
Review of Stata
AERC Technical Workshop

Nairobi, 20-24 May 2002

This note is designed to give you a review of the basic tools available in the statistical package
called Stata (pronounced “stay-tuh”). Stata has many built in commands to do such things as
simple regression, two- and three-stage least squares, probit/logit/tobit models, Heckman
selection models (maximum likelihood and two-stage methods), and many more. As such, most
of an analyst’s time spent using this program involves manipulating data and output from the
various procedures. Of course, you can also write your own estimation procedures, but we’ll
concentrate on the basics of data management.

Data analysis with Stata is essentially a simple three-step process:

1. Load the dataset
2. Issue a set of commands
3. Examine/save the output

With this in mind, the outline for this note is as follows:

A. Stata Environment – opening & closing Stata
B. Creating and Understanding Stata Datasets
C. Data Modification and Editing
D. Merging Datasets

The next note will continue with additional commands, estimation and post-estimation output.

A. The Stata Environment

To open Stata, double click on the Stata icon.

The Stata environment is made up of four main windows which are located as follows:

Review Window
(lists previous commands)

Stata Results Window
(lists commands entered and output generated from

these commands)

Variables Window
(lists all variables in the dataset)

Stata Command Window

(where you enter a Stata command)

 2

Stata Command Window: Where all commands given to Stata are typed.

Stata Results Window: Where results of commands appear.

Review Window: Where a list of all previous commands appears.

Variables Window: Where a list of all the variables contained in the dataset currently

loaded appears. This window is empty when you first start a Stata
session because a dataset has yet to be loaded into memory.

To exit Stata, type exit in the Stata Command Window and then press “Enter”, or click on the
“X” box in the upper-right-hand-corner of the Stata window.

B. Creating and Understanding Stata Datasets

Before any type of analysis can be performed in Stata, it is necessary to access a Stata dataset.
We will go through an exercise of one of the many ways of creating a dataset to get a better
understanding of how Stata handles data. At the end of this discussion, we list the other means of
loading data into Stata.

Step 1: Open a small dataset in Excel

Open Excel and open the following spreadsheet:

 c:\aerc\stata_review\data\exercise.xls

in this spreadsheet you will find the following…

 A B C D E
1 name sex age from kids
2 Winnie 2 30 Nairobi 0
3 Amare 1 33 Addis 2
4 Leopold 1 28 Dakar 1
5 Kristin 2 40 Cleveland 4
6 Christy 2 50 Lagos 3
7 Jean Luc 1 35 Antananarivo 0

(Note: In this example, sex is coded 1 for males and 2 for females)

 3

Step 2: Copy the dataset in Stata

a. Open Stata

b. To facilitate our work, change the working directory for Stata by typing the following

command in the Command Window and then pressing “Enter”:

 cd c:\aerc\stata_review\temp

c. Now go back to the Excel spreadsheet. Highlight the data and copy it (press ctrl and c at

the same time).

d. Go back to Stata and type the following into the command line:

 edit

 (or you can click on Window, and then on Data Editor). The data editor will open and you

can paste the data into this editor (press ctrl and c at the same time, or click on Edit, and
then on Paste). Now close the data editor by clicking on the X in the upper right hand corner
of the Stata Editor Window.

Note that all Stata commands are in lower case type, and Stata is case sensitive when it comes to
names (e.g. the variable Name is not the same as name).

 You will notice that a list of variables will appear in the Variables Window to indicate that

the dataset is now loaded into memory. You will also notice that the commands that you just
entered appear in the Review Window. The following will appear in the Stata Results
Window:

. edit
(5 vars, 6 obs pasted into editor)

 This indicates that the Stata dataset has 5 variables and 6 observations.

 4

Step 3: View the Data

We will now go through some basic commands that give us information about our dataset.

a. In the command line, enter the following command

 describe

 The following should appear in the Stata Results Window

. describe

Contains data
 obs: 6
 vars: 5
 size: 162 (100.0% of memory free)
--

1. name str8 %9s
 2. sex byte %8.0g
 3. age byte %8.0g
 4. from str12 %12s
 5. kids byte %8.0g

Sorted by:
 Note: dataset has changed since last saved

 The output from the command describe provides us with such useful information as

1. Number of observations
2. Listing of the variables in the dataset
3. Storage type assigned to each variable
4. Display format for each variable (i.e. how the variable is displayed – number of

spaces allocated in the display of the actual underlying data)
5. A “Note”, which in this case reminds the user that we are working with a dataset that

has changes that have not been saved

 We will comment briefly about the storage type:

 The variable storage type indicates the data type assigned to a variable. Stata can store

variables in numeric (numbers) and string (characters including numbers) formats. From the
results above, describe tells us that “name” and “from” are strings that are up to 8 and 12
characters long (str8 and str12), respectively. Numeric variables (such as “sex”, “age”
and “kids”) can be one of several data types: bytes, integers, long, float, and double. Each of
the 5 data types has a different level of precision. In our case, all of the numeric variables
above are bytes, since they are small and don’t need more than the smallest level of precision.

b. Let us actually look at the data by typing

 list

 5

 Your output should appear in the Stata Results Window as follows:

. list

 name sex age from kids
 1. Winnie 2 30 Nairobi 0
 2. Amare 1 33 Addis 2
 3. Leopold 1 28 Dakar 1
 4. Kristin 2 40 Cleveland 4
 5. Christy 2 50 Lagos 3
 6. Jean Luc 1 35 Antananarivo 0

 (Note: You can also look directly at the data by typing browse and scrolling around the

Data Browser. This is a very convenient way to view your data. Nonetheless,
because you may want to print out some or all of your data later, we will proceed
with a discussion of the list command.)

