
Review of Stata II
AERC Training Workshop

Nairobi, 20-24 May 2002

This note provides more information on the basics of Stata that should help you with the exercises
in the remaining sessions of the workshop. We will cover the following topics:

A. Submitting batch files (i.e. -do- files)
B. More on data manipulation
C. Dropping outliers
D. Basic regression analysis and post estimation results
E. Basics of matrices

A. Submitting Batch Files (i.e. –do- files)

While we can submit commands to Stata one-by-one interactively, we can also submit a
bunch of commands in the form of batch files, or in Stata-speak, -do- files. This is very
useful when (if you are at all like me) you make a coding error early in a series of commands.
If you submit the commands as a -do- file, then you need only go back to the file, change the
coding mistake, and resubmit the commands.

The way it works is that you create a text file using your favorite text editor (e.g. Notepad)
and save it with the extension -do- (e.g. c:\pathname\myprog.do). You enter the commands
in this file, save it, open up Stata, and from the Stata Command window type do
c:\pathname\myprog.do. You can also change the directory to the one in which your
file is located (e.g. type cd c:\pathname) and then type do myprog.do.

It is generally a good idea to create a -log- file that records all of the output that appears on
the screen. AND, it’s generally a good idea to give it the same name as your -do- file, but
give it a ‘.log’ extension. Here is an example of what a -do- file looks like (you’ll see more
in successive sessions):

version 7.0
clear
set memory 5m
#delimit ;

capture log close;
log using c:\pathname\myprog.log, replace;

*
 c:\pathname\myprog

 Describe what the program does
* * * * * * * * * * * * * * * * * * * *;

use c:\datalocation\mydata.dta;

 -- commands . . ;

log close;

 2

There are six things to note from the example:

1. Version 7.0: Since some Stata commands change as new versions of the software
come out, it’s a good idea to let Stata (and other users of your -do- file) know for
which version of the program you are writing your commands.

2. Memory: By default, Stata allocates 1 megabyte of memory for storing data. If your
dataset is larger than this, you need to change this allocation by setting the memory.
In this example, we’re setting the memory for data to 5 megabytes.

3. #delimit ; : By default, a carriage return (i.e. when you hit Enter) denotes the end of
a command line. In the case of a -do- file, the end of the line is the end of a
command – that is, unless you tell Stata otherwise. In this example, we assign a
semi-colon (;) to denote the end of the line by including the “#delimit ;”
command. Note that in the first two lines of the -do- file, the end of the line denotes
the end of the command.

4. capture log close: Stata will not open a -log- file if another one is open. This line
just tells Stata to close a -log- file if one is open.

5. *: The ‘*‘ is used to cancel out a command line. This is useful because it lets us
insert comments.

6. log close: This command tells Stata that this is the end of the -log- file, and to close
it. This should not be confused with log off, which tells Stata to suppress output
in the -log- file until the log on command is given.

An important thing to do when you write a -do- file is to annotate it so that if other’s use your
program or you come back to it after a month or so, it will be easy to understand what you
did. This can be done by “starring” (*) out a command line and inserting your comments…

 * comments here ;

Note that if you are using “;” to denote the end of the command line, then comments can
take on multiple lines without “re-starring”…

 * comments here
 and more comments here ;

Let’s complete the remainder of this exercise by using a -do- file. Instead of writing each
command in the Stata Command Window, we’ll add them to our -do- file and then re-run it.
To get this started, follow these steps:

1. Start Stata
2. Change the working directory to c:\aerc\stata_review\programs\
3. Open the Do File-file Editor (click on Window, then click on Do File Editor) or

some other text editor that you prefer.
4. Save the file as c:\aerc\stata_review\programs\exercise.do
5. In this file write the following…

 3

version 7.0
clear
set memory 5m

capture log close
log using c:\aerc\stata_review\programs\exercise.log, replace

#delimit ;
**

 c:\aerc\stata_review\programs\exercise.do

 Exercises for the second AERC Stata training
 session on Monday, May 20, 2002, Nairobi

**;
#delimit cr;

use c:\aerc\stata_review\data\anthmodel.dta
sum
describe

log close

6. Re-save the file
7. In the Stata Command Window, type do exercise (or in the Stata Do-file

Editor, click on Tools, and then Do) and see what happens.

