
Review of Stata II 
AERC Training Workshop 

Nairobi, 20-24 May 2002 
 
This note provides more information on the basics of Stata that should help you with the exercises 
in the remaining sessions of the workshop.  We will cover the following topics: 
 

A. Submitting batch files (i.e. -do- files) 
B. More on data manipulation 
C. Dropping outliers 
D. Basic regression analysis and post estimation results 
E. Basics of matrices 

 
A. Submitting Batch Files (i.e. –do- files) 
 

While we can submit commands to Stata one-by-one interactively, we can also submit a 
bunch of commands in the form of batch files, or in Stata-speak, -do- files.  This is very 
useful when (if you are at all like me) you make a coding error early in a series of commands.  
If you submit the commands as a -do- file, then you need only go back to the file, change the 
coding mistake, and resubmit the commands. 
 
The way it works is that you create a text file using your favorite text editor (e.g. Notepad) 
and save it with the extension -do- (e.g. c:\pathname\myprog.do).  You enter the commands 
in this file, save it, open up Stata, and from the Stata Command window type do 
c:\pathname\myprog.do.  You can also change the directory to the one in which your 
file is located (e.g. type cd c:\pathname) and then type  do myprog.do. 
 
It is generally a good idea to create a -log- file that records all of the output that appears on 
the screen.  AND, it’s generally a good idea to give it the same name as your -do- file, but 
give it a ‘.log’ extension.  Here is an example of what a -do- file looks like (you’ll see more 
in successive sessions): 

 
version 7.0 
clear 
set memory 5m 
#delimit ; 
 
capture log close; 
log using c:\pathname\myprog.log, replace; 
 
* * * * * * * * * * * * * * * * * * * * 
  c:\pathname\myprog 
 
  Describe what the program does 
* * * * * * * * * * * * * * * * * * * *; 
 
use c:\datalocation\mydata.dta; 
 
 -- commands . . ; 
 
log close; 
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There are six things to note from the example: 
 

1. Version 7.0:  Since some Stata commands change as new versions of the software 
come out, it’s a good idea to let Stata (and other users of your -do- file) know for 
which version of the program you are writing your commands. 

2. Memory:  By default, Stata allocates 1 megabyte of memory for storing data.  If your 
dataset is larger than this, you need to change this allocation by setting the memory.  
In this example, we’re setting the memory for data to 5 megabytes. 

3. #delimit ; :  By default, a carriage return (i.e. when you hit Enter) denotes the end of 
a command line.  In the case of a -do- file, the end of the line is the end of a 
command – that is, unless you tell Stata otherwise.  In this example, we assign a 
semi-colon (;) to denote the end of the line by including the “#delimit ;” 
command.  Note that in the first two lines of the -do- file, the end of the line denotes 
the end of the command. 

4. capture log close:  Stata will not open a -log- file if another one is open.  This line 
just tells Stata to close a -log- file if one is open. 

5. *: The ‘*‘ is used to cancel out a command line.  This is useful because it lets us 
insert comments. 

6. log close: This command tells Stata that this is the end of the -log- file, and to close 
it.  This should not be confused with log off, which tells Stata to suppress output 
in the -log- file until the log on command is given. 

 
An important thing to do when you write a -do- file is to annotate it so that if other’s use your 
program or you come back to it after a month or so, it will be easy to understand what you 
did.  This can be done by “starring” (*) out a command line and inserting your comments… 
 
 * comments here ; 
 
Note that if you are using “;” to denote the end of the command line, then comments can 
take on multiple lines without “re-starring”… 
 
 * comments here  
     and more comments here ; 
 
Let’s complete the remainder of this exercise by using a -do- file.  Instead of writing each 
command in the Stata Command Window, we’ll add them to our -do- file and then re-run it.  
To get this started, follow these steps: 
 

1. Start Stata 
2. Change the working directory to c:\aerc\stata_review\programs\ 
3. Open the Do File-file Editor (click on Window, then click on Do File Editor) or 

some other text editor that you prefer. 
4. Save the file as c:\aerc\stata_review\programs\exercise.do 
5. In this file write the following… 
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version 7.0 
clear 
set memory 5m 
 
capture log close 
log using c:\aerc\stata_review\programs\exercise.log, replace 
 
#delimit ; 
************************************************ 
 
  c:\aerc\stata_review\programs\exercise.do 
 
  Exercises for the second AERC Stata training 
  session on Monday, May 20, 2002, Nairobi 
 
************************************************; 
#delimit cr; 
 
use c:\aerc\stata_review\data\anthmodel.dta 
sum 
describe 
 
 
log close 

 
6. Re-save the file 
7. In the Stata Command Window, type do exercise (or in the Stata Do-file 

Editor, click on Tools, and then Do) and see what happens. 
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B. More on Data Manipulation: 
 

We will eventually use the data that is now in memory to estimate very simple reduced form 
nutrition production functions to illustrate how to use Stata’s regress command and to see 
what Stata produces in the realm of post-estimation results.  For now though, we want to 
create some additional variables to include as explanatory variables.  This will also give us an 
opportunity to run across some very useful commands.  Let’s start by creating region 
dummies… 
 
