MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN

Stress-Strain Curve for Mild Steel

The slope of the linear portion of the curve equals the modulus of elasticity.

DEFINITIONS

Engineering Strain

$\varepsilon=\Delta L / L_{o}$, where
$\varepsilon=$ engineering strain (units per unit)
$\Delta L=$ change in length (units) of member
$L_{o}=$ original length (units) of member

Percent Elongation

$$
\% \text { Elongation }=\left(\frac{\Delta L}{L_{o}}\right) \times 100
$$

Percent Reduction in Area (RA)

The $\%$ reduction in area from initial area, A_{i}, to final area, A_{f}, is:

$$
\% R A=\left(\frac{A_{i}-A_{f}}{A_{i}}\right) \times 100
$$

Shear Stress-Strain

$\gamma=\tau / G$, where
$\gamma=$ shear strain
$\tau=$ shear stress
$G=$ shear modulus (constant in linear torsion-rotation relationship)
$G=\frac{E}{2(1+v)}$, where
$\mathrm{E}=$ modulus of elasticity (Young's modulus)
$v=$ Poisson's ratio
$=-$ (lateral strain)/(longitudinal strain)

Uniaxial Loading and Deformation

$$
\begin{aligned}
& \sigma=P / A, \text { where } \\
\sigma= & \text { stress on the cross section } \\
P= & \text { loading } \\
A= & \text { cross-sectional area } \\
& \varepsilon=\delta / L, \text { where } \\
\delta= & \text { elastic longitudinal deformation } \\
L= & \text { length of member } \\
& E=\sigma / \varepsilon=\frac{P / A}{\delta / L} \\
& \delta=\frac{P L}{A E}
\end{aligned}
$$

True stress is load divided by actual cross-sectional area whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS

$\delta_{t}=\alpha L\left(T-T_{o}\right)$, where
$\delta_{t}=$ deformation caused by a change in temperature
$\alpha=$ temperature coefficient of expansion
$L=$ length of member
$T=$ final temperature
$T_{o}=$ initial temperature

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

$$
\sigma_{t}=P_{i} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \quad \text { and } \quad \sigma_{r}=-P_{i}
$$

For external pressure only, the stresses at the outside wall are:

$$
\sigma_{t}=-P_{o} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \text { and } \sigma_{r}=-P_{o} \text {, where }
$$

$\sigma_{t}=$ tangential (hoop) stress
$\sigma_{r}=$ radial stress
$P_{i}=$ internal pressure
$P_{o}=$ external pressure
$r_{i}=$ inside radius
$r_{o}=$ outside radius
For vessels with end caps, the axial stress is:

$$
\sigma_{a}=P_{i} \frac{r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}}
$$

σ_{t}, σ_{r}, and σ_{a} are principal stresses.

- Flinn, Richard A., and Paul K. Trojan, Engineering Materials \& Their Applications, 4th ed., Houghton Mifflin Co., Boston, 1990.
76 MECHANICS OF MATERIALS

When the thickness of the cylinder wall is about one-tenth or less of inside radius, the cylinder can be considered as thinwalled. In which case, the internal pressure is resisted by the hoop stress and the axial stress.

$$
\sigma_{t}=\frac{P_{i} r}{t} \quad \text { and } \quad \sigma_{a}=\frac{P_{i} r}{2 t}
$$

where $t=$ wall thickness and $r=\frac{r_{i}+r_{o}}{2}$.

STRESS AND STRAIN

Principal Stresses

For the special case of a two-dimensional stress state, the equations for principal stress reduce to

$$
\begin{aligned}
& \sigma_{a}, \sigma_{b}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \sigma_{c}=0
\end{aligned}
$$

The two nonzero values calculated from this equation are temporarily labeled σ_{a} and σ_{b} and the third value σ_{c} is always zero in this case. Depending on their values, the three roots are then labeled according to the convention:
algebraically largest $=\sigma_{1}$, algebraically smallest $=\sigma_{3}$, other $=\sigma_{2}$. A typical 2D stress element is shown below with all indicated components shown in their positive sense.