 4

B. More on Data Manipulation:

We will eventually use the data that is now in memory to estimate very simple reduced form
nutrition production functions to illustrate how to use Stata’s regress command and to see
what Stata produces in the realm of post-estimation results. For now though, we want to
create some additional variables to include as explanatory variables. This will also give us an
opportunity to run across some very useful commands. Let’s start by creating region
dummies…

1. tabulate, generate():

One way to create region dummies is to use the tabulate command and the generate()
option. Suppose that we want to name our region dummies: reg1…reg7. Then in our -do-
file, insert the following line after describe; …

 * Create region dummies with tabulate

tab region, gen(reg)

re-save the file, and in the Stata Command Window, type do exercise and see what
happens. The following should appear in the Stata Results Window…

. * Create region dummies with tabulate
. tab region, gen(reg)

 Region | Freq. Percent Cum.
------------+-----------------------------------
 1 | 463 18.32 18.32
 2 | 524 20.74 39.06
 3 | 369 14.60 53.66
 4 | 288 11.40 65.06
 5 | 120 4.75 69.81
 6 | 270 10.68 80.49
 7 | 493 19.51 100.00
------------+-----------------------------------
 Total | 2527 100.00

…which, of course, gives no indication that any dummy variables were made. BUT, look in
the Variables Window and you will find 7 new variables. These can be described as…

. describe reg1-reg7

 16. reg1 byte %8.0g region== 1.0000
 17. reg2 byte %8.0g region== 2.0000
 18. reg3 byte %8.0g region== 3.0000
 19. reg4 byte %8.0g region== 4.0000
 20. reg5 byte %8.0g region== 5.0000
 21. reg6 byte %8.0g region== 6.0000
 22. reg7 byte %8.0g region== 7.0000

… which is what we wanted.

 5

2. for:

Although we have already shown a very efficient way of producing region dummies, let’s see
how we can use the for command to do the same thing. Let’s name these dummies
regi1…regi7. Add the following lines to your -do- file and we’ll see what for does
before we explain it’s syntax:

* Create region dummies with for
for num 1/7: gen int regiX = (region==X)
describe regi*

The output from this gives and idea of what for does…

. * Create region dummies with for
. for num 1/7: gen int regiX = (region==X)

-> gen int regi1 = (region==1)

-> gen int regi2 = (region==2)

-> gen int regi3 = (region==3)

-> gen int regi4 = (region==4)

-> gen int regi5 = (region==5)

-> gen int regi6 = (region==6)

-> gen int regi7 = (region==7)

. describe regi*;

 11. region byte %10.0g Region
 23. regi1 int %8.0g
 24. regi2 int %8.0g
 25. regi3 int %8.0g
 26. regi4 int %8.0g
 27. regi5 int %8.0g
 28. regi6 int %8.0g
 29. regi7 int %8.0g

What the command line

for num 1/7: gen int regiX = (region==X)

tells Stata to do is to repeat the command on the right of the colon (:) for each number from 1
through 7. AND in each repetition, Stata is to replace the X with the appropriate number. So
in the first repetition, where the value of the number is 1, then Stata reads

gen int regiX = (region==X)

as

 6

gen int regi1 = (region==1)

while in the second repetition, where the number takes on a value of 2, Stata reads it as

gen int regi2 = (region==2)

and so on through 7. Notice, however, that the variables don’t have labels. We can use for
to define labels for them as well…

for num 1/7: label variable regiX "Dummy for region X"
describ regi1-regi7

which gives the following output…

. for num 1/7: label variable regiX "Dummy for region X"

-> label variable regi1 `"Dummy for region 1"'

-> label variable regi2 `"Dummy for region 2"'

-> label variable regi3 `"Dummy for region 3"'

-> label variable regi4 `"Dummy for region 4"'

-> label variable regi5 `"Dummy for region 5"'

-> label variable regi6 `"Dummy for region 6"'

-> label variable regi7 `"Dummy for region 7"'

. describ regi1-regi7

 23. regi1 int %8.0g Dummy for region 1
 24. regi2 int %8.0g Dummy for region 2
 25. regi3 int %8.0g Dummy for region 3
 26. regi4 int %8.0g Dummy for region 4
 27. regi5 int %8.0g Dummy for region 5
 28. regi6 int %8.0g Dummy for region 6
 29. regi7 int %8.0g Dummy for region 7

Note that we could have written these two sets of commands (gen and label variable)
using one for statement…

#delimit ;
for num 1/7: gen int regiX = (region==X)
 \ label variable regiX "Dummy for region X";
#delimit cr;

Before we describe the basic syntax for for, let’s see how we can use it to compare the
dummy variables that we created using tabulate and for. Of course we could simply
type

for num 1/7: gen int regXerr = (regiX~=regX)

 7

but to illustrate another feature of for, type the following command into your -do- file and run
it…

 * Check that the two sets of dummies are equivalent
 #delimit ;
 for var regi1-regi7 \ var reg1-reg7:
 gen int Yerr = (X~=Y)
 \ label variable Yerr “1 if X is not equal to Y”;
 #delimit cr;

