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UNIAXIAL STRESS-STRAIN
Stress-Strain Curve for Mild Steel
♦ 

The slope of the linear portion of the curve equals the  
modulus of elasticity.

DEFINITIONS
Engineering Strain

ε = ∆L/Lo, where
ε = engineering strain (units per unit)
∆L = change in length (units) of member
Lo = original length (units) of member

Percent Elongation
% Elongation = L
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Percent Reduction in Area (RA)
The % reduction in area from initial area, Ai, to final area,  
Af , is:
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Shear Stress-Strain
γ = τ/G, where

γ = shear strain

τ = shear stress
G = shear modulus (constant in linear torsion-rotation 

relationship)
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E = modulus of elasticity (Young's modulus)
v = Poisson's ratio
 = – (lateral strain)/(longitudinal strain)
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MECHANICS OF MATERIALS

Uniaxial Loading and Deformation
σ = P/A, where

σ = stress on the cross section
P = loading
A = cross-sectional area

ε = δ/L, where
δ = elastic longitudinal deformation
L = length of member
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True stress is load divided by actual cross-sectional area 
whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS
δt = αL(T – To), where

δt = deformation caused by a change in temperature
α = temperature coefficient of expansion
L = length of member

T = final temperature
To = initial temperature

CYLINDRICAL PRESSURE VESSEL
Cylindrical Pressure Vessel
For internal pressure only, the stresses at the inside wall are:
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For external pressure only, the stresses at the outside wall are:
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σt = tangential (hoop) stress
σr = radial stress
Pi = internal pressure
Po = external pressure
ri = inside radius
ro = outside radius
For vessels with end caps, the axial stress is:
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σt, σr, and σa are principal stresses.

♦ Flinn, Richard A., and Paul K. Trojan, Engineering Materials & Their Applications,  
4th ed., Houghton Mifflin Co., Boston, 1990.
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When the thickness of the cylinder wall is about one-tenth or 
less of inside radius, the cylinder can be considered as thin-
walled. In which case, the internal pressure is resisted by the 
hoop stress and the axial stress.
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STRESS AND STRAIN
Principal Stresses
For the special case of a two-dimensional stress state, the 
equations for principal stress reduce to
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The two nonzero values calculated from this equation are 
temporarily labeled σa and σb and the third value σc is always 
zero in this case. Depending on their values, the three roots are 
then labeled according to the convention:
algebraically largest = σ1, algebraically smallest = σ3,  
other = σ2. A typical 2D stress element is shown below with 
all indicated components shown in their positive sense.
♦

Mohr's Circle – Stress, 2D
To construct a Mohr's circle, the following sign conventions 
are used.
1. Tensile normal stress components are plotted on the 

horizontal axis and are considered positive. Compressive 
normal stress components are negative.

2. For constructing Mohr's circle only, shearing stresses 
are plotted above the normal stress axis when the pair of 
shearing stresses, acting on opposite and parallel faces of 
an element, forms a clockwise couple. Shearing stresses 
are plotted below the normal axis when the shear stresses 
form a counterclockwise couple.

The circle drawn with the center on the normal stress 
(horizontal) axis with center, C, and radius, R, where
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The two nonzero principal stresses are then:
♦ 
 
 σa = C + R
 σb = C – R

The maximum inplane shear stress is τin = R. However, the 
maximum shear stress considering three dimensions is always 
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Hooke's Law
Three-dimensional case:

εx = (1/E)[σx – v(σy+ σz)]  γxy = τxy /G

εy = (1/E)[σy – v(σz+ σx)]  γyz = τyz /G

εz = (1/E)[σz – v(σx+ σy)]  γzx = τzx /G

Plane stress case (σz = 0): 
εx = (1/E)(σx – vσy) 
εy = (1/E)(σy – vσx)
εz = – (1/E)(vσx + vσy)

Uniaxial case (σy = σz = 0):  σx = Eεx or σ = Eε, where
εx, εy, εz = normal strain
σx, σy, σz = normal stress
γxy, γyz, γzx = shear strain
τxy, τyz, τzx = shear stress
E = modulus of elasticity
G = shear modulus
v = Poisson's ratio