 Typically, you will be working with a dataset that has many observation (much more than the

6 that we have) and will be interested in listing only some of them. Similarly, you may want
to list only some of the variables, not all of them. Or you may want to list your data by
different groups. To do this, we can use some of the variations for list, such as

 list name age

 list name kids sex if age > 30

 list name if sex == 2

 list name age kids in 1/3

 list name age kids in 3/6 if sex==1

 list from name if kids<= 2 &sex~=2

 list if name==”Winnie” | name == “Jean Luc”

 list if sex==2 | (name==”Jean Luc” & kids<1)

 sort sex
 by sex: list

 In these commands, we modified our list command with some options: if, in, and by.

These options can be used with many Stata commands, so let’s briefly review them:

i. if allows us to restrict the sample to those cases that satisfy the expression that follows.
For example, in the second command above, we restricted our listing to those people who
are older than 30 years of age. In the sixth command, we restricted our listing to those
who have at the most 2 children, and who are not female. When we want to specify a
string variable, we must put the characters in quotes. When we use “&” (and) and “|” (or)

 6

together, we have to be careful to appropriately put our specifications in parentheses in
order to make sure that we are clear about our restriction.

 There are a couple of notes to make here on syntax in Stata

1. Equal signs: Notice that there two “=” (==) appear in the if statements above.
Stata distinguishes between assigning values and evaluating expressions by
requiring that the former have one equal sign (=) and the latter have two (==).
The rule of thumb is that whenever you use if, always use “==”.

2. Spaces: Spaces within expressions do not matter
3. Other logical operators used in evaluating expressions:

Logical operators used in Stata

~
not
= =
equal
~ =
not equal
! =
not equal
>
greater than
> =
greater than or equal
<
less than
< =
less than or equal
&
and
|
or

ii. in allows us to restrict the sample based on the number of observations in the dataset. In
the fourth command above, we restricted our listing to the first, second and third
observations in the dataset. In the fifth command, we restricted our listing to the third,
fourth, fifth and sixth (as well as to only males).

iii. by allows us to divide the data in to groups based on the different values for the by

variable that we specify. In order to use by, we must first sort the data by the variable
(or set of variables) that we use in our by command. Unlike other options in Stata, by
precedes the command.

 7

c. Label the datasets and variables and view them again.

 Datasets can contain labels on the data, the variables, and the values. Labels are extremely

useful for users of Stata datasets. They help explain and document the data and the variables.
They are a very important component of a well-documented and user-friendly dataset. The
data we are using, however, have no labels…… Let’s assign some by entering the following
five commands:

 label variable name “Name of participant”
 label variable from “Where the participant is from”
 label variable kids “Number of participant’s kids”
 label data “TRAINING PARTICIPANTS”
 describe

 The following output should appear in the Stata Results Window:

. label variable name "Name of participant"

. label variable from "Where the participant is from"

. label variable kids "Number of participant's kids"

. label data "TRAINING PARTICIPANTS"

. describe

Contains data
 obs: 6 TRAINING PARTICIPANTS
 vars: 5
 size: 162 (100.0% of memory free)
--

1. name str8 %9s Name of participant
 2. sex byte %8.0g
 3. age byte %8.0g
 4. from str12 %12s Where the participant

is from
 5. kids byte %8.0g Number of

participant's kids
--
Sorted by:
 Note: dataset has changed since last saved

 You will notice that the variable labels also appear in the Variables Window next to the

variable names.

 We can also attach labels to values of variables that are numeric and categorical. For

example, in this dataset, we know that a 1 for “sex” means a person who is a man, and a 2
means that she is a woman. We can build this information into our dataset using a value
label. To do this, we first define a value label and then attach this label to the variable as
follows:

 8

 label define sexlabel 1 “Man” 2 “Woman”
 label values sex sexlabel
 describe
 list sex

 The following output should appear in the Stata Results Window:

. label define sexlabel 1 "Man" 2 "Woman"

. label values sex sexlabel

. describe

Contains data
 obs: 6 TRAINING PARTICIPANTS
 vars: 5
 size: 162 (100.0% of memory free)
--
 1. name str8 %9s Name of participant
 2. sex byte %8.0g sexlabel
 3. age byte %8.0g
 4. from str12 %12s Where the participant

is from
 5. kids byte %8.0g Number of

participant's kids
--
Sorted by:
 Note: dataset has changed since last saved

. list sex

 sex
 1. Woman
 2. Man
 3. Man
 4. Woman
 5. Woman
 6. Man

 By attaching the value label to “sex”, we have not replaced the actual values of the variable.