1. tabulate, generate(): 
 
One way to create region dummies is to use the tabulate command and the generate() 
option.  Suppose that we want to name our region dummies: reg1…reg7.  Then in our -do- 
file, insert the following line after describe; … 
 
 * Create region dummies with tabulate 

tab region, gen(reg) 
 
re-save the file, and in the Stata Command Window, type do exercise and see what 
happens.  The following should appear in the Stata Results Window… 
 
. * Create region dummies with tabulate 
. tab region, gen(reg) 
 
     Region |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |        463       18.32       18.32 
          2 |        524       20.74       39.06 
          3 |        369       14.60       53.66 
          4 |        288       11.40       65.06 
          5 |        120        4.75       69.81 
          6 |        270       10.68       80.49 
          7 |        493       19.51      100.00 
------------+----------------------------------- 
      Total |       2527      100.00 

 
…which, of course, gives no indication that any dummy variables were made.  BUT, look in 
the Variables Window and you will find 7 new variables.  These can be described as… 
 
. describe reg1-reg7 
 
  16. reg1      byte   %8.0g                  region==     1.0000 
  17. reg2      byte   %8.0g                  region==     2.0000 
  18. reg3      byte   %8.0g                  region==     3.0000 
  19. reg4      byte   %8.0g                  region==     4.0000 
  20. reg5      byte   %8.0g                  region==     5.0000 
  21. reg6      byte   %8.0g                  region==     6.0000 
  22. reg7      byte   %8.0g                  region==     7.0000 

 
… which is what we wanted. 
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2. for: 
 
Although we have already shown a very efficient way of producing region dummies, let’s see 
how we can use the for command to do the same thing.  Let’s name these dummies 
regi1…regi7.  Add the following lines to your -do- file and we’ll see what for does 
before we explain it’s syntax: 
 

* Create region dummies with for 
for num 1/7: gen int regiX = (region==X) 
describe regi* 

 
The output from this gives and idea of what for does… 
 
. * Create region dummies with for 
. for num 1/7: gen int regiX = (region==X) 
 
->  gen int regi1 = (region==1) 
 
->  gen int regi2 = (region==2) 
 
->  gen int regi3 = (region==3) 
 
->  gen int regi4 = (region==4) 
 
->  gen int regi5 = (region==5) 
 
->  gen int regi6 = (region==6) 
 
->  gen int regi7 = (region==7) 
 
. describe regi*; 
 
  11. region    byte   %10.0g                 Region 
  23. regi1     int    %8.0g                   
  24. regi2     int    %8.0g                   
  25. regi3     int    %8.0g                   
  26. regi4     int    %8.0g                   
  27. regi5     int    %8.0g                   
  28. regi6     int    %8.0g                   
  29. regi7     int    %8.0g          
 
What the command line 
 

for num 1/7: gen int regiX = (region==X) 
 
tells Stata to do is to repeat the command on the right of the colon (:) for each number from 1 
through 7.  AND in each repetition, Stata is to replace the X with the appropriate number.  So 
in the first repetition, where the value of the number is 1, then Stata reads 
 

gen int regiX = (region==X) 
 
as 
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gen int regi1 = (region==1) 
 
while in the second repetition, where the number takes on a value of 2, Stata reads it as 
 

gen int regi2 = (region==2) 
 
and so on through 7.  Notice, however, that the variables don’t have labels.  We can use for 
to define labels for them as well… 
 

for num 1/7: label variable regiX "Dummy for region X" 
describ regi1-regi7 

 
which gives the following output… 
 
. for num 1/7: label variable regiX "Dummy for region X" 
 
->  label variable regi1 `"Dummy for region 1"' 
 
->  label variable regi2 `"Dummy for region 2"' 
 
->  label variable regi3 `"Dummy for region 3"' 
 
->  label variable regi4 `"Dummy for region 4"' 
 
->  label variable regi5 `"Dummy for region 5"' 
 
->  label variable regi6 `"Dummy for region 6"' 
 
->  label variable regi7 `"Dummy for region 7"' 
 
. describ regi1-regi7 
 
  23. regi1     int    %8.0g                  Dummy for region 1 
  24. regi2     int    %8.0g                  Dummy for region 2 
  25. regi3     int    %8.0g                  Dummy for region 3 
  26. regi4     int    %8.0g                  Dummy for region 4 
  27. regi5     int    %8.0g                  Dummy for region 5 
  28. regi6     int    %8.0g                  Dummy for region 6 
  29. regi7     int    %8.0g                  Dummy for region 7 
 
Note that we could have written these two sets of commands (gen and label variable) 
using one for statement… 
 

#delimit ; 
for num 1/7: gen int regiX = (region==X) 
           \ label variable regiX "Dummy for region X"; 
#delimit cr; 

 
Before we describe the basic syntax for for, let’s see how we can use it to compare the 
dummy variables that we created using tabulate and for.  Of course we could simply 
type 
 

for num 1/7: gen int regXerr = (regiX~=regX) 
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but to illustrate another feature of for, type the following command into your -do- file and run 
it… 
 
