A Study of a New Curriculum: The Effect of Easton Weed and Seed’s 'Summer Nights' Program on Summer Learning Loss

Shannon Nitroy

Advisers: Chris Ruebeck, Lafayette College Department of Economics
Jeff Liebner, Lafayette College Department of Mathematics

ABSTRACT

Summer learning loss describes students’ tendencies during summer vacation to forget material learned during the previous school year. Easton Weed and Seed’s 2013 Summer Nights program included a curriculum component intended to reduce attendees’ summer learning loss. My thesis analyzes DIBELS test score data from the Easton School District to determine whether this curriculum helped reduce summer learning loss. While the sample size was small, I was able to use several statistical methods to compare results for Summer Nights attendees to those of other Paxinosa students. I also look at factors that are associated with repeat attendance, such as characteristics of curriculum activities and distance of student’s home from Centennial Park. Finally, I discuss the challenges of data collection in a community setting and use this to provide ideas for further research.

RESULTS

These graphs suggest that summer learning loss is occurring in the sample. Each grade has a higher maximum score than the previous one on the DIBELS scale. If students’ reading proficiency all progressed as they should, the other graphs would look like Grade 1 but shifted to the right. The flattening of the curves tells us that some students progress while others continue to score on the lower end. The red lines mark the three benchmark levels.

LIKELIHOOD OF ATTENDANCE

Students are more likely to attend the program again after they attend once. The probability of any given Paxinosa student attending Summer Nights one night is

\[
\text{Likelihood of Attendance} = \frac{\text{(number of attendances)}}{\text{(number of possible attendances)}}
\]

The probability of a student attending again after attending once is modeled solving for \(p \) in the following binomial distribution:

\[
\text{Likelihood of Returning} = \binom{n}{x} p^x (1-p)^{n-x}
\]

where \(x \) is the number of attendances by student \(i \) after the first attendance, and \(y \) is the number of days not attended by student \(i \) after the first attendance. A computer program finds the solution to be 0.124, or 12.4%, which is much higher than the probability of random attendance.

CONCLUSIONS

• It is difficult to come to a conclusion about Summer Night’s effect on Paxinosa students’ learning loss due to small sample size
• Students that attended Summer Nights are more likely to stay at the same benchmark levels from spring to fall
• Paxinosa students at the below benchmark designation are slightly more likely to move up in benchmark
• Those who attend Summer Nights at least once have a higher likelihood of returning

FUTURE STUDIES

• Improve attendance measures
• Focus on measuring Summer Nights’ impact on Family Assets
• Program is moving indoors to Easton Area Community Center, could examine difference in effect due to this change