♦ Crandall, S.H., and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill,  
New York, 1959.
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TORSION
Torsion stress in circular solid or thick-walled (t > 0.1 r) 
shafts:

J
Tr=x

where J = polar moment of inertia

TORSIONAL STRAIN
limit / /r z r d dz
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The shear strain varies in direct proportion to the radius, from 
zero strain at the center to the greatest strain at the outside of 
the shaft. dφ/dz is the twist per unit length or the rate of twist.
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φ = total angle (radians) of twist
T = torque
L = length of shaft

T/φ gives the twisting moment per radian of twist. This is 
called the torsional stiffness and is often denoted by the 
symbol k or c.
For Hollow, Thin-Walled Shafts
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t = thickness of shaft wall
Am = the total mean area enclosed by the shaft measured to  

 the midpoint of the wall.

BEAMS
Shearing Force and Bending Moment Sign Conventions
1. The bending moment is positive if it produces bending of 

the beam concave upward (compression in top fibers and 
tension in bottom fibers).

2. The shearing force is positive if the right portion of the 
beam tends to shear downward with respect to the left.

♦ 

The relationship between the load (w), shear (V), and moment 
(M) equations are:
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M M V x dx

x

x

x

x

2 1

2 1

1

2

1

2

=-

=

- = -

- =

^ ^

^

^
^

h h

h

h
h

7 A#

#

Stresses in Beams
The normal stress in a beam due to bending:

σx = –My/I, where
M = the moment at the section
I = the moment of inertia of the cross section
y = the distance from the neutral axis to the fiber location       

above or below the neutral axis

The maximum normal stresses in a beam due to bending:
σx = ± Mc/I, where

c = distance from the neutral axis to the outermost fiber   
of a symmetrical beam section.

σx = –M/s, where
s = I/c: the elastic section modulus of the beam.
Transverse shear stress:

τxy = VQ/(Ib), where
V = shear force

Q = A yl l, where
A′ = area above the layer (or plane) upon which the   

   desired transverse shear stress acts
yl = distance from neutral axis to area centroid
B = width or thickness or the cross-section
Transverse shear flow:

q = VQ/I

♦ Timoshenko, S., and Gleason H. MacCullough, Elements of Strengths of Materials,  
K. Van Nostrand Co./Wadsworth Publishing Co., 1949.

POSITIVE BENDING NEGATIVE BENDING

NEGATIVE SHEARPOSITIVE SHEAR
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Deflection of Beams
Using 1/ρ = M/(EI),
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Determine the deflection curve equation by double integration 
(apply boundary conditions applicable to the deflection and/or 
slope).

EI (dy/dx) = ∫M(x) dx

EIy = ∫[ ∫M(x) dx] dx
The constants of integration can be determined from the 
physical geometry of the beam.
Composite Sections
The bending stresses in a beam composed of dissimilar 
materials (material 1 and material 2) where E1 > E2 are:

σ1 = −nMy/IT

σ2 = −My/IT , where

IT  = the moment of intertia of the transformed section
n  = the modular ratio E1/E2

E1 = elastic modulus of material 1
E2 = elastic modulus of material 2

The composite section is transformed into a section composed 
of a single material. The centroid and then the moment of 
inertia are found on the transformed section for use in the 
bending stress equations.

COMPOSITE
SECTION

MATERIAL 1

MATERIAL 2

E1, A1

E2, A2

b

E2, A2

E2, nA1

TRANSFORMED
SECTION

b
nb

NEUTRAL
AXIS

COLUMNS
Critical axial load for long column subject to buckling:
Euler's Formula

,P
K
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,   = unbraced column length
K  = effective-length factor to account for end supports

Theoretical effective-length factors for columns include:
Pinned-pinned, K = 1.0
Fixed-fixed, K = 0.5
Fixed-pinned, K = 0.7
Fixed-free, K = 2.0

Critical buckling stress for long columns:
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r  = radius of gyration /I A

/K r,  = effective slenderness ratio for the column

ELASTIC STRAIN ENERGY
If the strain remains within the elastic limit, the work done 
during deflection (extension) of a member will be transformed 
into potential energy and can be recovered.
If the final load is P and the corresponding elongation of a 
tension member is δ, then the total energy U stored is equal to 
the work W done during loading.