 * Check that the two sets of dummies are equivalent 
   #delimit ; 
 for var regi1-regi7 \ var reg1-reg7: 
    gen int Yerr = (X~=Y) 
  \ label variable Yerr “1 if X is not equal to Y”; 
   #delimit cr; 
 
Again, inspecting the output is probably the easiest way to understand what for has just 
done: 
 
. * Check that the two sets of dummies are equivalent; 
. #delimit ; 
delimiter now ; 
. for var regi1-regi7 \ var reg1-reg7: 
>      gen int Yerr = (X~=Y) 
>    \ label variable Yerr "1 if X is not equal to Y"; 
 
->  gen int reg1err = (regi1~=reg1) 
 
->  label variable reg1err `"1 if regi1 is not equal to reg1"' 
 
->  gen int reg2err = (regi2~=reg2) 
 
->  label variable reg2err `"1 if regi2 is not equal to reg2"' 
 
->  gen int reg3err = (regi3~=reg3) 
 
->  label variable reg3err `"1 if regi3 is not equal to reg3"' 
 
->  gen int reg4err = (regi4~=reg4) 
 
->  label variable reg4err `"1 if regi4 is not equal to reg4"' 
 
->  gen int reg5err = (regi5~=reg5) 
 
->  label variable reg5err `"1 if regi5 is not equal to reg5"' 
 
->  gen int reg6err = (regi6~=reg6) 
 
->  label variable reg6err `"1 if regi6 is not equal to reg6"' 
 
->  gen int reg7err = (regi7~=reg7) 
 
->  label variable reg7err `"1 if regi7 is not equal to reg7"' 
 
. #delimit cr 
delimiter now cr 
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. sum reg1err-reg7err 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
 reg1err |    2527           0          0          0          0   
 reg2err |    2527           0          0          0          0   
 reg3err |    2527           0          0          0          0   
 reg4err |    2527           0          0          0          0   
 reg5err |    2527           0          0          0          0   
 reg6err |    2527           0          0          0          0   
 reg7err |    2527           0          0          0          0   

 
As with the previous commands, we asked Stata to go through 7 repetitions.  This time, 
however, the repetitions were defined over the 7 variables regi1…regi7, instead of 
numbers (hence the var instead of the num immediately after the for).  In addition, we 
added an additional list, reg1…reg7, represented by the identifier Y, that is run in parallel 
with the X identifier.  Stata allows up to 9 parallel lists with X, Y, Z, A,… F as 
identifiers for the 1st, 2nd, 3rd, 4th, … 9th lists, respectively. 
 
Of course, instead of creating the error variables, we could just as easily have used the 
compare command: 
 
 for var regi1-regi7 \ var reg1-reg7: compare X Y 
 
 
Now that we have an idea of what’s going on, let’s lay out the general syntax: 
 

for type1 list1 \ type2 list2 \ … :   stata_cmd_containing_X 
      \   stata_cmd_containing_Y 

       \ … 
 
So when there is only one list, then this becomes: 
 
 for type1 list1: stata_cmd_containing_X 
 
Now if  type is a then list is a 

var               list of existing variables 
new  list of new variables 
num  list of numbers 
any  list of words 

 
OK, so tabulate is obviously a more efficient way to create dummy variables.  
Nonetheless, you will find that the for command is very useful and can save you much time 
and effort in what may be cumbersome coding. 
 
3. while: 
 
We can do the same thing by looping through the data using Stata’s while statement.  The 
barebone structure of a while statement is… 
 

 local i = min 
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 while `i' <= max { 
   command statements using `i' in them 
   local i = `i' + 1 
 } 

 
So the idea is that we use i as the index over which we’ll loop, so we start by setting i to the 
minimum.  We are defining i as a local scalar which is more important when writ ing canned 
programs.  Nonetheless, it’s good practice to do it this way rather than as a standard scalar.  
Then we define the condition that stops the looping through the data.  Here we tell it to stop 
when i is less than some maximum value.  Note that when we evaluate a local we must 
incase it in single quotation marks (`i').  Keep in mind that the left quotation mark is `, and 
the right one is '.  Now within the { and the }, are the command statements that incorporate 
the index `i'.  The last line in the brackets augments the index by one.  If you forget this 
line, `i' will never change and you’ll get stuck in an endless loop. 
 
Let’s see how we might use this to create our region dummies… 
 

 local i = 1 
 while `i' <= 7 { 
   gen byte regio`i' = (region == `i') 
   label variable regio`i' "Dummy for region `i'" 
   local i = `i' + 1 
 } 

 
You can see that it is very similar to the concept of the for command.  Again, tab is much 
easier for purposes of creating dummy variables.  But this gave us an opportunity to see how 
the while statement works. 
 
Exercise 1: Create a series of interactions between the urban dummy in the dataset and the 
following variables: age, sex, bord, hhmemb, and your region dummies. 