Again, inspecting the output is probably the easiest way to understand what for has just
done:

. * Check that the two sets of dummies are equivalent;
. #delimit ;
delimiter now ;
. for var regi1-regi7 \ var reg1-reg7:
> gen int Yerr = (X~=Y)
> \ label variable Yerr "1 if X is not equal to Y";

-> gen int reg1err = (regi1~=reg1)

-> label variable reg1err `"1 if regi1 is not equal to reg1"'

-> gen int reg2err = (regi2~=reg2)

-> label variable reg2err `"1 if regi2 is not equal to reg2"'

-> gen int reg3err = (regi3~=reg3)

-> label variable reg3err `"1 if regi3 is not equal to reg3"'

-> gen int reg4err = (regi4~=reg4)

-> label variable reg4err `"1 if regi4 is not equal to reg4"'

-> gen int reg5err = (regi5~=reg5)

-> label variable reg5err `"1 if regi5 is not equal to reg5"'

-> gen int reg6err = (regi6~=reg6)

-> label variable reg6err `"1 if regi6 is not equal to reg6"'

-> gen int reg7err = (regi7~=reg7)

-> label variable reg7err `"1 if regi7 is not equal to reg7"'

. #delimit cr
delimiter now cr

 8

. sum reg1err-reg7err

Variable | Obs Mean Std. Dev. Min Max
---------+---
 reg1err | 2527 0 0 0 0
 reg2err | 2527 0 0 0 0
 reg3err | 2527 0 0 0 0
 reg4err | 2527 0 0 0 0
 reg5err | 2527 0 0 0 0
 reg6err | 2527 0 0 0 0
 reg7err | 2527 0 0 0 0

As with the previous commands, we asked Stata to go through 7 repetitions. This time,
however, the repetitions were defined over the 7 variables regi1…regi7, instead of
numbers (hence the var instead of the num immediately after the for). In addition, we
added an additional list, reg1…reg7, represented by the identifier Y, that is run in parallel
with the X identifier. Stata allows up to 9 parallel lists with X, Y, Z, A,… F as
identifiers for the 1st, 2nd, 3rd, 4th, … 9th lists, respectively.

Of course, instead of creating the error variables, we could just as easily have used the
compare command:

 for var regi1-regi7 \ var reg1-reg7: compare X Y

Now that we have an idea of what’s going on, let’s lay out the general syntax:

for type1 list1 \ type2 list2 \ … : stata_cmd_containing_X
 \ stata_cmd_containing_Y

 \ …

So when there is only one list, then this becomes:

 for type1 list1: stata_cmd_containing_X

Now if type is a then list is a

var list of existing variables
new list of new variables
num list of numbers
any list of words

OK, so tabulate is obviously a more efficient way to create dummy variables.
Nonetheless, you will find that the for command is very useful and can save you much time
and effort in what may be cumbersome coding.

3. while:

We can do the same thing by looping through the data using Stata’s while statement. The
barebone structure of a while statement is…

 local i = min

 9

 while `i' <= max {
 command statements using `i' in them
 local i = `i' + 1
 }

So the idea is that we use i as the index over which we’ll loop, so we start by setting i to the
minimum. We are defining i as a local scalar which is more important when writ ing canned
programs. Nonetheless, it’s good practice to do it this way rather than as a standard scalar.
Then we define the condition that stops the looping through the data. Here we tell it to stop
when i is less than some maximum value. Note that when we evaluate a local we must
incase it in single quotation marks (`i'). Keep in mind that the left quotation mark is `, and
the right one is '. Now within the { and the }, are the command statements that incorporate
the index `i'. The last line in the brackets augments the index by one. If you forget this
line, `i' will never change and you’ll get stuck in an endless loop.

Let’s see how we might use this to create our region dummies…

 local i = 1
 while `i' <= 7 {
 gen byte regio`i' = (region == `i')
 label variable regio`i' "Dummy for region `i'"
 local i = `i' + 1
 }

You can see that it is very similar to the concept of the for command. Again, tab is much
easier for purposes of creating dummy variables. But this gave us an opportunity to see how
the while statement works.

Exercise 1: Create a series of interactions between the urban dummy in the dataset and the
following variables: age, sex, bord, hhmemb, and your region dummies.

Exercise 2: Use the dataset in memory and sect01a.dta in the same directory to create
a variable that indicates if the father or the mother of the child is the household head. (OK,
so this doesn’t have anything to do with using for or tabulate. What it does is to give
you a chance to practice merging!)