U = W = Pδ/2

The strain energy per unit volume is
u = U/AL = σ2/2E  (for tension)
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MATERIAL PROPERTIES

Table 1 - Typical Material Properties
(Use these values if the specific alloy and temper are not listed on Table 2 below)

Steel
Aluminum
Cast Iron
Wood (Fir)
Brass
Copper
Bronze
Magnesium
Glass
Polystyrene
Polyvinyl Chloride (PVC)
Alumina Fiber
Aramide Fiber
Boron Fiber
Beryllium Fiber
BeO Fiber
Carbon Fiber
Silicon Carbide Fiber

Material
Modulus of 
Elasticity, E

[Mpsi (GPa)]

29.0 (200.0)
10.0 (69.0)

14.5 (100.0)
1.6 (11.0)

14.8−18.1 (102−125)
17 (117)

13.9−17.4 (96−120)
6.5 (45)

10.2 (70)
0.3 (2)

<0.6 (<4)
58 (400)

18.1 (125)
58 (400)

43.5 (300)
58 (400)

101.5 (700)
58 (400)

Modulus of Rigity, G
[Mpsi (GPa)]

11.5 (80.0)
3.8 (26.0)
6.0 (41.4)
0.6 (4.1)
5.8 (40)
6.5 (45)
6.5 (45)

2.4 (16.5)
−
−
−
−
−
−
−
−
−
−

Poisson's Ratio, v

0.30
0.33
0.21
0.33
0.33
0.36
0.34
0.35
0.22
0.34

−
−
−
−
−
−
−
−

Coefficient of Thermal
Expansion, α

[10−6/ºF (10−6/ºC)]

6.5 (11.7)
13.1 (23.6)
6.7 (12.1)
1.7 (3.0)

10.4 (18.7)
9.3 (16.6)
10.0 (18.0)

14 (25)
5.0 (9.0)

38.9 (70.0)
28.0 (50.4)

−
−
−
−
−
−
−

Density, ρ
[lb/in3 (Mg/m3)]

0.282 (7.8)
0.098 (2.7)

0.246−0.282 (6.8−7.8)
−

0.303−0.313 (8.4−8.7)
0.322 (8.9)

0.278−0.314 (7.7−8.7)
0.061 (1.7)
0.090 (2.5)
0.038 (1.05)
0.047 (1.3)
0.141 (3.9)
0.047 (1.3)
0.083 (2.3)
0.069 (1.9)
0.108 (3.0)
0.083 (2.3)
0.116 (3.2)

Table 2 - Average Mechanical Properties of Typical Engineering Materials
(U.S. Customary Units)

(Use these values for the specific alloys and temperature listed. For all other materials refer to Table 1 above.)