 
Exercise 2: Use the dataset in memory and sect01a.dta in the same directory to create 
a variable that indicates if the father or the mother of the child is the household head.  (OK, 
so this doesn’t have anything to do with using for or tabulate.  What it does is to give 
you a chance to practice merging!) 
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C. Dropping outliers: 
 

A couple of things we want to do before we estimate any model is to check for outliers.  
There are a couple of helpful commands that can give us an idea of what the extreme values 
look like.  Some of these include: 
 

sum haz, detail 
 
codebook haz 
 
spikeplt haz 
 
hist integer_variable 
 
inspect haz 

 
Deciding if observations are outliers is generally a judgment call which we won’t go into 
here.  But suppose that we decide to drop those observations below the 1st percentile and 
above the 99th percentile, then we can take advantage of sum, detail, and it’s post 
estimation results.  In your -do- file, include the following commands and run them… 
 
 * Drop outliers (below 1st and above 99th percentiles) 
 sum haz, detail 
 return list 
 
So we see that Stata saves the 1st and 99th percentiles as scalars (in memory) after sum, 
detail… 
 
. * Drop outliers (below 1st and above 99th percentiles) 
. sum haz, detail 
 
                          HAZ-score 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%        -5.14          -5.92 
 5%        -4.19          -5.84 
10%        -3.64          -5.81       Obs                2527 
25%        -2.82           -5.8       Sum of Wgt.        2527 
 
50%           -2                      Mean          -1.898773 
                        Largest       Std. Dev.      1.474881 
75%        -1.09           4.83 
90%          .01           4.99       Variance       2.175274 
95%          .72            5.1       Skewness       .5852376 
99%         2.21           5.47       Kurtosis       4.398814 
 
. return list 
 
scalars: 
       r(N)        =  2527 
       r(sum_w)    =  2527 
       r(mean)     =  -1.898773248632098 
       r(Var)      =  2.175273791427845 
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       r(sd)       =  1.474880941441662 
       r(skewness) =  .585237591143191 
       r(kurtosis) =  4.398814101760292 
       r(sum)      =  -4798.199999293312 
       r(min)      =  -5.920000076293945 
       r(max)      =  5.46999979019165 
       r(p1)       =  -5.139999866485596 
       r(p5)       =  -4.190000057220459 
       r(p10)      =  -3.640000104904175 
       r(p25)      =  -2.819999933242798 
       r(p50)      =  -2 
       r(p75)      =  -1.090000033378601 
       r(p90)      =  .0099999997764826 
       r(p95)      =  .7200000286102295 
       r(p99)      =  2.210000038146973 

 
… these are represented by r(p1) and r(p99).  If we add one more command, we can drop 
the “outliers” as we have defined them: 
 
 drop if haz < r(p1) | haz > r(p99) 
 
Once we also check for missing values among our dependent and independent variables, we 
can move onto estimating a model using the regress command. 
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D. Basic Regression Analysis and Post Estimation Results: 
 

The most basic syntax for regress is  
 

regress depvar varlist [weight] [if] [in] [, options] 
 

The first variable after the regress command is always the dependent variable (or left-hand-
side variable), and the remaining variables listed are the relevant independent variables.   
Let’s try this using “haz” as the dependent variable: 
 

* Estimate simple reduced form nutrition production  
* function using regress; 
regress haz age sex bord hhmemb urban reg2-reg7 
estimates list 

 
We see from the results that Stata saves many results from the estimation in the form of 
scalars and matrices… 
 
. * Estimate simple reduced form nutrition production  
. * function using regress 
. regress haz age sex bord hhmemb urban reg2-reg7 
 
  Source |       SS       df       MS                  Number of obs =    2478 
---------+------------------------------               F( 11,  2466) =   34.65 
   Model |  599.483487    11  54.4984988               Prob > F      =  0.0000 
Residual |  3878.05748  2466  1.57261049               R-squared     =  0.1339 
---------+------------------------------               Adj R-squared =  0.1300 
   Total |  4477.54096  2477  1.80764674               Root MSE      =   1.254 
 
------------------------------------------------------------------------------ 
     haz |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     age |  -.0229879   .0014914    -15.413   0.000      -.0259125   -.0200633 
     sex |   .0404056   .0505052      0.800   0.424      -.0586314    .1394426 
    bord |  -.0316171   .0152908     -2.068   0.039      -.0616012   -.0016329 
  hhmemb |  -.0102254   .0102893     -0.994   0.320      -.0304019    .0099512 
   urban |   .4091839   .0749723      5.458   0.000       .2621688    .5561991 
    reg2 |   .2160381   .0812244      2.660   0.008       .0567631    .3753132 
    reg3 |  -.0091246   .0882509     -0.103   0.918       -.182178    .1639288 
    reg4 |   .2909512   .0966383      3.011   0.003       .1014507    .4804518 
    reg5 |   .0733914   .1315888      0.558   0.577      -.1846445    .3314273 
    reg6 |   .7873126   .0995141      7.912   0.000       .5921727    .9824525 
    reg7 |    .423852    .082641      5.129   0.000       .2617992    .5859049 
   _cons |  -1.392443   .0999404    -13.933   0.000      -1.588419   -1.196467 
------------------------------------------------------------------------------ 
 