They are still 1 and 2. To assure yourself of this, type the following command:

 list sex, nolabel

 nolabel is a special option that exists for the list command (and certain others). It is

specified after the comma sign.

d. Summary statistics give us another means of “viewing” our data.

 In the command line, type:

 summarize

 9

 The following output should appear in the Stata Results Window:

. summarize

Variable | Obs Mean Std. Dev. Min Max
---------+---
 name | 0
 sex | 6 1.5 .5477226 1 2
 age | 6 36 8.024961 28 50
 from | 0
 kids | 6 1.666667 1.632993 0 4

 You will notice that the “name” and “from” variables have 0 observations. This is because

they are strings – calculating a mean is undefined for these types of variables. This is why
knowing the storage type is so important. The 0’s for “name” and “from” follow because
they are strings, not because they have missing values.

 We can get more information on our variable by adding the option detail, as well by using

if, by, and in. To get an idea of this, type the following commands and look at the results
they produce:

 sum kids, detail

 sum age if kids<4, detail

 sort sex
 by sex: summ

 summarize (which can also by typed as sum1 rather than the entire summarize) is not

very useful for categorical variables. So now we turn to tabulate.

e. To produce a frequency distribution for a variable, or a cross-tabulation for frequencies for

two variables, we use the tabulate command (abbreviated tab). tabulate is
particularly useful for categorical variable and for string variables.

 Type the following commands and take a look at the results that they produce2:

 tab sex

 tab kids if age > 30

 tab kids sex

1 To be more specific. The following all represent the summarize command: sum, summ, summa,
summar, summari, summariz and summarize. In the Stata manuals, the entry for summarize will
have the following summarize. The underline represents the minimum number of characters that you
need to type to for Stata to recognize the command.
2 In the sixth command, because there are no other variables that start with na, Stata recognizes na to
represent name.

 10

 tab1 kids sex age

 tab2 kids sex age

 tab na

 There are many options that exist for the tabulate command. For example, we might want to

know the percent of women and men with 0, 1, 2, 3 and 4 kids in the dataset. We do this by
typing the following:

 tab sex kids, row

 and if we only want the percentages and not the frequencies as well, we can type:

 tab sex kids, row nofreq

 Now suppose we want to know the average (mean) number of kids by sex of participants,

then we can type:

 tab sex, sum(kids)

 We could also find the average age by sex of participants, excluding Leopold:

 tab sex if name ~= “Leopold”, sum(age)

 11

Step 4: Create a new Stata dataset

Thus far we haven’t actually created a Stata dataset. We have loaded data into Stata’s memory,
but haven’t saved it as a Stata dataset. Let’s do so now by typing

 save exercise

Since we did not specify a suffix, Stata automatically assigns a “.dta”. Also, since we did not
specify where to put the new dataset, Stata will automatically save these data in our present
working directory (c:\aerc\stata_review\temp). We can see this by typing3

 dir
or

 dir c:\aerc\stata_review\temp

If we wanted to specify the saving location, we could have used the following command

 save c:\aerc\stata_review\temp\exercise

Now suppose that we want to add one more label to our data and then re-save it. We have to
explicitly tell Stata to replace the old dataset with the revised (new) one.

 label var age “Age of participant”
 save exercise, replace

If we had not included the replace, then the following error statement would have appeared in
the Stata Results Window (after also typing lookup 602):

. save exercise
file exercise.dta already exists
r(602);

. lookup 602

[R] error messages Return code 602
 file ___________ already exists;
 You attempted to write over a file that already exists. Stata
 will never let you do this accidentally. If you really intend
 to overwrite the previous file, reissue the last command
 specifying the replace option.

A very important thing to consider when working with data is how we manage our files. As I’m
sure you know very well, we will quickly create many files. With good file management, you can
avoid frustration in trying to understand what you have already created! More on this later.

3 Stata recognizes DOS commands.

 12

Other ways of reading data into Stata:

Here is a list of some of the possible ways of reading data into Stata include…

• Loading Stata datasets (we’ll see how this is done in the next section)
• Using insheet
• Using infile
• Using infix
• Cutting from Excel and pasting into the Stata Data Editor
• Using data conversion programs (e.g. StatTransfer and DBMS/COPY) to convert other

data formats to Stata datasets and then load them into Stata.

 13

C. Data Modification & Editing

 We often want to manipulate raw household data for purposes of analysis. In this section we

illustrate how to create new variables and how to modify them. The three most common
commands used to generate new variables are

1. generate
2. egen (“extensions to generate”)
3. collapse

1. generate and replace:

 The generate command has the following basic syntax

 [by varlist:] generate newvar = exp [if exp] [in range]

 where varlist indicates a list of variables, and exp indicates an expression. Naming

convention in Stata 6.0 (and earlier versions) requires that variable names (newvar) have no
more than 8 characters. Note that the g in the command generate, is underlined. This
indicates that you can type only g, and Stata will know that you mean generate. The
syntax for generate should become clearer after we work through some examples. Let’s
start by loading some data:

 use c:\aerc\stata_review\data\memsex.dta

 In this dataset, we have information on the number of men, women and kids in the 4,800

households in our sample and their area of residence. Suppose that we want to calculate a
variable that indicates the squared number of household members. Enter the following
command

 generate memb2 = memb*memb

 Of course, we could have also squared the value. Try typing

 generate memb2 = memb^2

 You should have received the following error statement:

