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Abstract 
This paper presents evidence on the persistence of inflation in the United States over the period 
1947- 2010.  Of particular interest is whether the persistence of inflation has changed over that 
time period.  We use a reduced form approach to measuring inflation persistence, modeling 
inflation as an autoregressive process.  We measure persistence as the half-life of a shock to that 
process. Our analysis employs both a frequentist approach and a Bayesian approach to identify 
breaks in inflation persistence. Both our frequentist and Bayesian results indicate that inflation 
persistence has undergone significant changes over the past 60 years. 
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1.  Introduction 

 This paper presents evidence on the persistence of inflation in the United States over the 

period 1947- 2010.  Of particular interest is whether the persistence of inflation has changed over 

that time period.  Models such as Fuhrer and Moore (1995) and Blanchard and Gali (2007) 

suggest that inflation persistence is a structural feature of the economy, and not likely influenced 

by the behavior of policy makers.  Others such as Batini (2006), Beechey and Osterholm (2007), 

Benati (2008) and Mehra and Reilly (2009) present evidence that inflation persistence depends 

on the monetary regime in place; accommodative policy regimes generate higher persistence 

than non-accommodative policy regimes. 

 In this paper, we use a reduced form approach to measuring inflation persistence, 

modeling inflation as an autoregressive process.  We measure persistence as the half-life of a 

shock to that process. Our approach differs from previous work.  Our analysis begins with a 

frequentist approach to identify breaks in inflation persistence over the post-World War II period 

using the methodology introduced by Bai and Perron (1998).   We then employ a Bayesian 

methodology to search for break dates.  We search for both the location and the number of 

breaks.  This allows us to calculate the changes in inflation persistence over the post-World War 

II period.  We are not the first to use Bayesian techniques to investigate inflation persistence.  

Pivetta and Reis (2007) use a Bayesian technique, which allows for inflation persistence to 

slowly evolve over the sample.  A potential drawback of their approach is that if there are breaks, 

rather than gradual shifts, in the persistence of inflation, their technique may not show a change 

in persistence because they estimate their models with a rolling data window.  Our method 

allows us to identify several breaks in the persistence of inflation over the post-World War II 

period. 

In contrast to the findings of Pivetta and Reis, both our frequentist and Bayesian results 

indicate that inflation persistence has undergone significant changes over the past 60 years.  Both 

methods also support that changes in inflation persistence roughly correspond to changes in 

monetary policy regimes.  Moreover, inflation persistence since the early 2000s is low with the 

half-life of a shock in the range of one-half to one quarter. 

This paper is organized as follows.  Section 2 presents a review of the relevant literature.   

Section 3 defines our measures of persistence.  Section 4 presents the baseline frequentist results.  

Section 5 presents the results of our Bayesian estimation.  Section 6 presents results from a 
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higher order model and section 7 concludes. 

2. Relevant Literature 

 Several recent studies on inflation persistence have come from researchers associated 

with the Inflation Persistence Network (IPN) 1.  We focus our literature review mainly on studies 

that use reduced form measures of inflation persistence or connect changes in persistence to 

changes in monetary policy regimes2.  

Dossche and Everaert, (2005) use a structural time series model to identify and measure 

various sources of Euro area and U.S. inflation persistence:  changes in the central bank’s 

inflation objective, imperfect or sticky information, persistence in the exogenous drivers of 

inflation, and intrinsic inflation.   The part most relevant to our work is changes in the central 

bank’s inflation objective.  Dossche and Everaert find that inflation persistence is relatively low 

when the central bank is operating in a stable inflation environment and expected inflation is 

well anchored.    They further suggest that during periods when a central bank is most likely to 

be interested in reducing the inflation rate, these two conditions are not likely to hold—inflation 

persistence will be high.    

Hondroyiannis and Lazaretou (2004) investigate changes in inflation persistence in 

Greece from 1975 to 2003.  During that time period, Greece experienced high variation in 

inflation and as well as changes in policy regimes.  Despite the change in regimes and the large 

decline in inflation, Hondroyiannis and Lazaretou find only a small change in inflation 

persistence over that time period.  They further point out, however that much of the persistence 

in the period after the regime change in 1997 was due to the persistent drop in inflation. 

Hondroyiannis and Lazaretou argue that low or declining inflation that is persistent is 

normatively different from rising or high inflation that is persistent.  In other words, a 

persistently good state is desirable while a persistently bad state is not.  

Levin and Piger (2002) measure U.S. inflation persistence over the period 1984-2003.   

They find inflation is highly persistent throughout the period.  Accounting for a break in the 

intercept in the early 1990s, however, inflation persistence declines. 

Pivetta and Reis (2007) (henceforth PR) examine several reduced form measures of 

inflation persistence using multiple techniques, including Bayesian estimation similar to ours.  

                                                           
1 See Angeloni, et al. (2004) for a summary of several of the early papers produced by the IPN team. 
2 Fuhrer (2009) provides an overview of structural models of inflation persistence. 