Materials

Metallic

Aluminum
Wrought Alloys

2014-T6 0.101
0.098
0.260
0.263
0.316
0.319

0.066

0.284
0.284
0.295

0.160

0.086
0.086

0.0524
0.0524

0.017

a

b

c

d
e

0.130

3.20
4.20

19.0
10.5

1.90
1.40

—
—

—

—

—

—

—
—

—

—

—

—

—
—

—

—

—

—

—
—

2.8
—

—

—

0.15
0.15

0.34
0.34

0.29c

0.31c

6.0
6.0

—

—

—

—

—
—

10.2
—

0.90d

0.97d

1.8
5.5

—

—

—

—

—
—

104
13

0.30c

0.36c

—
—

70
19

3.78d

5.18d

10.6
10.0
10.0
25.0
14.6
15.0

6.48

29.0
28.0
29.0

17.4

3.9
3.7
3.9
9.8
5.4
5.6

2.5

11.0
11.0
11.0

6.4

60
37
—

—

11.4
50

22

36
30
102

134

60
37
—

—

11.4
50

22

36
30
102

134

25
19
—

—

—

—

—

—

—

—

—

—

—

—

—

22

—

—

—

—

68
42
26
40
35
95

40

58
75
116

145

68
42

42
27

0.6
5
35
20

1

30
40
22

16

10
12

0.28
0.28
0.35
0.34

0.30

0.32
0.27
0.32

0.36

0.35
0.35

6.70
6.60
9.80
9.60

14.3

6.60
9.60
6.50

5.20

12.8
13.1

97
83
35
95

40

58
75
116

145

6061-T6

Specific
Weight 

Modulus of
Elasticity E

Modulus of
Rigidity G

Yield Strength (ksi) Ultimate Strength (ksi)
% Elongation in
2 in. specimen

Poisson's
Ratio v

Coef. of Therm.
Expansion α

Tens. Comp. Shear Tens. Comp. Shear
σy σu

(lb/in3) (103 ksi)
γ

(10−6)/°F

Nonmetallic

Concrete

Titanium
Alloy

Plastic
Reinforced

Low Strength

Structural A36

Gray ASTM 20
Malleable ASTM A-197

Red Brass C83400
Bronze C86100

Steel
Alloys

Magnesium
Alloy

Copper
Alloys

Cast Iron
Alloys

[ Ti-6Al-4V]

[ Am 1004-T611]

Stainless 304
Tool L2

High Strength

Kevlar 49
30% Glass

Wood

Grade
Select Structural

Douglas Fir
White Spruce

SPECIFIC VALUES MAY VARY FOR A PARTICULAR MATERIAL DUE TO ALLOY OR MINERAL COMPOSITION, MECHANICAL WORKING OF THE SPECIMEN, OR HEAT TREATMENT. FOR A MORE EXACT VALUE REFERENCE
BOOKS FOR THE MATERIAL SHOULD BE CONSULTED.

THE YIELD AND ULTIMATE STRENGTHS FOR DUCTILE MATERIALS CAN BE ASSUMED EQUAL FOR BOTH TENSION AND COMPRESSION.
MEASURED PERPENDICULAR TO THE GRAIN.

MEASURED PARALLEL TO THE GRAIN.
DEFORMATION MEASURED PERPENDICULAR TO THE GRAIN WHEN THE LOAD IS APPLIED ALONG THE GRAIN.

(103 ksi)

 Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.
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 Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.
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 Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.
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DESIGN OF STEEL COMPONENTS
(ANSI/AISC 360-10)
LRFD, E = 29,000 ksi
BEAMS
For doubly symmetric compact I-shaped members bent 
about their major axis, the design	flexural	strength φbMn is 
determined with φb = 0.90 as follows:
Yielding
Mn = Mp = FyZx

where
Fy = specified minimum yield stress
Zx = plastic section modulus about the x-axis

Lateral-Torsional Buckling
Based on bracing where Lb is the length between points 
that are either braced against lateral displacement of the 
compression flange or braced against twist of the cross section 
with respect to the length limits Lp and Lr:
When Lb ≤ Lp, the limit state of lateral-torsional buckling does 
not apply.

When Lp < Lb  ≤ Lr

.M C M M FS M0 7n b p p y x pL L
L L

r p

b p
#= - -

-

-_ ei o> H
where

.
.

C M M M M
M

2 5 3 4 3
12 5

max

max

A B C
b = + + +

Mmax  = absolute value of maximum moment in the unbraced
 segment
MA  = absolute value of maximum moment at quarter point of  
  the unbraced segment
MB  = absolute value of maximum moment at centerline of  
  the unbraced segment
MC  = absolute value of maximum moment at three-quarter of  
  the unbraced segment

Shear
The design shear strength φvVn is determined with 
φv = 1.00 for webs of rolled I-shaped members and is 
determined as follows:
Vn = 0.6 Fy (d tw)

COLUMNS
The design compressive strength φcPn is determined with 
φc = 0.90 for flexural buckling of members without slender 
elements and is determined as follows:
Pn = Fcr Ag

where the critical stress Fcr is determined as follows:

( ) . , .

( ) . , .

a When

b When

r
KL

F
E F F

r
KL

F
E F F

4 71 0 658

4 71 0 877>

cr

cr

y

e

y

y

Fe
Fy

# =

=

: D

where
KL/r is the effective slenderness ratio based on the column 
effective length (KL) and radius of gyration (r)
KL is determined from AISC Table C-A-7.1 or AISC Figures 
C-A-7.1 and C-A-7.2 on p. 158.
Fe is the elastic buckling stress = π2E/(KL/r)2

w

1.32

1.67 1.67

1.14

1.14

1.67 1.671.00

1.67 1.671.11 1.11

1.14

1.30 1.30

1.011.45 1.45

1.06 1.06 1.521.52

NOTE: LATERAL BRACING MUST ALWAYS BE PROVIDED AT POINTS OF SUPPORT PER AISC SPECIFICATION CHAPTER F.