 10

C. Dropping outliers:

A couple of things we want to do before we estimate any model is to check for outliers.
There are a couple of helpful commands that can give us an idea of what the extreme values
look like. Some of these include:

sum haz, detail

codebook haz

spikeplt haz

hist integer_variable

inspect haz

Deciding if observations are outliers is generally a judgment call which we won’t go into
here. But suppose that we decide to drop those observations below the 1st percentile and
above the 99th percentile, then we can take advantage of sum, detail, and it’s post
estimation results. In your -do- file, include the following commands and run them…

 * Drop outliers (below 1st and above 99th percentiles)
 sum haz, detail
 return list

So we see that Stata saves the 1st and 99th percentiles as scalars (in memory) after sum,
detail…

. * Drop outliers (below 1st and above 99th percentiles)
. sum haz, detail

 HAZ-score

 Percentiles Smallest
 1% -5.14 -5.92
 5% -4.19 -5.84
10% -3.64 -5.81 Obs 2527
25% -2.82 -5.8 Sum of Wgt. 2527

50% -2 Mean -1.898773
 Largest Std. Dev. 1.474881
75% -1.09 4.83
90% .01 4.99 Variance 2.175274
95% .72 5.1 Skewness .5852376
99% 2.21 5.47 Kurtosis 4.398814

. return list

scalars:
 r(N) = 2527
 r(sum_w) = 2527
 r(mean) = -1.898773248632098
 r(Var) = 2.175273791427845

 11

 r(sd) = 1.474880941441662
 r(skewness) = .585237591143191
 r(kurtosis) = 4.398814101760292
 r(sum) = -4798.199999293312
 r(min) = -5.920000076293945
 r(max) = 5.46999979019165
 r(p1) = -5.139999866485596
 r(p5) = -4.190000057220459
 r(p10) = -3.640000104904175
 r(p25) = -2.819999933242798
 r(p50) = -2
 r(p75) = -1.090000033378601
 r(p90) = .0099999997764826
 r(p95) = .7200000286102295
 r(p99) = 2.210000038146973

… these are represented by r(p1) and r(p99). If we add one more command, we can drop
the “outliers” as we have defined them:

 drop if haz < r(p1) | haz > r(p99)

Once we also check for missing values among our dependent and independent variables, we
can move onto estimating a model using the regress command.

 12

D. Basic Regression Analysis and Post Estimation Results:

The most basic syntax for regress is

regress depvar varlist [weight] [if] [in] [, options]

The first variable after the regress command is always the dependent variable (or left-hand-
side variable), and the remaining variables listed are the relevant independent variables.
Let’s try this using “haz” as the dependent variable:

* Estimate simple reduced form nutrition production
* function using regress;
regress haz age sex bord hhmemb urban reg2-reg7
estimates list

We see from the results that Stata saves many results from the estimation in the form of
scalars and matrices…

. * Estimate simple reduced form nutrition production
. * function using regress
. regress haz age sex bord hhmemb urban reg2-reg7

 Source | SS df MS Number of obs = 2478
---------+------------------------------ F(11, 2466) = 34.65
 Model | 599.483487 11 54.4984988 Prob > F = 0.0000
Residual | 3878.05748 2466 1.57261049 R-squared = 0.1339
---------+------------------------------ Adj R-squared = 0.1300
 Total | 4477.54096 2477 1.80764674 Root MSE = 1.254

--
 haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 age | -.0229879 .0014914 -15.413 0.000 -.0259125 -.0200633
 sex | .0404056 .0505052 0.800 0.424 -.0586314 .1394426
 bord | -.0316171 .0152908 -2.068 0.039 -.0616012 -.0016329
 hhmemb | -.0102254 .0102893 -0.994 0.320 -.0304019 .0099512
 urban | .4091839 .0749723 5.458 0.000 .2621688 .5561991
 reg2 | .2160381 .0812244 2.660 0.008 .0567631 .3753132
 reg3 | -.0091246 .0882509 -0.103 0.918 -.182178 .1639288
 reg4 | .2909512 .0966383 3.011 0.003 .1014507 .4804518
 reg5 | .0733914 .1315888 0.558 0.577 -.1846445 .3314273
 reg6 | .7873126 .0995141 7.912 0.000 .5921727 .9824525
 reg7 | .423852 .082641 5.129 0.000 .2617992 .5859049
 _cons | -1.392443 .0999404 -13.933 0.000 -1.588419 -1.196467
--