. estimates list 
 
scalars: 
       e(N)        =  2478 
       e(df_m)     =  11 
       e(df_r)     =  2466 
       e(F)        =  34.65479791258936 
       e(r2)       =  .1338867677823041 
       e(rmse)     =  1.254037676222003 
       e(mss)      =  599.483487277947 
       e(rss)      =  3878.05747668564 
       e(r2_a)     =  .1300233267626794 
       e(ll)       =  -4071.05622014205 
       e(ll_0)     =  -4249.149616544096 
 
macros: 
       e(depvar)   : "haz" 
       e(cmd)      : "regress" 
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       e(predict)  : "regres_p" 
       e(model)    : "ols" 
 
matrices: 
       e(b)        : 1 x 12 
       e(V)        : 12 x 12 
 
functions: 
       e(sample) 

 
Later when we discuss matrices, we will see how to use the matrix of saved coefficients 
(e(b)) and the variance-covariance matrix (e(V)).  One way that we can get at the 
coefficients and at the standard errors is to use these values saved as scalars.  After an 
estimation, Stata save the coefficients as _b[varname], and the standard errors as 
_se[varname].  So for example, if we ask Stata to display the particular coefficients 
that are of interest to us, we will get… 
 
. for any age sex bord hhmemb urban _cons: display _b[X] 
 
->  display _b[age] 
-.02298786 
 
->  display _b[sex] 
.04040557 
 
->  display _b[bord] 
-.03161708 
 
->  display _b[hhmemb] 
-.01022535 
 
->  display _b[urban] 
.40918392 
 
->  display _b[_cons] 
-1.392443 
 
We could also use the standard error and the parameter estimate to recalculate the t-statistic 
for “age”… 
 
. display _se[age] 
.00149144 
 
. display _b[age]/_se[age] 
-15.413219 
 
Which is exactly what appears in the results that Stata produced after we used the regress 
command.  Since these results are up the Stata Results Window, you may want to ask Stata 
to display the results again.  You can do so by typing only 
 
 regress 
 
and the results will appear.  Stata saves these results in memory until you run regress 
again. 
 
OK, fine.  We have just replicated the coefficients and a t-statistic that Stata already showed 
us.  What is the big deal?  The big deal is that we can use these estimates to manipulate our 
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data.  For example, we can predict nutrition outcomes for the entire sample as if all of the 
children lived in region 1… 
 
. * Predict z-scores for all kids as if they lived in region 1; 
 
. gen double hazhat1 = age*_b[age] + sex*_b[sex] + bord*_b[bord] + 
>                  hhmemb*_b[hhmemb] + urban*_b[urban] + _b[_cons]; 
 
. sum haz*; 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
     haz |    2478    -1.91406   1.344488      -5.14       2.21   
 hazhat1 |    2478   -2.160121   .4178733  -3.122771  -1.058811   
 
If we want to compare this predicted value with the predicted value for kids in their actual 
areas of residence, we can use the saved coefficients and generate the latter fitted values as 
well.  This, however, can become cumbersome when there are many explanatory variables.  
Fortunately, we don’t have to do this because Stata will do it automatically for us with 
predict… 
 
. * Predicted z-scores for all kids in their regions of residence 
. predict hazhat 
(option xb assumed; fitted values) 
 
. * See how the summary statistics differ for regions 1 and 2 
. for num 1 2: sum haz* if region == X 
 
->  sum haz* if region == 1 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
     haz |     454   -2.154185    1.28131      -5.14       1.64   
 hazhat1 |     454   -2.154185   .4162141  -2.946772  -1.058811   
  hazhat |     454   -2.154185   .4162141  -2.946773  -1.058811   
 
->  sum haz* if region == 2 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
     haz |     517   -1.954855   1.236939      -5.11       2.21   
 hazhat1 |     517   -2.170893   .4199959  -3.084903  -1.058811   
  hazhat |     517   -1.954855   .4199959  -2.868865  -.8427724   
 
This is just as we expected.  In region 1, our two predicted (fitted) values are exactly the 
same, whereas in region 2, their means differ (by 0.216, which is the value of the parameter 
estimate on reg2). 
 
Now that we know about predict, it should be clear to you that the following commands 
should create a variable identical to hazhat: 
 

predict double hazhat2 
for num 2/7: replace hazhat2 = hazhat2 - _b[regX] if regX == 1 
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Estimating separate models: 
 
If we believe that the data generating process in urban and rural areas is truly different, we 
can estimate separate models using if 
 
. * Estimate separate urban & rural models 
. * Rural 
. regress haz age sex bord hhmemb reg2-reg7 if urban==0 
 
  Source |       SS       df       MS                  Number of obs =    2121 
---------+------------------------------               F( 10,  2110) =   28.51 
   Model |   459.32168    10   45.932168               Prob > F      =  0.0000 
Residual |  3399.75742  2110  1.61125944               R-squared     =  0.1190 
---------+------------------------------               Adj R-squared =  0.1148 
   Total |   3859.0791  2120  1.82032033               Root MSE      =  1.2694 
 