 

 3

We detail the main differences between our approach and theirs in section 6.  PR find that the 

persistence of inflation in the United States has been high and roughly unchanged since the mid-

1960s. 

 Benati (2008) using time series data for several countries, finds that inflation persistence 

does vary with monetary regimes.  Benati also examines the period prior to the collapse of the 

classical gold standard in 1914.  He reports that inflation persistence was “virtually absent” 

during that early time period.  Benati concludes that inflation persistence is not structural in the 

sense of Lucas (1976), or “intrinsic” as in Levin and Piger (2004). 

 Our paper adds to this literature in several ways.  First, we consider a longer sample than 

either Levin and Piger (2004) or PR (2007).  Second, we use both an AR(1) and AR(3) model of 

inflation for both the Consumer Price Index (CPI) and GDP deflator.  Third, our Bayesian 

framework allows us to discover both the most probable number and location of breaks and from 

there estimate the half-life.  These contributions enhance the current literature that exists on 

inflation persistence. 

3. Inflation Persistence 

 Our measures of inflation are the annualized quarterly percent change of the CPI and the 

GDP deflator.3   The CPI is converted to quarterly observations by simple average prior to 

calculating the inflation rate. 

 Our first measure of persistence is the half-life derived from the first order autoregressive 

coefficient on inflation in the AR(1) model: 

     (1) 

where is the annualized quarterly inflation rate,  is the stochastic error, is the intercept 

and is the autoregressive parameter.  The half-life (HL) of a shock to this equation is 

represented by: 

 

     (2) 

     

 The advantage of the AR(1) is that the half-life is continuous variable.  With higher order 

                                                           
3 The full sample for both series is 1947:1-2011:1.  The GDP deflator vintage is from the April 2011 GDP release. 
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AR or ARMA structures the half-life is derived from the impulse response function and is 

typically defined as the number of periods it takes for the marginal impact of the shock to fall 

below half of its initial impact.4  A potential disadvantage of the AR(1) is that by ignoring higher 

order dynamics, we may be mismeasuring the degree of persistence.  To assess the potential 

mismeasurement, we report (Section 6) the half-life of a shock using an AR(3) model for 

inflation.   

 The autoregressive approach to measuring reduced form inflation persistence has been 

used by many other researchers.  Some of those researchers report the half-life, some report the 

largest autoregressive root, and others report the sum of the autoregressive coefficients.  In 

general, these measures are ordinally equivalent.  Of the various measures, the half-life is the 

most intuitive therefore we report it. 

 A different approach to our reduced-form method is to use structural models to explain 

inflation persistence.  Fuhrer and Moore (1995), Gali and Gertler (1999) and Christiano, 

Eichenbaum and Evans (2005) present models that link current price setting to the past thus 

causing inflation to be persistent.  Fuhrer (2009) summarizes the evidence on the structural 

causes of inflation persistence.  Because our approach is reduced form, we are not able to 

distinguish among the various explanations for inflation persistence.  Our focus is instead on 

whether the reduced form measure of persistence is stable.  As pointed out by Batini (2006), the 

reduced form approach yields a mongrel estimate of persistence that includes the influences of 

monetary policy, the underlying pricing process, and the expectations formation mechanism.  

Thus, a finding that persistence has changed is consistent with any combination of changes in 

these three factors.5  In section 7 we discuss possible connections between changes in the Federal 

Reserve’s operating procedures, and our identified changes in inflation persistence. 

4. Frequentist Results 

 Before applying our Bayesian technique we estimate a baseline set of results using the 

standard frequentist methodology of Bai and Perron (1998) to identify the most likely dates of 

parameter changes.  For both measures of inflation we test for the location(s) of one through four 
                                                           
4 Focusing on the AR(1) model to capture time series dynamics is not without precedent.  Patton and Timmerman 
(2012) and Stock and Watson (2002) argue that low-order autoregressive terms capture much of the dynamics in 
macroeconomic data. 
5 Two studies use changes in inflation dynamics to identify changes in monetary policy regimes.  Kozicki and 
Tinsley (2005) use changes in inflation dynamics to back out changes in the Fed’s monetary policy target.  Beechey 
and Osterholm (2007) use changes in inflation dynamics to back out changes in the Fed’s preferences for output 
stability. 
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breaks.6 

 Results from the frequentist breakpoint test on the AR(1) model of inflation are reported 

in Tables 1 and 2 for GDP deflator inflation and CPI inflation, respectively.  Half-life is 

measured in quarters.  For example, the half-life of a shock to the GDP deflator inflation rate 

pre-1965:2 (Table 1) is 1.131 quarters, which means it takes a little over one quarter for half of 

the effect of a shock to disappear.   

 The AIC and BIC model selection statistics reported suggest which of the models 

minimizes the penalized error sum of squares.  But as is always the case with these statistics, it is 

not clear whether there are statistically significant differences among the various models.  

Therefore, another advantage of the Bayesian approach described in the following section is that 

we are able to use Bayes Factor to make finer distinctions among competing models.    Thus, for 

our discussion of the frequentist results, we do not identify a “best” model with respect to the 

number of breaks. 