. estimates list

scalars:
 e(N) = 2478
 e(df_m) = 11
 e(df_r) = 2466
 e(F) = 34.65479791258936
 e(r2) = .1338867677823041
 e(rmse) = 1.254037676222003
 e(mss) = 599.483487277947
 e(rss) = 3878.05747668564
 e(r2_a) = .1300233267626794
 e(ll) = -4071.05622014205
 e(ll_0) = -4249.149616544096

macros:
 e(depvar) : "haz"
 e(cmd) : "regress"

 13

 e(predict) : "regres_p"
 e(model) : "ols"

matrices:
 e(b) : 1 x 12
 e(V) : 12 x 12

functions:
 e(sample)

Later when we discuss matrices, we will see how to use the matrix of saved coefficients
(e(b)) and the variance-covariance matrix (e(V)). One way that we can get at the
coefficients and at the standard errors is to use these values saved as scalars. After an
estimation, Stata save the coefficients as _b[varname], and the standard errors as
_se[varname]. So for example, if we ask Stata to display the particular coefficients
that are of interest to us, we will get…

. for any age sex bord hhmemb urban _cons: display _b[X]

-> display _b[age]
-.02298786

-> display _b[sex]
.04040557

-> display _b[bord]
-.03161708

-> display _b[hhmemb]
-.01022535

-> display _b[urban]
.40918392

-> display _b[_cons]
-1.392443

We could also use the standard error and the parameter estimate to recalculate the t-statistic
for “age”…

. display _se[age]
.00149144

. display _b[age]/_se[age]
-15.413219

Which is exactly what appears in the results that Stata produced after we used the regress
command. Since these results are up the Stata Results Window, you may want to ask Stata
to display the results again. You can do so by typing only

 regress

and the results will appear. Stata saves these results in memory until you run regress
again.

OK, fine. We have just replicated the coefficients and a t-statistic that Stata already showed
us. What is the big deal? The big deal is that we can use these estimates to manipulate our

 14

data. For example, we can predict nutrition outcomes for the entire sample as if all of the
children lived in region 1…

. * Predict z-scores for all kids as if they lived in region 1;

. gen double hazhat1 = age*_b[age] + sex*_b[sex] + bord*_b[bord] +
> hhmemb*_b[hhmemb] + urban*_b[urban] + _b[_cons];

. sum haz*;

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 2478 -1.91406 1.344488 -5.14 2.21
 hazhat1 | 2478 -2.160121 .4178733 -3.122771 -1.058811

If we want to compare this predicted value with the predicted value for kids in their actual
areas of residence, we can use the saved coefficients and generate the latter fitted values as
well. This, however, can become cumbersome when there are many explanatory variables.
Fortunately, we don’t have to do this because Stata will do it automatically for us with
predict…

. * Predicted z-scores for all kids in their regions of residence
. predict hazhat
(option xb assumed; fitted values)

. * See how the summary statistics differ for regions 1 and 2
. for num 1 2: sum haz* if region == X

-> sum haz* if region == 1

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 454 -2.154185 1.28131 -5.14 1.64
 hazhat1 | 454 -2.154185 .4162141 -2.946772 -1.058811
 hazhat | 454 -2.154185 .4162141 -2.946773 -1.058811

-> sum haz* if region == 2

Variable | Obs Mean Std. Dev. Min Max
---------+---
 haz | 517 -1.954855 1.236939 -5.11 2.21
 hazhat1 | 517 -2.170893 .4199959 -3.084903 -1.058811
 hazhat | 517 -1.954855 .4199959 -2.868865 -.8427724

This is just as we expected. In region 1, our two predicted (fitted) values are exactly the
same, whereas in region 2, their means differ (by 0.216, which is the value of the parameter
estimate on reg2).

Now that we know about predict, it should be clear to you that the following commands
should create a variable identical to hazhat:

predict double hazhat2
for num 2/7: replace hazhat2 = hazhat2 - _b[regX] if regX == 1

 15

Estimating separate models:

If we believe that the data generating process in urban and rural areas is truly different, we
can estimate separate models using if

. * Estimate separate urban & rural models
. * Rural
. regress haz age sex bord hhmemb reg2-reg7 if urban==0

 Source | SS df MS Number of obs = 2121
---------+------------------------------ F(10, 2110) = 28.51
 Model | 459.32168 10 45.932168 Prob > F = 0.0000
Residual | 3399.75742 2110 1.61125944 R-squared = 0.1190
---------+------------------------------ Adj R-squared = 0.1148
 Total | 3859.0791 2120 1.82032033 Root MSE = 1.2694