. generate memb2 = memb^2
memb2 already defined
r(110);

 This occurs because Stata prevents us from inadvertently writing over variables that already

exist. We can overwrite existing variables, but Stata just makes us be sure that we want to,
and thus the rationale for the replace command. Let us now re-generate memb2 by
using the replace command:

 replace memb2 = memb^2

 14

 Now Stata accepts it and provides the following output:

. replace memb2 = memb^2
(0 real changes made)

 which is what we would expect since nothing has really changed to memb2. Note that the

basic syntax for replace is the same as for generate (except that replace cannot be
abbreviated).

 Now suppose that we want to calculate the number of household members from the

information that we are given on the number of men and women in the household. Then we
can use the following command:

 generate members = men + women

 This new variable members should be identical to the variable memb. There are a couple of

ways to check that this is so. One way is to use the assert command:

 assert members == memb

 Since Stata doesn’t give a statement telling us that the expression (members == memb) is

false, we know it’s true and that they are identical. A second way to go about checking the
equivalence of members and memb is to create a categorical variable that takes on a value of
1 if they are not the same, and 0 if they are. Type the following commands:

 generate error = 0
 replace error = 1 if members ~= memb
 tab error

 Note that replace is used here to make selective changes to error, by using the if

statement, rather than sweeping changes as we made to memb2 above. Now given the
following output:

. generate error = 0

. replace error = 1 if members ~= memb
(0 real changes made)

. tab error

 error | Freq. Percent Cum.
------------+-----------------------------------
 0 | 4800 100.00 100.00
------------+-----------------------------------
 Total | 4800 100.00

 15

 we can again verify that the two are identical. We could also have “generated” the error
variable using the following command:

 generate error = (members ~= memb)

 Here Stata creates a variable, error, giving it a value of 1 if the expression in the

parentheses is true, and 0 otherwise.

 Let’s now calculate the number of kids in the household (and call this new variable

children) as we did with all members, and verify that this is identical to the variable in the
dataset called kids. Enter the following commands:

 gen children = boys + girls
 assert children == kids

 Ooops! The following output suggests that something is wrong:

. gen children = boys + girls
(2922 missing values generated)

. assert children == kids
2922 contradictions out of 4800
assertion is false
r(9);

 In more than half of the cases, the variable children is not identical to kids. Let’s see

what is wrong by listing the relevant variables for the first 10 observations if they aren’t the
same:

 list boys girls kids children in 1/10 if children~=kids

 We see from the following output that there are missing values for boys and girls:

. list boys girls kids children in 1/10 if children~=kids

 boys girls kids children
 2. . . 0 .
 5. 1 . 1 .
 6. . 2 2 .

 Based on this information, we can see that boys and girls are set to missing when there

are no children in the household. (Verify this by tabulating these variables to see if there are
any 0 values). So what happened is that the Stata set children to missing when one of the
arguments was missing. Be careful when using the generate command to sum up other
variables if there are any missing values.

 16

 We could recode these missing values to 0 before creating the variable children by using
the following command,

 recode boys . = 0
 recode girls . = 0

 Or we could use egen, which stands for “extensions to generate”…

2. egen and replace:

 As it’s name suggests, egen is simply a set of extensions to generate, with the extension

being that the new variable is defined as a function of “stuff” that you indicate (“stuff”
depends on the particular function that you choose). If you can’t figure out how to do
something with generate, chances are you will be able to do it with egen. The basic
syntax for egen is:

 egen newvar = fcn(stuff) [if exp] [in range], [by(varlist)]

 One of the functions (fcn) for egen is rsum, which creates the row sum of the variables

indicated, treating missing values as zero. This is exactly what we need to calculate our
children variable. Let’s do so and verify that it’s the same as kids:

 drop children
 egen children = rsum(boys girls)
 assert children == kids

 Now we get the results that we want…

. drop children

. egen children = rsum(boys girls)

. assert children == kids

.

 egen has many other functions that are useful such as row means, medians, minima,

maxima, standard deviations, and sum. For now, we’ll only address one of these: sum. We
do this in part because generate has a similarly named function which behaves differently.

 Let’s start by clearing this dataset, loading another (a household-level file), and creating a

vector of ones:

 clear
 use c:\aerc\stata_review\data\memage.dta
 gen ones = 1

 17

 Let’s now see what the sum function produces when we use generate and egen:

 sort hid
 quietly by hid: gen gsum = sum(ones)
 egen egsum = sum(ones), by(hid)
 list hid gsum egsum in 1/16

 There are a couple of things to note here. First, before you can use the by option in

generate or egen, you must first sort the data by the variable of interest (here our
household id). Second, we use the quietly option for generate because otherwise,
generate provides information for each value of the by variable (try the same command,
but without the quietly, to see what happens). The following output gives us an idea of
how the two sum functions differ:

. gen ones = 1

. sort hid

. quietly by hid: gen gsum = sum(ones)