Two patterns emerge across the models reported in Tables 1 and 2.  First, inflation 

persistence appears to peak between the late 1960s and early 1990s.  For the CPI inflation rate, 

the peak appears to coincide with the period of the Great Inflation.7  For the GDP deflator 

inflation rate, the peak appears about a decade later in the 1980s.  Second, the break dates are 

similar for the two inflation rates.  Except for the one-break case, the differences in break dates 

across the two inflation rates range from one to four quarters.  And even for the case of one 

break, the confidence intervals around the break dates identified overlap.  Finally, we find that 

inflation persistence is quite low in the most recent sub-samples.  For the GDP deflator inflation 

rate, the half-life is a little over one quarter (1.091 after 1990:3) and for the CPI inflation rate, the 

half life is roughly one-half quarter (.485 after 1990:3).    

5. Bayesian Estimation 

The frequentist results are suggestive of breaks in the degree of inflation persistence over 

the post-World War II period.  But a limiting feature of the frequentist approach is that it treats 

breaks in the model parameters as discrete events whereas a Bayesian approach allows for a 

distribution of possible break dates.  Thus, the Bayesian estimation calculates the probabilities of 

breaks in persistence, which allows for a greater possible variation in the outcomes in the half-
                                                           
6 We use a minimum window of 15% of the data for each sub-period, which reasonably constrains us to a maximum 
number of four breaks over the entire sample. 
7 Orphanides (2002) defines the period of the Great Inflation as the end of 1969 through the end of 1979. 
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life of inflation.  The Bayesian approach also allows for a more direct identification of the “best” 

model using Bayes Factor. 

 Our approach is most closely aligned with PR (2007) but there are several important 

differences.  The most obvious difference is that PR estimate persistence using an AR(3) model.  

We estimate persistence with both the AR(1) and the AR(3).  The more important difference is in 

the priors imposed on the AR parameters.  PR impose prior distributions on both the AR 

parameters and the random error terms as well as include a restriction that there is no unit root.  

We also impose similar priors on our AR parameters, but relax the condition that there could not 

be a unit root.  Another key difference is that PR allow the AR parameters to gradually change 

through time, allowing the AR coefficients to update as new data points were observed whereas 

we calculate half-life before and after each potential break given by the estimation. 

The nature of the estimation procedure for PR’s parameters naturally leads to gradual 

changes in the estimates for the AR parameters.   Alternatively, we assume that the AR 

parameters remain fixed for a given window of data.  This is similar to Pesaran et al. (2005) who 

use a technique similar to ours to forecast T-bill rates.  Instead of focusing on a gradual change 

in the model parameters, we determine breakpoints in time where the nature of the model 

changes.  We assume that there are new regimes dictated by the breakpoints and estimate our AR 

parameters accordingly.  This allows for more sudden changes in the behavior of the AR 

parameters than would generally be estimated if one were to use all previous data points when 

estimating the parameters. 

 When developing our model for inflation persistence, the relationship was modeled 

according to a time-series with a predetermined number of lags, parameterized by a vector of 

parameters  corresponding to the time series and variance coefficients.  However, we do allow 

the distribution of the coefficients to be unstable over time and subject to discrete breaks, 

  This gives rise to K+1 sets of parameters, , corresponding to the K+1 regimes 

indicated by the breaks. 

 Utilizing a Bayesian framework and supposing that there are K discrete breaks in the 

model, we want to obtain information about the joint distribution of the location of the breaks, 

, and the parameters, , associated with each regime j.  We use an informative prior that the 

breaks are centered on the dates identified by the frequentist method in section 4.  We place a 



}.,...,{ 1 K  



j
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uniform prior on the location of each break over an interval .  The width of the uniform 

priors was required to be at least 20 quarters and breaks were restricted from occurring within 15 

quarters of each other.  No breaks were allowed to occur in the first or last ten percent of the 

data.  Subject to these constraints, the results were robust to choice of the prior to the location of 

the break.  

After specifying our prior beliefs about the nature of the location of the breaks, we 

address the parameters of the time series in the K+1 regimes.  Here, we assume that the 

parameters are drawn from common distributions, remaining the same across the entire regime 

and not changing with the addition of each new data point in the regime.  We assume that the 

autoregressive coefficients  with j=1,2,…K+1 are independent draws from a normal 

distribution while the variances are independent identically distributed draws 

specified using a gamma distribution, specifically   Using another level of 

hierarchy, we assume that  and  where W is the Wishart 

distribution and , , and  are all hyperparameters that must be specified a priori.  

The parameters  and  are also assumed to be specified a priori.  

 Under the assumption of K breaks, the posterior distribution of interest is 

 which includes the K+1 regime coefficients and the prior locations and 

scales.  To obtain information about this posterior, we use a Gibbs sampler with 10,000 iterations 

and a burn-in of 5,000 iterations to obtain draws from the full conditional distributions which 

converge to joint posterior.  To do this, we first simulate the locations of the K breaks  

conditional upon the data and the parameters.  Then, we simulate the parameters conditional 

upon the location of the breaks and the data.   