--
 haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 age | -.0243027 .001631 -14.900 0.000 -.0275012 -.0211041
 sex | .0255223 .0552374 0.462 0.644 -.0828032 .1338478
 bord | -.0273322 .0166175 -1.645 0.100 -.0599206 .0052563
 hhmemb | -.007908 .0116995 -0.676 0.499 -.0308517 .0150358
 reg2 | .1962734 .0867003 2.264 0.024 .0262464 .3663005
 reg3 | .0023259 .0930157 0.025 0.980 -.1800862 .1847379
 reg4 | .2826988 .1086381 2.602 0.009 .0696498 .4957478
 reg5 | .0587171 .1344982 0.437 0.662 -.2050458 .3224801
 reg6 | .8043588 .1156887 6.953 0.000 .577483 1.031235
 reg7 | .4093896 .0894388 4.577 0.000 .2339922 .584787
 _cons | -1.364371 .1086921 -12.553 0.000 -1.577526 -1.151217
--

. * Urban
. regress haz age sex bord hhmemb reg2-reg7 if urban==1

 Source | SS df MS Number of obs = 357
---------+------------------------------ F(9, 347) = 5.30
 Model | 63.6196786 9 7.06885318 Prob > F = 0.0000
Residual | 463.16862 347 1.33477988 R-squared = 0.1208
---------+------------------------------ Adj R-squared = 0.0980
 Total | 526.788298 356 1.47974241 Root MSE = 1.1553

--
 haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 age | -.0149482 .0036827 -4.059 0.000 -.0221913 -.007705
 sex | .1451551 .1234553 1.176 0.240 -.0976597 .3879699
 bord | -.0767909 .0420499 -1.826 0.069 -.1594956 .0059139
 hhmemb | -.0271518 .0227105 -1.196 0.233 -.0718194 .0175158
 reg2 | .3886436 .2389425 1.627 0.105 -.0813142 .8586014
 reg3 | -.3105804 .3001925 -1.035 0.302 -.9010061 .2798453
 reg4 | .3679373 .2269424 1.621 0.106 -.0784185 .814293
 reg5 | (dropped)
 reg6 | .8414193 .2232163 3.770 0.000 .4023921 1.280446
 reg7 | .538519 .2237401 2.407 0.017 .0984616 .9785765
 _cons | -1.152788 .2507334 -4.598 0.000 -1.645936 -.6596395
--

If we typed predict at the end of these sets of commands, we would have predicted values
of “haz” for all kids (urban and rural) as if they all lived in urban areas. If that is not what
we want (i.e. we want fitted values for kids in rural areas to be predicted from the rural
model), then the following sets of commands will generate the fitted values we want…

 16

* Estimate separate urban & rural models

* Rural

 regress haz age sex bord hhmemb reg2-reg7 if urban==0

* Rural fitted values

 predict hazhatr if e(sample)
* Urban

 regress haz age sex bord hhmemb reg2-reg7 if urban==1

* urban fitted values

 predict hazhatu if e(sample)

egen hazhatur = rsum(hazhatr hazhatu)

Try this and check that they are indeed the same.

Of course, we could have used the interactions between the urban dummy and the other
explanatory variables that you created in exercise 1, and included them in one pooled model
to allow for the parameter estimates to differ across urban and rural areas. This as we shall
see in a later session facilitates testing.

Finally, we created all of these dummy variables ourselves. Stata has an option called xt that
will do this (as well as interactions) for you when you run a model. This is a nice command,
but if you are going to run several models with the same dummy variables and if your dataset
is large, then you will save time by creating the dummies yourself rather than have Stata do it
for each run of the model. In addition, you will be able to give the dummies names that you
prefer rather than those imposed by Stata. Now that we know how to use for to make the
dummies, it’s not a big deal to do so.

Hypothesis Testing

Now that we have the parameter estimates and the variance-covariance matrix of these
estimators, we can manually construct our own statistics to perform hypothesis tests on the
coefficients, OR we can use Stata’s test command.

Suppose for some reason we want to test the null hypothesis that the effect of age and sex
(being male) on nutritional outcomes is the same. Anytime after using regress, the test
command can be invoked. Here we run the pooled model again and run the test:

. * Estimate pooled model and perform hypothesis tests
. regress haz age sex bord hhmemb reg2-reg7

-- results deleted (we already know them)

. test age = sex

 (1) age - sex = 0.0

 F(1, 2467) = 1.50
 Prob > F = 0.2212

So we cannot reject the null hypothesis that these effects are the same (not that it has any real
meaning). We could just as easily have used the lincom command (which tests the
significance of linear combinations of estimators) to test the same hypothesis…

 17

. lincom age - sex

 (1) age - sex = 0.0

--
 haz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 (1) | -.0622214 .0508495 -1.224 0.221 -.1619334 .0374906
--

Now suppose that we want to test joint hypothesis that there are no region effects…

. test reg2 reg3 reg4 reg5 reg6 reg7

 (1) reg2 = 0.0
 (2) reg3 = 0.0
 (3) reg4 = 0.0
 (4) reg5 = 0.0
 (5) reg6 = 0.0
 (6) reg7 = 0.0

 F(6, 2467) = 19.51
 Prob > F = 0.0000

test with just one argument and no condit ion tests whether that argument is different from
zero (the null hypothesis is that it is zero). When there are multiple arguments, as we have
here, a joint test that they are all together different from zero is conducted with the
appropriate F-statistic reported. In this case we soundly reject the null hypothesis that all of
the regional effects are equal to zero.