. egen egsum = sum(ones), by(hid)

. list hid gsum egsum in 1/16

 hid gsum egsum
 1. 101 1 6
 2. 101 2 6
 3. 101 3 6
 4. 101 4 6
 5. 101 5 6
 6. 101 6 6

 7. 103 1 3
 8. 103 2 3
 9. 103 3 3

 10. 104 1 7
 11. 104 2 7
 12. 104 3 7
 13. 104 4 7
 14. 104 5 7
 15. 104 6 7
 16. 104 7 7

 Spaces were added between the households for purposes of emphasis. The combination of

the by option with the sum function results in a running sum within the household when
using generate, and a total sum within the household when using egen. The combination
of these two commands is useful in creating distribution functions, and for creating other
variables when we want to know the ranking of a record within a bygroup.

 18

3. collapse:

 A third very common means of creating new variables is the collapse command. This

command allows you to collapse data to a more aggregate level of observation. For example,
you may have an individual-level dataset (such as an excerpt from a household roster that we
presently have loaded in Stata) and you want to create a household-level file with some
information about the people in the household. This new file could have information such as:
number of children in the household, average age of women in the household, sex of the
household head, etc.. The collapse command can be used to create such a dataset.

 The basic syntax of this command is

 collapse (fnc1) varlist1 (fnc2) varlist2… , by(varlist)

 where

• fnc1 is a function generating a summary statistic (mean, max, min, sum)
• varlist1 is a list of variables to which fnc1 is applied
• fnc2 is a function generating a summary statistic (mean, max, min, sum)
• varlist2 is a list of variables to which fnc2 is applied

 For example, suppose that we want to create from the data presently loaded in Stata, a

regional-level (defined as urban/rural areas in each region) dataset with the following
information:

1. Share of women in the region
2. Age of the oldest women in the sample in the region
3. Age of the oldest man in the sample in the region
4. Number of children of age 1, 2, … , 15 in the sample in the region

 This can be done with the following commands:

 replace sex = sex – 1
 gen oldwmn = agey if sex == 1
 gen oldmen = agey if sex == 0
 collapse (mean) sex (max) oldwmn oldmen (sum) age1-age15, by(region urban)
 list region-age1

 One thing to note here is the use of age1-age15 and region-age1. The former tells Stata to

include age1 and age15 and all of the variables in between as they are presently ordered in
the loaded dataset. This save on typing!! But be sure that the data are ordered as you want
them before you use this feature. You can check the order by viewing the variables in the
Variables Window, or by using the summarize or describe commands.

 19

Now for our output (you can look at the number of children age 2-15 on your own) …

. replace sex = sex - 1
(24068 real changes made)

. gen oldwmn = agey if sex == 1
(11610 missing values generated)

. gen oldmen = agey if sex == 0
(12458 missing values generated)

. collapse (mean) sex (max) oldwmn oldmen (sum) age1-age15, by(region urban)

. list region-age1

 region urban sex oldwmn oldmen age1
 1. 1 Rural .50566036 92 85 83
 2. 1 Urban .53914589 84 75 13
 3. 2 Rural .51951611 93 86 96
 4. 2 Urban .5210191 90 84 10
 5. 3 Rural .52530295 96 89 76
 6. 3 Urban .51698112 79 81 3
 7. 4 Rural .51153463 89 92 40
 8. 4 Urban .51075876 88 84 14
 9. 5 Rural .50130892 92 80 19
 10. 6 Rural .50029641 88 90 27
 11. 6 Urban .52235472 86 83 25
 12. 7 Rural .52340233 91 90 98
 13. 7 Urban .53948718 88 89 12

 If we look at the first observation, we see that for rural areas in region 1, about 51% of the

population is female, the oldest woman is 92, the oldest man is 85, and there are 83 one-year-
olds in the sample. Note also that there are only 13 observations because there are no urban
areas in region 5.

Exercise: Using the VNLSS93 household roster located in

 c:\aerc\stata_review\data\sect01a

 create a household-level dataset with the following information

1. Number of adult household members (15+ years)
2. Average age of household members
3. Gender of the household head

 20

D. Merging Datasets

 There are two commands in Stata that allow you to combine 2 datasets: merge and append.

Since most household datasets involve many individual data files, we often use merge and
append to combine files into one new dataset.

1. merge:

 When we use merge, we generally link observations and add variables between two datasets.

In order to do so, it is essential to have a variable (or several variables) that can be used to
link observations together from the two datasets. Further, before we proceed with the
merging, we want to verify that the identification variable(s) which we use in the merge
command is unique in at least one of the datasets.

 Let’s work through a couple of examples to explain the process.

 Example: One-to-One Merge: In this example, we will merge two household-level datasets

using the household id as the linking variable.