 The first step is to simulate the locations of the breaks, conditional on the knowledge that 

there are K breaks.  The conditional distribution that break  will occur at time point is equal 

to  

                     (3) 

where the sum is over all possible time points for the break to occur.  Since the prior is assumed 
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to be uniform over the interval , this calculation simplifies to calculating the likelihoods 

of the data conditional upon the existing draws for the time series coefficients for each possible 

time location of the break. We obtain the cumulative sum of the ratios of these likelihoods over 

the sum of the likelihoods for the interval of possible break locations.  By drawing a single 

observation from a Uniform[0,1] distribution, we can obtain the updated location of break .  

Thus, while the frequentist results were considered when developing the prior for the location of 

the break, they are not imposed upon the Bayesian results due to the consideration of the 

posterior distribution of the break locations given the other parameters and the random sampling 

of the Gibbs sampler. 

 Now given the set of simulated breaks, the data is partitioned into K+1 regimes.  To 

obtain the conditional distributions of the regression components of the autoregressive model, 

note that conditional distributions of the  are mutually independent with  

              (4) 

with  and  where  is the matrix of 

observations of the predictor variables in the regime j and is the vector of observations of the 

dependent variable in regime j.   

 The densities of the location and scale parameters of the regression coefficients,  and 

can be written as: 

 

                       (5)
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     (6)

 

where  is the number of observations assigned to regime j.  In our case, the location and scale 

parameters for the variance of the autoregressive parameters are specified a priori, but they can 

also be drawn using a Gibbs sampler and Metropolis-Hastings algorithm.   

The Bayesian results are reported in Tables 3 and 4.   We follow Jeffreys (1961) and Kass 

and Rafferty (1995) in using Bayes Factor to select the best-fitting model.  Moving from the least 

complex (fewest number of breaks) to the most we select the model with the largest number of 

breaks for which the Bayes Factor, when comparing this model to the model with one less break, 

still exceeds 10 which corresponds to “strong” evidence for that number of breaks.   For 

example, for GDP deflator inflation persistence comparing the three and two break models the 

Bayes Factor of 10.34 provides “strong” evidence in favor of three breaks.  If we compare the 

four and three break models, the Bayes Factor of 5.75 is “substantial” evidence in favor of four 

breaks, but not “strong” evidence; therefore we select the three break model.8  We follow these 

selection criteria for the remaining models. 

Using the best model according to Bayes Factor9, we compare the frequentist and 

Bayesian results.  For the GDP deflator inflation rate, the breaks are similar except for the first 

break which occurs earlier in the 1960s.  For the CPI inflation rate, both methods find a break in 

the early 1980s but the first break occurs earlier in the sample (early 1960s) and the third break 

occurs later in the sample (early 2000s).   

Again using the best model while comparing the two inflation series under the Bayesian 

estimation we find that the first two breaks are similar—the early 1960s and the early 1980s.  But 

the third break differs across the two series, occurring in the early 1990s for the GDP deflator 

                                                           
8 Kass and Rafferty (1995) define the following ranges for Bayes Factor:  1-3.2, “not worth more than a bare 
mention;” 3.2-10, “substantial;” 10-100, “strong;” and >100 “decisive.” 
9 The best model in the Bayesian AR(1) estimation is the three break model for both GDP deflator inflation and CPI 
inflation. 
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and in the early 2000s for the CPI.  Half-life for both measures of inflation are low (1.1 to 1.5 

quarters) in the early samples, peak during the 1960s and 1970s (6 to 12 quarters) and fall to less 

than one quarter in the most recent sub-samples (.64 to .98 quarters). The patterns are similar to 

those found with the frequentist method. 

6. Results for AR(3)  

As a robustness check, we present results for AR(3) models in Tables 5 through 8.  The 

AR(1) model has the advantage of yielding a closed-form solution for half-life (equation (2)).  

Because the dynamics of the AR(3) are more complicated than the AR(1), we calculate the half-

life of a shock by simulation.  There is also a potential source of ambiguity in measuring the 

half-life in the presence of more complicated dynamics since the AR(3) models allow for 

oscillations in the impulse responses.  We therefore present two measures of half-life.  The first 

measure counts the number of quarters it takes for a shock to first drop below half its initial 

value.  The second measure counts the number of quarters until the shock permanently falls 

below half its initial value.  In the majority of cases, the two measures are identical and in those 

cases where they differ, all but one differs by only one quarter.  

Tables 5 and 6 present the frequentist results for the AR(3) specifications.  For the GDP 

deflator, the break dates mostly coincide with those from the AR(1) model.  In the one break 

model the break occurs in the late 1950s; however, the confidence intervals overlap between the 

AR(1) and AR(3) specifications.  In the three break model, the first break from each 

specification occurs at a similar time but the second and third breaks do not match.  In particular, 

the second break from the AR(1) model aligns with the third break from the AR(3) model. The 

pattern of half-lives for the AR(3) model of the GDP deflator is slightly different from the 

pattern found with the AR(1) model.   The results for all but the four-break model indicate a 

relatively high degree of persistence in the last sub-sample mostly due to the different alignment 

of the breaks.  For the four-break model, the half-life is 1-quarter, which is similar to the four 

break model AR(1) result for the post-1990:3 sub-sample (1.091 quarters). 

