Simulating oligopoly to enhance student learning

Christopher S. Ruebeck Lafayette College

Introduction

How well do students understand price theory, market power, strategic interaction, and oligopoly theory? We describe Virtual Corporate Reality (VCR), an extra-classroom activity designed to engage students' contemplation of and experience with these ideas. Students compete in teams over the course of the semester in a price and location game based on Salop's (1979) circular city. Our experience is that VCR increases students' internalization of concepts such as sunk cost, bestresponse, Nash equilibrium, differentiated products, and even concepts as seemingly straightforward as pricing above marginal cost. They find it both entertaining and edifying, and come to class better prepared to understand the assumptions, structure, and predictions of oligopoly theory. Students receive significant feedback on their success at mastering and internalizing these concepts.

Learning objectives

Understand the profit incentive

- Effect of price changes on revenues
- Cost/benefit of investment decisions
- Sunk cost of past decisions
- $P>$ MC for firms with market power
- Other firms' losses not always your firm's gain

Understand details of product differentiation
Anticipate others' strategic decisions
Understand the intuition behind the theory

- Best response
- Nash equilibrium

Communicate insights in writing.
Work as a team

Finances

Along with one product, each team starts the game endowed with $\$ 25,000,000$. Each period, the team is charged as follows:
[+] 5% interest on period's cash balance
[+] revenue on all the firm's products
[-] cost of firm's production
[-] cost-reducing investment
[-] \# of product introductions x \$5,000,000
[+] \# of products withdrawn x \$1,000,000
[-] \# of product relocations x $\$ 2,500,000$
[+/-] Other sales or purchases (auctions)

Overview of the game

Student teams are endowed with one product, located evenly around the unit circle. During each period, they make decisions on price(s) for existing products, invest in cost-reducing innovation, and can introduce, withdraw, or relocate products. The game is deterministic, like chess, and go. Anti-trust laws apply: students are warned that collusion is equivalent to cheating, with similar punishments.

In the example pictured above, there are four teams, each initially endowed with a product spaced evenly around the unit circle ($0 / 1,0.25,0.5,0.75$). Each team has announced a price for their existing products (shown inside the circle), and two product introductions have been made at 0.80 and 0.625 .

There are no loans, no bankruptcy law.

Specifying the market

Consumers are uniformly distributed over the circle. Each buys one unit, the one providing the highest net surplus. A consumer's willingness to pay decreases in distance to the product. As compared to the line model of Hotelling (1929), the circle avoids the asymmetries created by the space having boundaries.

Consumers' decision

When $p_{v y}=p_{y}$, a customer at x prefers the product at w because it is closer to $x: d(w, x)$ $=1.01-0.9=0.11<0.19=0.2-0.01=d(y, x)$. If $p_{w} \neq p_{y,}$, then the customer's choice takes this into account: if the price of product y is enough lower than the price of product w, then the customer at x will instead prefer y.

Total market demand

with n products
$s=-110,000+120,000 \cdot n-1,500 \cdot n^{2}$

Costs

Fixed cost per location per period: \$500,000.
Marginal cost:

$$
M C=\$ 50 \cdot \frac{50,000,000}{X+50,000,000}
$$

X : product-specific cost-reducing investment

- particular to a product \& irreversible (sunk)
- private information

Producer's demand

From the locations of u and v in this example, we can see that $p_{y}<p_{x}$ because more customers between y and x buy product y, and $p_{y}>p_{z}$ because more customers between z and y buy product z.

Playing the game

In each period, a firm decides what price to set for each existing product, how much to invest in reducing each one's marginal cost, whether to introduce products (at a fixed cost), and whether to withdraw products (which can be relocated elsewhere). In deciding on investment and product introductions, a firm is constrained to finance it through cash.

The product introduction interface.

Investigating hypothetical scenarios

Publicly available decisions history, shown here for the most recent period

Student reactions

Students may need to unlearn mistaken preconceptions before learning new ideas and new models (Bain 2004). An attractive complement to the usual lecture format is for students to experience those concepts through decision making in a simulated environment. Classroom demonstrations and simulated markets help students learn economic concepts first-hand by making decisions with the intent to achieve some economic objective such as maximizing profit.
"... owning a company is much harder than I had assumed."
"The experience has better prepared us to cooperate with others while exercising key decision making skills."
"Despite the fact that we [the members of the group] are all friends, we still managed to battle about ideas and theories."
"This project prepares us for when we do make mistakes. Mistakes are kind of like sunk costs, and this project has helped to realize we have to find another method to fix the mistakes, or start from where we left off and find the best decision there before moving forward."
"... we invested a lot of money early on. It seems as though some groups didn't catch on to this as quickly. While they had a lot of cash, they were not making any profits."
"... VCR provided me with an opportunity to try and use the economics that we have learned"
"It also helped in playing the game, when we were talking about game theory in class."
"The really interesting aspect of the game was that we were introduced to new concepts of Industrial Organization without even realizing it. It was a real life abstract challenge that I always frequently contemplated in my head. It also gave a different 'spin' to homework.'.

"VCR should be played by everyone majoring in this department."

References

Hotelling, Harold (1929), "Stability in Competition," Economic Journal 39 p41-57.
Bain, Ken (2004) What the Best College Teachers Do, Cambridge, Mass: Harvard University Press.
Salop, Steven (1979) "Monopolistic Competition with Outside Goods", The Bell Journal of Economics 10(1): 141-156.

Value of firms over time
Want to learn more? Get the paper here. http://sites.lafayette.edu/ruebeckc/vcr/

Want to play? Contact us here.