 (i) Done correctly

 Let’s start by (a) loading the VNLSS household roster; (b) keeping the household id, the

individual id, relation to the head and gender; (c) keeping only the observation for the
household head; (d) sorting by household id; (e) saving the dataset as a temporary file; and
(f) listing the first 10 observations:

 use c:\aerc\stata_review\data\sect01a.dta
 keep hid-rel
 keep if rel == 1
 sort hid
 save c:\aerc\stata_review\temp\temp, replace
 list in 1/10

 21

Our output is as follows:

. use c:\aerc\stata_review\data\sect01a.dta

. keep hid-rel

. keep if rel==1
(19268 observations deleted)

. sort hid

. save c:\aerc\stata_review\temp\temp, replace
file c:\aerc\stata_review\temp\temp.dta saved

. list in 1/10

 hid pid sex rel
 1. 101 1 1 1
 2. 103 1 1 1
 3. 104 1 1 1
 4. 105 1 1 1
 5. 106 1 1 1
 6. 108 1 1 1
 7. 109 1 1 1
 8. 110 1 1 1
 9. 111 1 1 1
 10. 113 1 1 1

 We will refer to this as our using dataset.

 Now (a) load the household expenditure dataset; (b) keep the household id and the per capita

household expenditure aggregate; (c) verify that the household id is unique; (d) sort by the
household variable; (e) save the dataset at a temporary file for the next example; and (f) list
the first 10 observations:

 use c:\aerc\stata_review\data\hhexpend.dta
 keep hid pcexpend
 * verify that hid is unique
 sort hid
 quietly by hid: gen error = _n
 quietly by hid: assert error == 1
 drop error
 save c:\aerc\stata_review\temp\temp2, replace
 list in 1/10

 22

Our output is as follows:

. use c:\aerc\stata_review\data\hhexpend.dta

. keep hid pcexpend

. * verify that hid is unique
. sort hid

. quietly by hid: gen error = _n

. quietly by hid: assert error == 1

. drop error

. save c:\aerc\stata_review\temp\temp2, replace
file c:\aerc\stata_review\temp\temp2.dta saved

. list in 1/10

 hid pcexpend
 1. 101 252.22887
 2. 103 593.39282
 3. 104 317.8396
 4. 105 480.8645
 5. 106 822.06958
 6. 108 714.79736
 7. 109 180.93414
 8. 110 333.22534
 9. 111 499.15894
 10. 113 385.53247

 We see that the “hid” uniquely identifies the households because there is no contradicting

statement following the assert command. We refer to this dataset as our master dataset.

Let’s now merge the using dataset into our master dataset using “hid” as our linking variable:

 merge hid using c:\aerc\stata_review\temp\temp

 23

 When the merge command is used, Stata automatically creates a new variable called
“_merge”. This is a categorical variable that takes on the following three values:

1 if observations from the master dataset that did not match observations from the

using dataset (i.e. in master not using)

2 if observations from the using dataset that did not match observations from the
master dataset (i.e. in using not master)

3 if observations from both datasets that matched (i.e. in both master and using).

 This is extremely useful in evaluating the merge and making sure that we did exactly as we

intended. Merging is often a source of errors and we should always carefully check that we
are doing what we want. Let’s do so here…

 tab _merge
 list in 1/10

 As we can see from the output below, our merge worked as intended.

. merge hid using c:\aerc\stata_review\temp\temp

. tab _merge

 _merge | Freq. Percent Cum.
------------+-----------------------------------
 3 | 4800 100.00 100.00
------------+-----------------------------------
 Total | 4800 100.00

. list in 1/10

 hid pcexpend pid sex rel _merge
 1. 101 252.22887 1 1 1 3
 2. 103 593.39282 1 1 1 3
 3. 104 317.8396 1 1 1 3
 4. 105 480.8645 1 1 1 3
 5. 106 822.06958 1 1 1 3
 6. 108 714.79736 1 1 1 3
 7. 109 180.93414 1 1 1 3
 8. 110 333.22534 1 1 1 3
 9. 111 499.15894 1 1 1 3
 10. 113 385.53247 1 1 1 3

 24

(ii) Correct outcome, but only by chance

 Suppose that we forget to specify the linking variable (sometimes we will want to merge

datasets without linking observations). What will happen? Let’s see…

 clear
 use c:\aerc\stata_review\temp\temp2.dta
 merge using c:\aerc\stata_review\temp\temp
 tab _m
 list in 1/10

 produces the following output:

. clear

. use c:\aerc\stata_review\temp\temp2

. merge using c:\aerc\stata_review\temp\temp

. tab _m

 _merge | Freq. Percent Cum.
------------+-----------------------------------
 3 | 4800 100.00 100.00
------------+-----------------------------------
 Total | 4800 100.00

. list in 1/10

 hid pcexpend pid sex rel _merge
 1. 101 252.22887 1 1 1 3
 2. 103 593.39282 1 1 1 3
 3. 104 317.8396 1 1 1 3
 4. 105 480.8645 1 1 1 3
 5. 106 822.06958 1 1 1 3
 6. 108 714.79736 1 1 1 3
 7. 109 180.93414 1 1 1 3
 8. 110 333.22534 1 1 1 3
 9. 111 499.15894 1 1 1 3
 10. 113 385.53247 1 1 1 3

 We have the same results! Unfortunately, we got them just by chance because the two

datasets were sorted by the same variable and there was a perfect match in the observations.
This is less likely to occur when we do a many-to-one merge as we will see later.