In Table 6 we report the persistence for the CPI inflation rate.  The break dates and level 

of persistence are very similar to that found in the AR(1) model.  Persistence peaks during the 

Great Inflation and declines to one quarter in the final sub-sample (1990:3-2011:1). 

The Bayesian results for the AR(3) model are presented in Tables 7 and 8.   Taking 

account of the higher order dynamics does not affect the number of the break dates identified by 
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the Bayesian model.  Using our Bayes Factor cut-off of 10, we find “decisive” or “strong” 

evidence of three breaks of both the CPI and GDP deflator inflation rates, respectively.   

Even though the same number of breaks is preferred, the AR(3) model leads to a different 

set of break dates compared to the AR(1) model.10  For both inflation rates in the Bayesian 

estimation of the three break AR(1) model we find the first break in the early 1960s but for the 

Bayesian estimation of the three break AR(3) model we find the first break in the early 1950s.  

The break date in the early 1950s corresponds to a period of high volatility in both inflation 

series during the Korean War.  Because of its ability to capture higher order dynamics, the AR(3) 

model is more sensitive to changes in the volatility of inflation.   For GDP deflator inflation, the 

second break in the AR(1) model corresponds to the third break in the AR(3) model.  The break 

date in the early 1990s is not identified by the AR(3) model instead an additional break is 

identified in the later 1960s. 

For CPI inflation the third break for both AR models align; however, there is a difference 

in when the second break occurs (early 1970s vs. early 1980s).  Once again this may be picking 

up some changes in volatility that coincided with the Great Inflation.  Nonetheless, the consistent 

result across the two inflation series is that inflation persistence is low (one quarter) in the most 

recent sub-samples (post 1980:3 for the GDP deflator and post 2001:1 for the CPI) and that 

inflation persistence fell from the previous sub-sample. 

7. Summary and Conclusion  

 Based on both the frequentist and Bayesian methods, our results suggest that inflation 

persistence changed significantly over the post-World War II period. In the recent samples, 

inflation persistence since the early 2000’s is low with the half-life of a shock falling in the range 

of one-half to one quarter. 

Benati (2008), Mehra and Reilly (2009) and Conrad and Eife (2012) present evidence 

showing that persistence varies across monetary regimes.  While we do not directly test that 

hypothesis, our results are roughly consistent with theirs.  Figure 1 plots the Bayesian estimates 

of persistence for the AR(1) and AR(3) models with three breaks.   We also list a few key 

dates—the Treasury-Fed Accord in early 1951, the closing of the gold window in late 1971, the 

Volker monetary policy experiment from late 1979 through early 1983 and the onset of the Great 

                                                           
10 The AR(3) model for both the frequentist and Bayesian estimation put the first break earlier than the AR(1) 
models for the GDP deflator. 
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Moderation in early 1984.   Inflation persistence increased during the Great Inflation of the 

1970s and decreased around the time of the Volcker monetary experiment.  We leave it to future 

research to explain why persistence dropped even further after 1990 for the GDP deflator and 

after 2000 for the CPI.  
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Table 1:  GDP Deflator Inflation Persistence  
Endogenous Breakpoints Determined by Frequentist Method 
AR(1) Model 

Zero Break One Break Two Breaks Three Breaks Four Breaks 

Sample Half-Life sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) 
1947:1- 
2011:1 

1.296 
(0.90,2.0) 1947:2-1965:1 

1.131           
(0.65, 2.3) 

1947:2-1966:4 
1.133          

(0.67, 2.2) 
1947:2-1966:4 

1.133           
(0.67, 2.2) 

1947:2-1963:1
1.108            

(0.61, 2.4) 

  
1965:2-2011:1 

5.076           
(3.2, 11.4) 

1967:1-1980:1 
2.795          

 (1.5, 9.9) 
1967:1-1979:4 

2.486           
 (1.3, 9.0) 

1963:1-1972:1
4.335            

(1.8, ) 

  

  
1980:2-2011:1 

1.963          
(1.2, 4.1) 

1980:4-1990:3 
6.76            

(2.7, ) 
1972:2-1981:2

2.071            
(0.97, 11.6) 

  

    
1990:4-2011:1 

1.091           
(0.65, 2.1) 

1981:3-1990:3
10.942           

(3.4, ) 

  

      
1990:3-2011:1

1.091            
(0.65, 2.1) 

Break Dates 
(Confidence Intervals) 

N/A 1965:2 
(1963:2, 1978:4) 

1967:1 
(1966:1, 1973:2) 

1967:1  
(1966:1, 1973:3) 

1963:1 
(1959:3, 1987:1) 

  

  
1980:2 

(1980:2, 1984:1) 
1980:4 

(1978:2, 1984:2) 
1972:2 

(1969:4, 1974:2) 

  

    
1990:4 

(1983:3, 1993:2) 
1981:3 

(1980:3, 1982:4) 

  

      
1990:4 

(1985:2, 1994:2) 

  

        

AIC: 969.82 952.94 942.92 944.25 946.75 

BIC: 980.42 974.14 974.72 986.65 999.75 

Note: The 95% confidence intervals, shown in parentheses, were calculated by bootstrap simulation.  






