stata
Short Course on Poverty & Development for Nordic Ph.D. Students

University of Copenhagen
June 13-23, 2000

To take full advantage of the strengths of Stata, it’s work taking some time to learn the
basics of programming. In the labs, we will primarily use programming for looping
through the data. But you can also write programs to estimate models or to create your
own commands (see Lab 3).

1. Defining, running and dropping programs

Let’s just start with a very simple program to see how they work. Suppose you type the
following three lines in the Stata Command window (you can also submit them in a ‘.do’
file),

program define hello
 display “Hello!”
end

and then type hello . Stata will respond with

. Hello!

There. You just wrote and ran a progam in Stata. If you type hello again, Stata again
will respond with

. Hello!

So until you tell Stata to drop the program, or until you exit the program, Stata will keep
it in memory (as it does with matrices, scalars, and saved results from built in
commands).

Now type,

program define hello
 display “Greetings!”
end

and then type hello . Stata will respond with

. Hello!

The reason that it doesn’t respond with Greetings! is that the previous version of the
program is still in memory. Now if you type

program drop hello
program define hello
 display “Greetings!”
end

and then type hello . Stata will respond with

. Greetings!

Note that Stata does not execute commands like display when they appear in a program
until the program is invoked. Sometimes this makes debugging programs (I don’t know
anyone who is able to get all of his/her programs doing what he/she wants on the first try)
difficult. It especially becomes difficult if you forget to drop the previously saved
version of your program. A common way around this is to type

capture program drop progname

before you define your progam. This tells Stata to recognize new versions of the program
and to drop the version in memory if another is defined with the same name. Now you
will get the following

capture program drop hello
program define hello
 display “Hello!”
end

hello

. Hello!

capture program drop hello
program define hello
 display “Greetings!”
end

hello

. Greetings!

2. Program arguments and locals

Suppose that I want to write a program that will find the mean of a variable which I’ll
identify when I run the program (this is already a built in program in Stata, but we’ll just
use this redundant program as an example). There are a couple of things that we need to
learn about to do this. First, we’ll look at a program that does this, and then we’ll see
what’s going on (note: you can’t give your program the same name as existing programs

because there’s a hierarcy of how Stata looks for programs – and user-written ones are at
the bottom of the list – in other words, Stata will apply the built in command)

capture program drop mysum
program define mysum
 local var `1’
 summarize `var’
end

mysum haz

you will get the following result (given a dataset that has the variable “haz” in it),

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 68561 -1.472182 1.410618 -5.89 2.98

I can also type

mysum whz

and Stata will respond with

Variable | Obs Mean Std. Dev. Min Max
---------+---
 whz | 68560 -.458337 1.192863 -4 6

The first thing to note is that we defined a “local” which is a variable or scalar (we can
also define local matrices) that exists solely within the program. Once the program is
finished running, Stata drops all locals from memory. We can define locals by using the
following syntax

local name targetname

for variables where targetname is the name of the variable who’s values are being
assigned to the local variable, or in the case of scalars,

local name = targetname

Note that in the fourth line when the local is being called, the name is put in paretheses
(these are ` and ’ , respectively)

`var’

This tells Stata to look for the local with the name var, and to ignore existing variables
or scalars with the same name. Note that when you define a local, you do not include the
` and ’ around it.

What then is the `1’? This tells Stata to use the first argument of the program (here we
only have one argument – e.g. mysum whz). Of course, we could have written the
program as follows,

capture program drop mysum
program define mysum
 summarize `1’
end

but when your programs become more complicated, you will find that it is much easier to
to keep track of what you are doing if you give names to your locals.

3. Do loops

Now suppose that we want to find the means of this variable for each value of another
indicator variable, for example by region, then we can modify our program to include a
loop (again you can do this by simply typing by urban: sum haz).

capture program drop mysum
program define mysum
 local var `1'
 local byvar `2'
 quietly sum `byvar'
 local max = r(max)
 local i = r(min)

 while `i' <= `max' {
 sum `var' if `byvar' == `i'
 local i = `i' + 1
 }
end

Here is what it looks like in the Stata Results window:

. capture program drop mysum

. program define mysum
 1. local var `1'
 2. local byvar `2'
 3. quietly sum `byvar'
 4. local max = r(max)
 5. local i = r(min)
 6. while `i' <= `max' {
 7. sum `var' if `byvar' == `i'
 8. local i = `i' + 1
 9. }
 10. end

. mysum haz urban

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 48805 -1.594447 1.41825 -5.84 2.89

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 19756 -1.170138 1.344784 -5.89 2.98

The novelty here is the following,

 while `i' <= `max' {
 ..commands..
 local i = `i' + 1
 }

This tells Stata to carry out the commands within the curly brackets, { }, until the while
condition is satisfied. Note that the local `i' is augmented in the following fashion

 local i = `i' + 1

This says to define the local i again, but now assign it’s present value (i.e. `i’) and
add 1 to it. The following will result in errors

 local `i’ = `i' + 1
 local i = i + 1

(except for the second line if you have a non-local variable or scalar with the name i –
which, of course, is not what you want anyway).

With these basic programming commands under your belt, you should have no problem
understanding the programs that we’ll encounter in Labs 2, 3 and 4.