 25

(iii) Incorrect outcome

 Let’s see how forgetting to include the linking variable can get us into trouble. First we’ll

resort the master dataset by another variable, and then we’ll repeat the steps of part ii.

 clear
 use c:\aerc\stata_review\temp\temp2.dta
 sort pcexpend
 merge using c:\aerc\stata_review\temp\temp
 tab _m
 sort hid
 list in 1/10

 Now let’s examine the output…

. clear

. use c:\aerc\stata_review\temp\temp2

. sort pcexpend

. merge using c:\aerc\stata_review\temp\temp

. tab _m

 _merge | Freq. Percent Cum.
------------+-----------------------------------
 3 | 4800 100.00 100.00
------------+-----------------------------------
 Total | 4800 100.00

. sort hid

. list in 1/10

 hid pcexpend pid sex rel _merge
 1. 101 252.22887 1 1 1 3
 2. 103 593.39282 1 1 1 3
 3. 104 317.8396 1 1 1 3
 4. 105 480.8645 1 2 1 3
 5. 106 822.06958 1 1 1 3
 6. 108 714.79736 1 1 1 3
 7. 109 180.93414 1 1 1 3
 8. 110 333.22534 1 1 1 3
 9. 111 499.15894 1 1 1 3
 10. 113 385.53247 1 1 1 3

 OK, so the “_merge” variables all take on the value of 3, but the “pid”, “sex” and “rel”

variables are incorrect. The former follows because there are 4,800 records in each dataset,
and as far as Stata can tell, it’s a perfect match (because no link variable is defined). The
latter follows because the household information (“pid”, “sex”, “rel”) were all associated
with the household id (“hid”) in the order that it was found in the using dataset, not in the
order of “pcexpend” that we had in the master dataset.

 26

 If we had included the linking variable, Stata would not have let us make this merge. Let’s
try it to see what happens…

 clear
 use c:\aerc\stata_review\temp\temp2.dta
 sort pcexpend
 merge hid using c:\aerc\stata_review\temp\temp

 As we can see, Stata catches the error and refuses to proceed…

. clear

. use c:\aerc\stata_review\temp\temp2

. sort pcexpend

. merge hid using c:\aerc\stata_review\temp\temp
master data not sorted
r(5);

 It’s sorted, just not by the right variable (hid)!

 27

 Example: One-to-Many Merge: In this example, we will merge a household-level dataset to
an individual level dataset using the household id as the linking variable.

 Again we will use the VNLSS household roster, except now we will keep all of the

observations:

 clear
 use c:\aerc\stata_review\data\sect01a.dta
 keep hid-rel
 sort hid
 save c:\aerc\stata_review\temp\temp, replace
 list in 1/10

 This provides the following output…

. clear

. use c:\aerc\stata_review\data\sect01a.dta

. keep hid-rel

. sort hid

. save c:\aerc\stata_review\temp\temp, replace
file c:\aerc\stata_review\temp\temp.dta saved

. list in 1/10

 hid pid sex rel
 1. 101 1 1 1
 2. 101 2 2 2
 3. 101 3 1 3
 4. 101 4 1 3
 5. 101 5 2 3
 6. 101 6 2 3
 7. 103 1 1 1
 8. 103 2 2 3
 9. 103 3 1 8
 10. 104 1 1 1

 We will now refer to the individual-level data as the master dataset, and the household-level

data as the using dataset. Merge the former with the latter by issuing the following
commands:

 merge hid using c:\aerc\stata_review\temp\temp2
 tab _m
 list in 1/10

 28

Again we have exactly what we want…

. merge hid using c:\aerc\stata_review\temp\temp2

. tab _m

 _merge | Freq. Percent Cum.
------------+-----------------------------------
 3 | 24068 100.00 100.00
------------+-----------------------------------
 Total | 24068 100.00

. list in 1/10

 hid pid sex rel pcexpend _merge
 1. 101 1 1 1 252.22887 3
 2. 101 2 2 2 252.22887 3
 3. 101 3 1 3 252.22887 3
 4. 101 4 1 3 252.22887 3
 5. 101 5 2 3 252.22887 3
 6. 101 6 2 3 252.22887 3
 7. 103 1 1 1 593.39282 3
 8. 103 2 2 3 593.39282 3
 9. 103 3 1 8 593.39282 3
 10. 104 1 1 1 317.8396 3

 …to each member of household 101, we appended the level of per capita household

expenditures.

 Let’s try one more experiment to get an understanding of what information the “_merge”

variable provides for us. We will drop all of the observations for women in the household
roster and then merge this truncated sample with the expenditure data.