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Table 2:  CPI Inflation Persistence  
Endogenous Breakpoints Determined by Frequentist Method 
AR(1) Model 

Zero Break One Break Two Breaks Three Breaks Four Breaks 

Sample Half-Life sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) sub-samples 

Half-Life 
(Confidence 

Interval) 
1947:1- 
2011:1 

1.376 
(0.96, 2.1) 1947:2-1981:1 

3.78 
(2.2, 10.2) 

1947:2-1966:3 
1.346 

(0.79, 2.77) 
1947:2-1966:3 

1.346 
(0.79, 2.77) 

1947:2-   
1962:3 

1.337 
(0.74, 3.09) 

  
1981:2-2011:1 

.976 
(.64, 1.59) 

1966:4-1981:1 
9.529 

(3.5, ) 
1966:4-1981:1 

9.529 
(3.504, ) 

1963:4- 1971:4
4.430 

(1.87, ) 

  

  
1981:2-2011:1 

0.976 
(0.64, 1.59) 

1981:2-1990:2 
1.658 

(0.79, 6.57) 
1972:1- 1981:1

7.655 
(2.61, ) 

  

    
1990:3-2011:1 

0.485 
(0.21, 0.85) 

1981:2- 1990:2
1.658 

(0.79, 6.57) 

  

      
1990:3-  2011:1

0.485 
(0.21, 0.85) 

Break Dates 
(Confidence Intervals) 

N/A 1981:2 
(1974:2, 1981:2) 

1966:4 
(1965:4, 1974:1) 

1966:4 
(1965:4, 1974:1) 

1962:4 
(1961:1, 1982:3) 

  

 
1981:2 

(1976:3, 1982:1) 
1981:2 

(1977:1, 1982:3) 
1972:1 

(1965:2, 1972:4) 

  

    
1990:3 

(1981:3, 1995:3) 
1981:2 

(1978:4, 1982:2) 

  

      
1990:3 

(1981:3, 1995:3) 

  

        

AIC: 1151.88 
 

1131.25 1111.05 1109.05 1112.41 

BIC: 1162.48 1152.45 1142.85 1151.46 1165.41 

Note: The 95% confidence intervals, shown in parentheses, were calculated by bootstrap simulation.  

  


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Table 3:  GDP Deflator Inflation Persistence  
Endogenous Breakpoints Determined by Bayesian Method 
AR(1) Model 
 

One Break Two Breaks Three Breaks Four Breaks 

sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

1947:2-1951:2 
4.063 

(0.451,7.484) 1947:2-1962:1 
1.272 

(0.642, 2.437) 1947:2-1962:1 
1.120 

(0.672, 2.170) 1947:2-1956:4 
1.345 

(0.611, 3.394) 

1951:3-2011:1 
5.546 

(3.235,10.012) 
1962:2-1982:2 

5.545 
(2.535, 14.874) 1962:2-1980:4 

5.918 
(2.434, 14.098) 1957:1-1969:3 

4.432 
(1.377, 15.974) 

  
1982:3-2011:1 

1.484 
(0.836, 2.757) 1981:1-1990:4 

1.865 
(0.686, 3.963) 1969:4-1980:4 

4.139 
(1.541. 13.359) 

    
1991:1-2011:1 

0.984 
(0.561, 1.621) 1981:1-1990:2 

1.772 
(0.611, 4.336) 

      
1990:3-2011:1 

1.023 
(0.524, 1.943) 

Break Dates 
(Credible Intervals) 

1951:3 
 (1951:3, 1952:3) 

1962:2 
 (1961:4, 1964:2) 

1962:2 
 (1961:4, 1964:4) 

1957:1 
 (1956:4, 1958:2) 

  1982:3 
 (1980:3, 1985:3) 

1981:1 
 (1980:2, 1982:4) 

1969:4 
 (1969:2, 1971:2) 

    1991:1 
 (1986:2, 1994:1) 

1981:1 
(1980:2, 1982:3) 

    

 

 1990:3 
 (1984:3, 1994:2) 

Bayes Factors: 1 break vs. 0 
 

2 breaks vs. 1 break 
 

3 breaks vs. 2 breaks 
 

4 breaks vs. 3 breaks 

 
>10,000 

 
3010 

 
10.34 

 
5.75 

Note: The 95% confidence intervals, shown in parentheses, were calculated by bootstrap simulation.  
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Table 4:  CPI Inflation Persistence  
Endogenous Breakpoints Determined by Bayesian Method 
AR(1) Model 
 