------------------------------------------------------------------------------ 
     haz |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     age |  -.0243027    .001631    -14.900   0.000      -.0275012   -.0211041 
     sex |   .0255223   .0552374      0.462   0.644      -.0828032    .1338478 
    bord |  -.0273322   .0166175     -1.645   0.100      -.0599206    .0052563 
  hhmemb |   -.007908   .0116995     -0.676   0.499      -.0308517    .0150358 
    reg2 |   .1962734   .0867003      2.264   0.024       .0262464    .3663005 
    reg3 |   .0023259   .0930157      0.025   0.980      -.1800862    .1847379 
    reg4 |   .2826988   .1086381      2.602   0.009       .0696498    .4957478 
    reg5 |   .0587171   .1344982      0.437   0.662      -.2050458    .3224801 
    reg6 |   .8043588   .1156887      6.953   0.000        .577483    1.031235 
    reg7 |   .4093896   .0894388      4.577   0.000       .2339922     .584787 
   _cons |  -1.364371   .1086921    -12.553   0.000      -1.577526   -1.151217 
------------------------------------------------------------------------------ 
 
. * Urban 
. regress haz age sex bord hhmemb reg2-reg7 if urban==1 
 
  Source |       SS       df       MS                  Number of obs =     357 
---------+------------------------------               F(  9,   347) =    5.30 
   Model |  63.6196786     9  7.06885318               Prob > F      =  0.0000 
Residual |   463.16862   347  1.33477988               R-squared     =  0.1208 
---------+------------------------------               Adj R-squared =  0.0980 
   Total |  526.788298   356  1.47974241               Root MSE      =  1.1553 
 
------------------------------------------------------------------------------ 
     haz |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     age |  -.0149482   .0036827     -4.059   0.000      -.0221913    -.007705 
     sex |   .1451551   .1234553      1.176   0.240      -.0976597    .3879699 
    bord |  -.0767909   .0420499     -1.826   0.069      -.1594956    .0059139 
  hhmemb |  -.0271518   .0227105     -1.196   0.233      -.0718194    .0175158 
    reg2 |   .3886436   .2389425      1.627   0.105      -.0813142    .8586014 
    reg3 |  -.3105804   .3001925     -1.035   0.302      -.9010061    .2798453 
    reg4 |   .3679373   .2269424      1.621   0.106      -.0784185     .814293 
    reg5 |  (dropped) 
    reg6 |   .8414193   .2232163      3.770   0.000       .4023921    1.280446 
    reg7 |    .538519   .2237401      2.407   0.017       .0984616    .9785765 
   _cons |  -1.152788   .2507334     -4.598   0.000      -1.645936   -.6596395 
------------------------------------------------------------------------------ 

 
If we typed predict at the end of these sets of commands, we would have predicted values 
of “haz” for all kids (urban and rural) as if they all lived in urban areas.  If that is not what 
we want (i.e. we want fitted values for kids in rural areas to be predicted from the rural 
model), then the following sets of commands will generate the fitted values we want… 
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* Estimate separate urban & rural models 

* Rural 

 regress haz age sex bord hhmemb reg2-reg7 if urban==0 

* Rural fitted values 

 predict hazhatr if e(sample) 
* Urban 

 regress haz age sex bord hhmemb reg2-reg7 if urban==1 

* urban fitted values 

 predict hazhatu if e(sample) 

egen hazhatur = rsum(hazhatr hazhatu) 

 
Try this and check that they are indeed the same. 
 
Of course, we could have used the interactions between the urban dummy and the other 
explanatory variables that you created in exercise 1, and included them in one pooled model 
to allow for the parameter estimates to differ across urban and rural areas.  This as we shall 
see in a later session facilitates testing. 
 
Finally, we created all of these dummy variables ourselves.  Stata has an option called xt that 
will do this (as well as interactions) for you when you run a model.  This is a nice command, 
but if you are going to run several models with the same dummy variables and if your dataset 
is large, then you will save time by creating the dummies yourself rather than have Stata do it 
for each run of the model.  In addition, you will be able to give the dummies names that you 
prefer rather than those imposed by Stata.  Now that we know how to use for to make the 
dummies, it’s not a big deal to do so. 
 
Hypothesis Testing 
 
Now that we have the parameter estimates and the variance-covariance matrix of these 
estimators, we can manually construct our own statistics to perform hypothesis tests on the 
coefficients, OR we can use Stata’s test command. 
 
Suppose for some reason we want to test the null hypothesis that the effect of age and sex 
(being male) on nutritional outcomes is the same.  Anytime after using regress, the test 
command can be invoked.  Here we run the pooled model again and run the test: 
 
. * Estimate pooled model and perform hypothesis tests 
. regress haz age sex bord hhmemb reg2-reg7 
 
-- results deleted (we already know them) 
 
. test age = sex 
 
 ( 1)  age - sex = 0.0 
 
       F(  1,  2467) =    1.50 
            Prob > F =    0.2212 
 
So we cannot reject the null hypothesis that these effects are the same (not that it has any real 
meaning).  We could just as easily have used the lincom command (which tests the 
significance of linear combinations of estimators) to test the same hypothesis… 
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. lincom age - sex 
 