1.12 1.121.00 1.561.56

LOAD

P

P P

P P P

VALUES OF Cb FOR SIMPLY SUPPORTED BEAMS

LATERAL BRACING
ALONG SPAN

NONE
LOAD AT MIDPOINT

AT LOAD POINT

NONE
LOADS AT THIRD POINTS

AT MIDPOINT

AT THIRD POINTS

AT FIFTH POINTS

AT QUARTER
POINTS

NONE

NONE
LOADS AT QUARTER POINTS

AT LOAD POINTS
LOADS SYMMETRICALLY PLACED

AT LOAD POINTS
LOADS AT QUARTER POINTS

Cb

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.
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   Area Depth Web Flange 

  Shape A d t w b f t f 
   In.2 In. In. In. In. 

  W24X68 20.1 23.7 0.415 8.97 0.585 

  W24X62 18.2 23.7 0.430 7.04 0.590 

  W24X55 16.3 23.6 0.395 7.01 0.505 

        
  W21X73 21.5 21.2 0.455 8.30 0.740 

  W21X68 20.0 21.1 0.430 8.27 0.685 

  W21X62 18.3 21.0 0.400 8.24 0.615 

   W21X55 16.2 20.8 0.375 8.22 0.522 

  W21X57 16.7 21.1 0.405 6.56 0.650 

  W21X50 14.7 20.8 0.380 6.53 0.535 

  W21X48 14.1 20.6 0.350 8.14 0.430 

  W21X44 13.0 20.7 0.350 6.50 0.450 

        
  W18X71 20.8 18.5 0.495 7.64 0.810 

  W18X65 19.1 18.4 0.450 7.59 0.750 

  W18X60 17.6 18.2 0.415 7.56 0.695 

  W18X55 16.2 18.1 0.390 7.53 0.630 

  W18X50 14.7 18.0 0.355 7.50 0.570 

  W18X46 13.5 18.1 0.360 6.06 0.605 

  W18X40 11.8 17.9 0.315 6.02 0.525 

        
  W16X67 19.7 16.3 0.395 10.2 0.67 

  W16X57 16.8 16.4 0.430 7.12 0.715 

  W16X50 14.7 16.3 0.380 7.07 0.630 

  W16X45 13.3 16.1 0.345 7.04 0.565 

  W16X40 11.8 16.0 0.305 7.00 0.505 

  W16X36 10.6 15.9 0.295 6.99 0.430 

        
  W14X74 21.8 14.2 0.450 10.1 0.785 

  W14X68 20.0 14.0 0.415 10.0 0.720 

  W14X61 17.9 13.9 0.375 9.99 0.645 

  W14X53 15.6 13.9 0.370 8.06 0.660 

  W14X48 14.1 13.8 0.340 8.03 0.595 

        
  W12X79 23.2 12.4 0.470 12.1 0.735 

  W12X72 21.1 12.3 0.430 12.0 0.670 

  W12X65 19.1 12.1 0.390 12.0 0.605 

  W12X58 17.0 12.2 0.360 10.0 0.640 

  W12X53 15.6 12.1 0.345 9.99 0.575 

  W12X50 14.6 12.2 0.370 8.08 0.640 

  W12X45 13.1 12.1 0.335 8.05 0.575 

  W12X40 11.7 11.9 0.295 8.01 0.515 

        
  W10x60 17.6 10.2 0.420 10.1 0.680 

  W10x54 15.8 10.1 0.370 10.0 0.615 

Table 1-1:  W Shapes Dimensions 
                    and Properties  
 
      

bf 

d 

tf Y 

tw 
X X 

W10x49
 

14.4 10.0 0.340 10.0 0.560
W10x45

 
13.3 10.1 0.350 8.02 0.620

W10x39
 

11.5
 

9.92 0.315 7.99 0.530

 Axis X-X  Axis Y-Y  
I S r Z I r  

In.4 In.3 In. In.3 In.4 In.  
1830 154 9.55 177 70.4 1.87  

 1550 131 9.23 153 34.5 1.38  
 1350 114 9.11 134 29.1 1.34  
         1600 151 8.64 172 70.6 1.81  