One Break Two Breaks Three Breaks Four Breaks 

sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

1947:2-1983:1 
3.482 

(2.018,7.074) 1947:2-1960:1 
1.598 

(0.784, 3.696) 1947:2-1960:1 
1.534 

(0.727, 3.182) 1947:2-1957:3 
1.552 

(0.707, 3.431) 

1983:2-2011:1 
0.652 

(0.312,1.059) 1960:2-1979:3 
16.965 

(3.636, ) 1960:2-1980:1 
11.982 

(3.215, ) 1957:4-1971:3 
2.583 

(1.113, 6.315) 

  
1979:4-2011:1 

1.311 
(0.439, 2.313) 1980:2-2002:2 

1.793 
(0.688, 3.854) 1971:4-1982:1 

6.043 
(1.746, 15.395) 

    
2002:3-2011:1 

0.641 
(0.207, 1.482) 1982:2-2001:4 

1.137 
(0.624, 2.047) 

      
2002:1-2011:1 

0.545 
(0.166, 1.257) 

Break Dates 
(Credible Intervals) 

1983:2 
 (1981:1, 1991:4) 

1960:2 
 (1959:2, 1961:4) 

1960:2 
 (1959:2, 1961:4) 

1957:4 
 (1956:4, 1960:3) 

  1979:4 
 (1979:1, 1981:1) 

1980:2 
 (1978:4, 1983:3) 

1971:4 
(1969:1, 1973:1) 

    2002:3 
 (2000:3, 2004:2) 

1982:2 
(1981:1, 1984:1) 

    

 

 2002:1 
 (2000:1, 2002:4) 

Bayes Factors: 1 break vs. 0 
 

2 breaks vs. 1 break 
 

3 breaks vs. 2 breaks 
 

4 breaks vs. 3 breaks 

 
>10,000 

 
>10,000 

 
54.39 

 
3.76 

Note: The 95% confidence intervals, shown in parentheses, were calculated by bootstrap simulation.  

 
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Table 5:  GDP Deflator Inflation Persistence  
Endogenous Breakpoints Determined by Frequentist Method 
AR(3) Model 
 

Zero Break One Break Two Breaks Three Breaks Four Breaks 

sample Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

 First 
crossing 

Last 
crossing  

First 
crossing

Last 
crossing  

First 
crossing

Last 
crossing  

First 
crossing

Last 
crossing  

First 
crossing

Last 
crossing

1947:1- 
2011:1 

3 3 1947:2-
1958:3 

1 1 1947:2-
1966:4 

1 1 1947:2-
1966:4 

1 1 1947:2-
1962:4 

1 1 

   1958:4-
2011:1 

5 5 1967:1-
1980:3 

3 3 1967:1-
1972:1 

2 5 1963:1-
1972:1 

2 5 

   

 

 

 
1980:4-
2011:1 

7 7 1972:2-
1981:2 

3 3 1972:2-
1981:2 

3 3 

   

 

 

  

 

 
1981:3-
2011:1 

13 13 1981:3-
1990:3 

16 16 

   

 

 

  

 

  

 

 
1990:4-
2011:1 

1 1 

Break Dates 
(Confidence Intervals) 

N/A 1958:4 
(1957:1, 1974:2) 

1967:1 
(1966:1, 1974:1) 

1963:1 
(1961:1, 1971:2) 

1963:1 
(1961:1, 1971:2) 

   
   

1980:4 
(1978:3, 1983:2) 

1972:2 
(1969:4, 1973:2) 

1972:2 
(1969:4, 1973:2) 

   
      

1981:3 
(1980:4, 1983:1) 

1981:3 
(1980:4, 1982:4) 

   
       

1990:4 
(1982:2, 1996:1) 

   
          

 
  

AIC: 958.88 949.82 943.68 946.06 953.53 

BIC: 976.54 985.16 996.68 1016.72 1041.86 

Column labeled first crossing denotes when the shock first dissipates below ½ and column labeled last crossing denotes when the shock remains below ½.  Half-life is measured in 
quarters.
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Table 6:  CPI Inflation Persistence  
Endogenous Breakpoints Determined by Frequentist Method 
AR(3) Model 
 

Zero Break One Break Two Breaks Three Breaks Four Breaks 

sample Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

 
First 

crossing 
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing

1947:1- 
2011:1 

2 2 1947:2-
1981:1 

5 5 1947:2-
1966:3 

2 2 1947:2-
1966:3 

2 2 1947:2-
1959:3 

2 2 

   1982:2-
2011:1 

1 1 1966:4-
1981:1 

9 9 1966:4-
1979:4 

5 5 1959:4-
1971:4 

1 3 

   

 

 

 
1981:2-
2011:1 

1 1 1980:1-
1990:2 

2 2 1972:1-
1981:1 

7 7 

   

 

 

  

 

 
1990:3-
2011:1 

1 1 1981:2-
1990:2 

2 2 

   

 

 

  

 

  

 

 
1990:3-
2011:1 

1 1 

Break Dates 
(Confidence Intervals) 