If we want to test whether the effects of regions 3-7 are different from region 2, we can’t just
list the arguments as we did above, but we can use test with the accumulate option.
We’ll first show how this works with regions 3 and 4, and then show a compact way of
writing the code for more conditions…

. test reg2 = reg3, notest

 (1) reg2 - reg3 = 0.0

. test reg2 = reg4, accum

 (1) reg2 - reg3 = 0.0
 (2) reg2 - reg4 = 0.0

 F(2, 2467) = 7.32
 Prob > F = 0.0007

The notest option is used to suppress the results of the first test (between regions 2 and 3),
and the accum option tells Stata that the hypothesis is to be jointly tested with the previously
tested hypotheses. So here we again reject the hypothesis that the effects of region 3 and 4
are no different from region 2.

 18

To test whether regions 3-7 are different from region 2, we could write out a bunch of lines
consistent with what we just did above, or we can use our favorite for command:

test reg2 = reg3, notest
for num 4/6: test reg2 = regX, notest accum
test reg2 = reg7, accum

Try this and confirm that the test statistic indeed represents a test of our hypothesis.

 19

E. Basics of Matrices:

In the previous section we saw that after estimation commands such as regress, Stata saves
matrices with the parameter estimates and with the variance-covariance of these estimates in
them. Now we will briefly get a feel for how matrices are used by creating them and
manipulating them.

Let’s first define a matrix called “beta” to be the transpose of e(b), and another called
“covb” to be e(V), and then list them:

. matrix beta = e(b)

. matrix covb = e(V)

. matrix list beta

beta[11,1]
 y1
 age -.02275691
 sex .03946451
 bord -.04225822
hhmemb -.00833378
 reg2 .21444858
 reg3 -.02241319
 reg4 .34935303
 reg5 .04375658
 reg6 .89001386
 reg7 .45196462
 _cons -1.3432511

. matrix list covb, format(%4.3f)

symmetric covb[11,11]
 age sex bord hhmemb reg2 reg3 reg4 reg5 reg6
 age 0.000
 sex 0.000 0.003
 bord 0.000 0.000 0.000
hhmemb 0.000 0.000 0.000 0.000
 reg2 0.000 0.000 0.000 0.000 0.007
 reg3 0.000 0.000 0.000 0.000 0.004 0.008
 reg4 0.000 0.000 0.000 0.000 0.003 0.003 0.009
 reg5 0.000 0.000 0.000 0.000 0.003 0.003 0.004 0.017
 reg6 0.000 0.000 0.000 0.000 0.003 0.003 0.004 0.004 0.010
 reg7 0.000 0.000 0.000 0.000 0.003 0.003 0.004 0.004 0.004
 _cons 0.000 -0.001 0.000 -0.001 -0.004 -0.004 -0.003 -0.002 -0.003

 reg7 _cons
 reg7 0.007
 _cons -0.003 0.010

Note that since the variance-covariance matrix is symmetric, Stata saves memory and only
stores the lower triangle. To assure you that those are not true zeros in covb, let’s look at its
inverse…

 20

. matrix list invcovb, format(%4.1f)

symmetric invcovb[11,11]
 age sex bord hhmemb reg2 reg3
 age 1911235.6
 sex 24631.6 795.1
 bord 123013.0 2044.0 15023.0
hhmemb 284070.4 4739.3 25612.8 65739.5
 reg2 10203.3 172.9 707.7 1578.3 325.0
 reg3 6922.2 110.6 581.4 1253.3 0.0 229.4
 reg4 5296.8 95.5 462.6 1267.2 0.0 0.0
 reg5 2123.9 36.5 269.6 515.4 0.0 0.0
 reg6 5166.7 93.7 449.4 1128.2 0.0 0.0
 reg7 9563.4 140.2 826.5 1878.7 0.0 0.0
 _cons 47768.6 795.1 4014.6 9252.9 325.0 229.4

 reg4 reg5 reg6 reg7 _cons
 reg4 177.9
 reg5 0.0 73.5
 reg6 0.0 0.0 165.9
 reg7 0.0 0.0 0.0 300.4
 _cons 177.9 73.5 165.9 300.4 1557.5