1480 140 8.60 160 64.7 1.80  
1330 127 8.54 144 57.5 1.77  
1140 110 8.40 126 48.4 1.73  
1170 111 8.36 129 30.6 1.35  
984 94.5 8.18 110 24.9 1.30  
959 93.0 8.24 107 38.7 1.66  
843 81.6 8.06 95.4 20.7 1.26  

      1170 127 7.50 146 60.3 1.70  
1070 117 7.49 133 54.8 1.69  
984 108 7.47 123 50.1 1.68  
890 98.3 7.41 112 44.9 1.67  
800 88.9 7.38 101 40.1 1.65  
712 78.8 7.25 90.7 22.5 1.29  
612 68.4 7.21 78.4 19.1 1.27  

      954 117 6.96 130 119 2.46  
758 92.2 6.72 105 43.1 1.60  
659 81.0 6.68 92.0 37.2 1.59  
586 72.7 6.65 82.3 32.8 1.57  
518 64.7 6.63 73.0 28.9 1.57  
448 56.5 6.51 64.0 24.5 1.52  

      795 112 6.04 126 134 2.48  
722 103 6.01 115 121 2.46  
640 92.1 5.98 102 107 2.45  
541 77.8 5.89 87.1 57.7 1.92  
484 70.2 5.85 78.4 51.4 1.91  

      662 107 5.34 119 216 3.05  
597 97.4 5.31 108 195 3.04  
533 87.9 5.28 96.8 174 3.02  
475 78.0 5.28 86.4 107 2.51  
425 70.6 5.23 77.9 95.8 2.48  
391 64.2 5.18 71.9 56.3 1.96  
348 57.7 5.15 64.2 50.0 1.95  
307 51.5 5.13 57.0 44.1 1.94  

      341 66.7 4.39 74.6 116 2.57  
303 60.0 4.37 66.6 103 2.56  
272

 
54.6 4.35 60.4 93.4 2.54

248 49.1 4.32 54.9 53.4 2.01
209 42.1 4.27 46.8 45.0 1.98

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.
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(a)

0.5

BUCKLED SHAPE OF COLUMN IS
SHOWN BY DASHED LINE.

TABLE C-A-7.1
APPROXIMATE VALUES OF EFFECTIVE LENGTH FACTOR, K

THEORETICAL K VALUE

END CONDITION CODE

RECOMMENDED DESIGN
VALUE WHEN IDEAL CONDITIONS
ARE APPROXIMATED

0.7 1.0 1.0 2.0 2.0

0.65 0.80 1.2 1.0 2.10 2.0

(b) (c)

ROTATION FIXED AND TRANSLATION FIXED

ROTATION FREE AND TRANSLATION FIXED

ROTATION FIXED AND TRANSLATION FREE

ROTATION FREE AND TRANSLATION FREE

(d) (e) ( f )

FOR COLUMN ENDS SUPPORTED BY, BUT NOT RIGIDLY CONNECTED TO, A FOOTING OR FOUNDATION, G IS 
THEORETICALLY INFINITY BUT UNLESS DESIGNED AS A TRUE FRICTION-FREE PIN, MAY BE TAKEN AS 10 
FOR PRACTICAL DESIGNS. IF THE COLUMN END IS RIGIDLY ATTACHED TO A PROPERLY DESIGNED 
FOOTING, G MAY BE TAKEN AS 1.0. SMALLER VALUES MAY BE USED IF JUSTIFIED BY ANALYSIS.
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AISC Figure C-A-7.1
Alignment chart, sidesway inhibited (braced frame)

Steel Construction Manual, 14th ed., AISC, 2011.

AISC Figure C-A-7.2
Alignment chart, sidesway uninhibited (moment frame) 
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Housner, George W., and Donald E. Hudson, Applied Mechanics Dynamics, D. Van Nostrand Company, Inc., Princeton, NJ, 1959. Table reprinted by permission of G.W. Housner & D.E. Hudson.
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