N/A 1981:2 
(1971:4, 1984:3) 

1966:4        
(1965:4, 1975:2) 

1966:4      
 (1966:1, 1975:3) 

1959:4      
 (1958:3, 1968:2) 

   

   
 

1981:2 
(1975:2, 1982:1) 

1980:1      
 (1975:3, 1981:4) 

1972:1       
(1967:1, 1972:4) 

   

    
    

1990:3       
(1982:2, 1991:4) 

1981:2       
(1979:1, 1982:2) 

   
          

1990:3      
 (1981:4, 1993:2) 

   
              

 
  

AIC: 1137.75 1127.43 1114.09 1112.76 1120.16 

BIC: 1155.42 1162.76 1167.09 1183.43 1208.50 

Column labeled first crossing denotes when the shock first dissipates below ½ and column labeled last crossing denotes when the shock remains below ½.  Half-life is measured in 
quarters.  
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Table 7:  GDP Deflator Inflation Persistence  
Endogenous Breakpoints Determined by Bayesian Method 
AR(3) Model 
 

One Break Two Breaks Three Breaks Four Breaks 

sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

 
First 

crossing 
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing

1947:2-
1951:3 

1 2 1947:2-
1951:3 

1 2 1947:2-
1951:4 

1 2 1947:2-
1952:1 

1 2 

1951:4-
2011:1 

5 5 1951:4-
1980:2 

8 8 1952:1-
1968:4 

3 4 1952:2-
1969:1 

3 4 

 
 

 
1980:3-
2011:1 

1 1 1969:1-
1980:2 

4 5 1969:2-
1980:2 

4 5 

 
 

  
 

 
1980:3-
2011:1 

1 1 1980:3-
2002:1 

1 1 

 
 

  
 

  
 

 
2002:2-
2011:1 

1 1 

Break Dates 
(Credible Intervals) 

1951:4 
(1951:4, 1952:3) 

1951:4 
(1951:4-1952:4) 

1952:1 
(1951:4, 1952:4) 

1952:2 
(1951:4, 1952:4) 

   
1980:3 

(1980:2-1999:4) 
1969:1 

(1968:1, 1971:2) 
1969:2 

(1968:1, 1971:2) 

      1980:3 
(1980:2, 1981:4) 

1980:3 
(1980:3, 1983:3) 

       
2002:2 

(1990:1, 2003:1) 

Bayes 
Factors: 

1 break vs. 0 2 breaks vs. 1 break 3 breaks vs. 2 breaks 4 breaks vs. 3 breaks 

 >10,000 3198 45.25 3.54 
Column labeled first crossing denotes when the shock first dissipates below ½ and column labeled last crossing denotes when the shock remains below ½.  Half-life is measured in 
quarters. 
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Table 8:  CPI Inflation Persistence  
Endogenous Breakpoints Determined by Bayesian Method 
AR(3) Model 
 

One Break Two Breaks Three Breaks Four Breaks 

sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life sub-samples Half-Life 

 
First 

crossing 
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing  
First 

crossing
Last 

crossing

1947:2-
1959:4 

2 2 1947:2-
1951:3 

2 2 1947:2-
1951:4 

2 2 1947:2-
1951:3 

2 2 

1960:1-
2011:1 

2 2 1951:4-
1980:4 

2 6 1952:1-
1971:4 

1 3 1951:4-
1971:4 

1 2 

 
 

 
1981:1-
2011:1 

1 1 1972:1-
2000:4 

2 5 1972:1-
1981:1 

2 5 

 
 

  
 

 
2001:1-
2011:1 

1 1 1981:2-
2002:1 

1 1 

 
 

  
 

  
 

 
2002:2-
2011:1 

1 1 

Break Dates 
(Credible Intervals) 

1960:1 
(1959:2-1962:2) 

1951:4 
(1951:4-1952:4) 

1952:1 
(1951:4-1953:1) 

1951:4 
(1951:4, 1952:4) 

   
1981:1 

(1979:3-2001:1) 
1972:1 

(1968:3-1974:1) 
1972:1 

(1970:3, 1973:3) 

      
2001:1 

(1998:4-2001:4) 
1981:2 

(1979:3, 1983:4) 

       
2002:2 

(2000:3, 2002:4) 

Bayes 
Factors: 

1 break vs. 0 2 breaks vs. 1 break 3 breaks vs. 2 breaks 4 breaks vs. 3 breaks 

 >10,000 >10,000 288.46 3.67 
Column labeled first crossing denotes when the shock first dissipates below ½ and column labeled last crossing denotes when the shock remains below ½.  Half-life is measured in 
quarters.
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Figure 1:  Bayesian Estimates of Inflation Persistence  
 

 
 
Notes: 
TFA:  Treasury-Fed Accord (1951:Q1) 
CGW: Closing of the Gold Window (1971:Q3) 
VME:  Volcker Monetary Experiment (1979Q4-1983:Q1) 
OGM:  Onset of the Great Moderation (1984:Q1) 
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