… of course, those aren’t true zeros either. To assure you that this is indeed the case, let’s
just look at the region columns and not restrict the number of digits to the right of the decimal
point…

. matrix reginv = invcovb[1...,"reg2".."reg7"]

. matrix list reginv

reginv[11,6]
 reg2 reg3 reg4 reg5 reg6 reg7
 age 10203.265 6922.2296 5296.7973 2123.873 5166.6873 9563.3999
 sex 172.85146 110.62493 95.539716 36.455944 93.654064 140.16682
 bord 707.74816 581.40946 462.61336 269.64828 449.4138 826.54426
hhmemb 1578.291 1253.3302 1267.1583 515.41163 1128.2486 1878.7382
 reg2 324.96075 -1.300e-12 1.002e-12 -5.294e-13 -4.832e-13 -7.248e-13
 reg3 -1.300e-12 229.42103 -4.050e-13 -2.043e-14 1.350e-13 2.224e-12
 reg4 1.002e-12 -4.050e-13 177.87987 3.064e-13 1.030e-13 -7.532e-13
 reg5 -5.294e-13 -2.043e-14 3.064e-13 73.540439 -2.531e-13 -1.172e-13
 reg6 -4.832e-13 1.350e-13 1.030e-13 -2.531e-13 165.9374 -4.050e-13
 reg7 -7.248e-13 2.224e-12 -7.532e-13 -1.172e-13 -4.050e-13 300.44727
 _cons 324.96075 229.42103 177.87987 73.540439 165.9374 300.44727

So there you go, there are no zeros. But what’s more interesting for us is how we extracted
part of the invcovb matrix with the following command

 matrix reginv = invcovb[1...,"reg2".."reg7"]

This could just as easily been written as

 matrix reginv = invcovb[1...,5..10]

or even as

 matrix reginv = invcovb[1..11,5..10]

This last expression more explicitly illustrates what were extracting: the matrix made up of
all 11 rows and the 5th through 10th columns. The general form for submatrices is

 matrix submat = matname[r1..rN,c1..cN]

 21

In the first line above, we substituted the column names for the column indices (c1..cN).
And when Stata evaluates rN (or cN for that matter) as missing (.), it is taken as referring to
the last row (or column) of matname. Because there are 11 rows in invcovb, Stata
interpreted invcovb[1...,5..10] as invcovb[1..11,5..10].

One final thing that we shall do with matrices is to calculate the t-statistic for “age” again.
We already did this in part D, but with saved scalars. Now let’s do it with matrices (and
scalars)…

. scalar bage = beta[1,1]

. scalar vage = covb[1,1]

. scalar tage = bage / sqrt(vage)

. display %4.3f tage
-15.176

Type regress, and you will see that this is the same as in the Stata output. Something to
note here is that to our eyes, beta[1,1] is a scalar. But as far a Stata is concerned it’s a
matrix that just happens to have 1x1 dimensions. Consequently, we had to create scalars to
do what we wanted. If we had tried the following command

matrix tage = beta[1,1] / sqrt(covb[1,1])

we would have had a problem because:

a. The sqrt() function can only evaluate scalars, not matrices, and
b. Even if our denominator was a 1x1 matrix, the forward slash (/) tells Stata to stack

the matrices, not divide their elements.

There are many more features to matrices and functions that can be applied to them. Your
best bet is to read through chapter 17 (“Matrix Expressions”) of the Stata User’s Guide to get
a better feel for what can be done with matrices in Stata.

 22

This concludes the Review of Stata for the Technical Workshop. Because time has been short,
and there has been much to learn or brush up on, many important issues were not covered.
Foremost among them is the use of sampling weights and controlling for sampling design in
estimates of standard errors following an estimation procedure. Since the data being used in this
workshop are self-weighted, this will not hinder the remaining sessions in terms of weighted
estimation.1 Nonetheless, I recommend that you read the section of the User’s Guide on
estimation and use of weights since you will inevitably need to use them in the future. Similarly, a
read through the section on svy estimators in the reference manual will motivate the need for
controlling for sampling design in the estimation of standard errors. I am happy to talk with one
and all of you about these and any other issues!!

1 Note that even with self-weighted samples of households, weights might be necessary. This is the case if
we want to estimate the average expenditure of individuals in the population. In our data, we have a
variable that estimates per capita expenditures for each household. If we want an estimate of the mean of
this variable over the population of individuals (not households), we need to use the household size as the
weight.