 ( 1)  age - sex = 0.0 
 
------------------------------------------------------------------------------ 
     haz |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     (1) |  -.0622214   .0508495     -1.224   0.221      -.1619334    .0374906 
------------------------------------------------------------------------------ 

 
Now suppose that we want to test joint hypothesis that there are no region effects… 
 
. test reg2 reg3 reg4 reg5 reg6 reg7 
 
 ( 1)  reg2 = 0.0 
 ( 2)  reg3 = 0.0 
 ( 3)  reg4 = 0.0 
 ( 4)  reg5 = 0.0 
 ( 5)  reg6 = 0.0 
 ( 6)  reg7 = 0.0 
 
       F(  6,  2467) =   19.51 
            Prob > F =    0.0000 
 
test with just one argument and no condit ion tests whether that argument is different from 
zero (the null hypothesis is that it is zero).  When there are multiple arguments, as we have 
here, a joint test that they are all together different from zero is conducted with the 
appropriate F-statistic reported.  In this case we soundly reject the null hypothesis that all of 
the regional effects are equal to zero. 
 
If we want to test whether the effects of regions 3-7 are different from region 2, we can’t just 
list the arguments as we did above, but we can use test with the accumulate option.  
We’ll first show how this works with regions 3 and 4, and then show a compact way of 
writing the code for more conditions… 
 
. test reg2 = reg3, notest 
 
 ( 1)  reg2 - reg3 = 0.0 
 
. test reg2 = reg4, accum 
 
 ( 1)  reg2 - reg3 = 0.0 
 ( 2)  reg2 - reg4 = 0.0 
 
       F(  2,  2467) =    7.32 
            Prob > F =    0.0007 
 
The notest option is used to suppress the results of the first test (between regions 2 and 3), 
and the accum option tells Stata that the hypothesis is to be jointly tested with the previously 
tested hypotheses.  So here we again reject the hypothesis that the effects of region 3 and 4 
are no different from region 2. 
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To test whether regions 3-7 are different from region 2, we could write out a bunch of lines 
consistent with what we just did above, or we can use our favorite for command: 
 

test reg2 = reg3, notest 
for num 4/6: test reg2 = regX, notest accum 
test reg2 = reg7, accum 

 
Try this and confirm that the test statistic indeed represents a test of our hypothesis. 
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E. Basics of Matrices: 
 
In the previous section we saw that after estimation commands such as regress, Stata saves 
matrices with the parameter estimates and with the variance-covariance of these estimates in 
them.  Now we will briefly get a feel for how matrices are used by creating them and 
manipulating them. 
 
Let’s first define a matrix called “beta” to be the transpose of e(b), and another called 
“covb” to be e(V), and then list them: 
 
 
. matrix beta = e(b) 
 
. matrix covb = e(V) 
 
. matrix list beta 
 
beta[11,1] 
                y1 
   age  -.02275691 
   sex   .03946451 
  bord  -.04225822 
hhmemb  -.00833378 
  reg2   .21444858 
  reg3  -.02241319 
  reg4   .34935303 
  reg5   .04375658 
  reg6   .89001386 
  reg7   .45196462 
 _cons  -1.3432511 
 
. matrix list covb, format(%4.3f) 
 
symmetric covb[11,11] 
           age     sex    bord  hhmemb    reg2    reg3    reg4    reg5    reg6 
   age   0.000 
   sex   0.000   0.003 
  bord   0.000   0.000   0.000 
hhmemb   0.000   0.000   0.000   0.000 
  reg2   0.000   0.000   0.000   0.000   0.007 
  reg3   0.000   0.000   0.000   0.000   0.004   0.008 
  reg4   0.000   0.000   0.000   0.000   0.003   0.003   0.009 
  reg5   0.000   0.000   0.000   0.000   0.003   0.003   0.004   0.017 
  reg6   0.000   0.000   0.000   0.000   0.003   0.003   0.004   0.004   0.010 
  reg7   0.000   0.000   0.000   0.000   0.003   0.003   0.004   0.004   0.004 
 _cons   0.000  -0.001   0.000  -0.001  -0.004  -0.004  -0.003  -0.002  -0.003 
 
          reg7   _cons 
  reg7   0.007 
 _cons  -0.003   0.010 

 
Note that since the variance-covariance matrix is symmetric, Stata saves memory and only 
stores the lower triangle.  To assure you that those are not true zeros in covb, let’s look at its 
inverse… 
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. matrix list invcovb, format(%4.1f) 
 
symmetric invcovb[11,11] 
              age        sex       bord     hhmemb       reg2       reg3 
   age  1911235.6 
   sex    24631.6      795.1 
  bord   123013.0     2044.0    15023.0 
hhmemb   284070.4     4739.3    25612.8    65739.5 
  reg2    10203.3      172.9      707.7     1578.3      325.0 
  reg3     6922.2      110.6      581.4     1253.3        0.0      229.4 
  reg4     5296.8       95.5      462.6     1267.2        0.0        0.0 
  reg5     2123.9       36.5      269.6      515.4        0.0        0.0 
  reg6     5166.7       93.7      449.4     1128.2        0.0        0.0 
  reg7     9563.4      140.2      826.5     1878.7        0.0        0.0 
 _cons    47768.6      795.1     4014.6     9252.9      325.0      229.4 
 
             reg4       reg5       reg6       reg7      _cons 
  reg4      177.9 
  reg5        0.0       73.5 
  reg6        0.0        0.0      165.9 
  reg7        0.0        0.0        0.0      300.4 
 _cons      177.9       73.5      165.9      300.4     1557.5 
 