 Before doing so, what do we expect to happen? Provided that there are some households that

consist of only male members, then we would expect to have observations in the using
dataset that are not in the master dataset. Once we merge, we expect the “_merge” variable
to take on a value of 2 for these households, and 3 for all of the others. Let’s try it…

 clear
 use c:\aerc\stata_review\temp\temp
 keep if sex==1
 sort hid
 merge hid using c:\aerc\stata_review\temp\temp2
 tab _m
 sort _m hid
 list in 1/10

 29

 Indeed we find exactly what we expected…

. clear

. use c:\aerc\stata_review\temp\temp

. keep if sex==1
(12458 observations deleted)

. sort hid

. merge hid using c:\aerc\stata_review\temp\temp2

. tab _m

 _merge | Freq. Percent Cum.
------------+-----------------------------------
 2 | 240 2.03 2.03
 3 | 11610 97.97 100.00
------------+-----------------------------------
 Total | 11850 100.00

. sort _m hid

. list in 1/10

 hid pid sex rel pcexpend _merge
 1. 310 . . . 596.30469 2
 2. 1302 . . . 766.91919 2
 3. 1516 . . . 830.67261 2
 4. 1711 . . . 781.28491 2
 5. 1808 . . . 1116.012 2
 6. 1906 . . . 1792.9006 2
 7. 2001 . . . 1037.5427 2
 8. 2006 . . . 549.62378 2
 9. 2008 . . . 1791.9211 2
 10. 2216 . . . 614.41724 2

 …the “_merge” variable takes on values of 2 for the households not in the master dataset,

but in the using dataset. You can verify on your own that the households listed above do not
have any female members.

 30

2. Append:

 The append command is straightforward and involves simply adding rows (and sometimes

columns if the two datasets have different variables) to the data loaded in memory. To
illustrate how append works, let’s create three datasets from the VNLSS household recode
and append them.

 In the first dataset we will keep only records for the household head. In the second, we will

only keep records for the spouse of the household head. In the third, we will keep only the
records for the oldest son of the household head. Obviously, not all households have
members who are spouses or sons. We shall see how this affects the append.

 use c:\aerc\stata_review\data\sect01a.dta
 keep hid pid rel agey agem
 save c:\aerc\stata_review\temp\temp, replace

 First dataset:

 use c:\aerc\stata_review\temp\temp
 keep if rel==1
 drop agey agem
 gen head = 1
 save c:\aerc\stata_review\temp\temp1, replace

 Second dataset:

 clear
 use c:\aerc\stata_review\temp\temp
 keep if rel==2
 drop agey agem
 gen spouse = 1
 save c:\aerc\stata_review\temp\temp2, replace

 Third dataset:

 clear
 use c:\aerc\stata_review\temp\temp
 keep if rel==3
 gsort hid –agey –agem
 qui by hid: gen oldest = _n
 drop agey agem
 keep if oldest == 1
 save c:\aerc\stata_review\temp\temp3, replace

 A couple of comments need to be made briefly regarding the construction of the third dataset.

First, the command gsort is very similar to sort, except that the former allows sorting by
descending and ascending order, whereas the latter only permit ascending sorts. The way to
read the command

 gsort hid –agey –agem

 31

 is, “sort by “hid” from smallest to largest, then within “hid” sort “agey” from largest to
smallest, and then within “hid” and “agey” sort “agem” from largest to smallest”.

 Second, Stata attaches internal numbers to each observation. One of these numbers is the

variable number (_n), and the other is the total number of observations (_N). It is possible to
modify these internal numbers to reflect the position within a bygroup. In this case, after we
have sorted the data, we define a variable “oldest” that takes on the ranking of the
observations within each household. This is exactly _n, as can be seen from a listing of the
first 10 observations before the other observations were dropped…

 hid pid rel agey agem oldest
 1. 101 3 3 8 2 1
 2. 101 4 3 5 9 2
 3. 101 5 3 3 3 3
 4. 101 6 3 0 7 4
 5. 103 2 3 20 . 1
 6. 104 3 3 2 5 1
 7. 104 4 3 1 6 2
 8. 104 5 3 0 4 3
 9. 105 3 3 11 . 1
 10. 105 4 3 10 . 2

 Let’s proceed by appending the first and second datasets, and then the third:

 clear
 use c:\aerc\stata_review\temp\temp1
 append using c:\aerc\stata_review\temp\temp2
 append using c:\aerc\stata_review\temp\temp3
 sort hid

 and after viewing the data, the following household have results that are informative, so let’s

list them,

 list hid rel-oldest if hid==101 | hid==103 | hid==113, noobs

. clear

. use c:\aerc\stata_review\temp\temp1

. append using c:\aerc\stata_review\temp\temp2

. append using c:\aerc\stata_review\temp\temp3

. sort hid rel

. list hid rel-oldest if hid==101 | hid==103 | hid==113, noobs

 hid rel head spouse oldest
 101 1 1 . .
 101 2 . 1 .
 101 3 . . 1
 103 1 1 . .
 103 3 . . 1
 113 1 1 . .
 113 2 . 1 .

 32

 From the output above, we can see that household 101 has a head, a spouse and a son. Thus

this household had an observation in each dataset, and consequently has three observations in
the new dataset. Household 103 (113) doesn’t have a spouse (son), and as such only has
observations from the first and third (second) datasets. Note that Stata sets to missing the
variables that are not common to the two datasets being appended. For example “head” is
set to missing for all observations appended from the second and third dataset.

Exercise:

 Using

 c:\aerc\stata_review\data\sect01a.dta

 create a variable for the most senior male in the household, where senior male is defined as

 1) HH head if HH head is male;
 2) spouse of HH head if HH head is female;
 3) oldest male if neither 1) or 2).