… of course, those aren’t true zeros either.  To assure you that this is indeed the case, let’s 
just look at the region columns and not restrict the number of digits to the right of the decimal 
point… 
 
. matrix reginv = invcovb[1...,"reg2".."reg7"] 
 
. matrix list reginv 
 
reginv[11,6] 
              reg2        reg3        reg4        reg5        reg6        reg7 
   age   10203.265   6922.2296   5296.7973    2123.873   5166.6873   9563.3999 
   sex   172.85146   110.62493   95.539716   36.455944   93.654064   140.16682 
  bord   707.74816   581.40946   462.61336   269.64828    449.4138   826.54426 
hhmemb    1578.291   1253.3302   1267.1583   515.41163   1128.2486   1878.7382 
  reg2   324.96075  -1.300e-12   1.002e-12  -5.294e-13  -4.832e-13  -7.248e-13 
  reg3  -1.300e-12   229.42103  -4.050e-13  -2.043e-14   1.350e-13   2.224e-12 
  reg4   1.002e-12  -4.050e-13   177.87987   3.064e-13   1.030e-13  -7.532e-13 
  reg5  -5.294e-13  -2.043e-14   3.064e-13   73.540439  -2.531e-13  -1.172e-13 
  reg6  -4.832e-13   1.350e-13   1.030e-13  -2.531e-13    165.9374  -4.050e-13 
  reg7  -7.248e-13   2.224e-12  -7.532e-13  -1.172e-13  -4.050e-13   300.44727 
 _cons   324.96075   229.42103   177.87987   73.540439    165.9374   300.44727 
 
So there you go, there are no zeros.  But what’s more interesting for us is how we extracted 
part of the invcovb matrix with the following command 
 
 matrix reginv = invcovb[1...,"reg2".."reg7"] 
 
This could just as easily been written as 
 
 matrix reginv = invcovb[1...,5..10] 
 
or even as 
 
 matrix reginv = invcovb[1..11,5..10] 
 
This last expression more explicitly illustrates what were extracting: the matrix made up of 
all 11 rows and the 5th through 10th columns.  The general form for submatrices is 
 
 matrix submat = matname[r1..rN,c1..cN] 
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In the first line above, we substituted the column names for the column indices (c1..cN).  
And when Stata evaluates rN (or cN for that matter) as missing (.), it is taken as referring to 
the last row (or column) of matname.  Because there are 11 rows in invcovb, Stata 
interpreted invcovb[1...,5..10] as invcovb[1..11,5..10]. 
 
One final thing that we shall do with matrices is to calculate the t-statistic for “age” again.  
We already did this in part D, but with saved scalars.  Now let’s do it with matrices (and 
scalars)… 
 
. scalar bage = beta[1,1] 
 
. scalar vage = covb[1,1] 
 
. scalar tage = bage / sqrt(vage) 
 
. display %4.3f tage 
-15.176 

 
Type regress, and you will see that this is the same as in the Stata output.  Something to 
note here is that to our eyes, beta[1,1] is a scalar.  But as far a Stata is concerned it’s a 
matrix that just happens to have 1x1 dimensions.  Consequently, we had to create scalars to 
do what we wanted.  If we had tried the following command 
 

matrix tage = beta[1,1] / sqrt(covb[1,1]) 
 
we would have had a problem because: 
 

a. The sqrt() function can only evaluate scalars, not matrices, and 
b. Even if our denominator was a 1x1 matrix, the forward slash (/) tells Stata to stack 

the matrices, not divide their elements. 
 
There are many more features to matrices and functions that can be applied to them.  Your 
best bet is to read through chapter 17 (“Matrix Expressions”) of the Stata User’s Guide to get 
a better feel for what can be done with matrices in Stata. 
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This concludes the Review of Stata for the Technical Workshop.  Because time has been short, 
and there has been much to learn or brush up on, many important issues were not covered.  
Foremost among them is the use of sampling weights and controlling for sampling design in 
estimates of standard errors following an estimation procedure.  Since the data being used in this 
workshop are self-weighted, this will not hinder the remaining sessions in terms of weighted 
estimation.1  Nonetheless, I recommend that you read the section of the User’s Guide on 
estimation and use of weights since you will inevitably need to use them in the future.  Similarly, a 
read through the section on svy estimators in the reference manual will motivate the need for 
controlling for sampling design in the estimation of standard errors.  I am happy to talk with one 
and all of you about these and any other issues!! 

                                                 
1 Note that even with self-weighted samples of households, weights might be necessary.  This is the case if 
we want to estimate the average expenditure of individuals in the population.  In our data, we have a 
variable that estimates per capita expenditures for each household.  If we want an estimate of the mean of 
this variable over the population of individuals (not households), we need to use the household size as the 
weight. 