Mohr's Circle - Stress, 2D

To construct a Mohr's circle, the following sign conventions are used.

1. Tensile normal stress components are plotted on the horizontal axis and are considered positive. Compressive normal stress components are negative.
2. For constructing Mohr's circle only, shearing stresses are plotted above the normal stress axis when the pair of shearing stresses, acting on opposite and parallel faces of an element, forms a clockwise couple. Shearing stresses are plotted below the normal axis when the shear stresses form a counterclockwise couple.

The circle drawn with the center on the normal stress (horizontal) axis with center, C, and radius, R, where

$$
C=\frac{\sigma_{x}+\sigma_{y}}{2}, \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

The two nonzero principal stresses are then:

The maximum inplane shear stress is $\tau_{\mathrm{in}}=R$. However, the maximum shear stress considering three dimensions is always

$$
\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}
$$

Hooke's Law

Three-dimensional case:

$$
\begin{array}{ll}
\varepsilon_{x}=(1 / E)\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] & \gamma_{x y}=\tau_{x y} / G \\
\varepsilon_{y}=(1 / E)\left[\sigma_{y}-v\left(\sigma_{z}+\sigma_{x}\right)\right] & \gamma_{y z}=\tau_{y z} / G \\
\varepsilon_{z}=(1 / E)\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \gamma_{z x}=\tau_{z x} / G
\end{array}
$$

Plane stress case $\left(\sigma_{z}=0\right)$:
$\begin{aligned} & \varepsilon_{x}=(1 / E)\left(\sigma_{x}-v \sigma_{y}\right) \\ & \varepsilon_{y}=(1 / E)\left(\sigma_{y}-v \sigma_{x}\right) \\ & \varepsilon_{z}=-(1 / E)\left(v \sigma_{x}+v \sigma_{y}\right)\end{aligned} \quad\left\{\begin{array}{c}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{x y}\end{array}\right\}$
Uniaxial case $\left(\sigma_{y}=\sigma_{z}=0\right): \quad \sigma_{x}=E \varepsilon_{x}$ or $\sigma=E \varepsilon$, where
$\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}=$ normal strain
$\sigma_{x}, \sigma_{y}, \sigma_{z}=$ normal stress
$\gamma_{x y}, \gamma_{y z}, \gamma_{z x}=$ shear strain
$\tau_{x y}, \tau_{y z}, \tau_{z x}=$ shear stress
$E=$ modulus of elasticity
$G=$ shear modulus
$v=$ Poisson's ratio

[^0]
TORSION

Torsion stress in circular solid or thick-walled ($\mathrm{t}>0.1 r$) shafts:

$$
\tau=\frac{T r}{J}
$$

where $J=$ polar moment of inertia

TORSIONAL STRAIN

$$
\gamma_{\phi z}=\operatorname{limit}_{\Delta z \rightarrow 0} r(\Delta \phi / \Delta z)=r(d \phi / d z)
$$

The shear strain varies in direct proportion to the radius, from zero strain at the center to the greatest strain at the outside of the shaft. $d \phi / d z$ is the twist per unit length or the rate of twist.

$$
\begin{aligned}
\tau_{\phi z} & =G \gamma_{\phi z}=G r(d \phi / d z) \\
T & =G(d \phi / d z) \int_{A} r^{2} d A=G J(d \phi / d z) \\
\phi & =\int_{o}^{L} \frac{T}{G J} d z=\frac{T L}{G J}, \text { where }
\end{aligned}
$$

$\phi=$ total angle (radians) of twist
$T=$ torque
$L=$ length of shaft
T / ϕ gives the twisting moment per radian of twist. This is called the torsional stiffness and is often denoted by the symbol k or c.

For Hollow, Thin-Walled Shafts

$\tau=\frac{T}{2 A_{m} t}$, where
$t \quad=$ thickness of shaft wall
$A_{m} \quad=$ the total mean area enclosed by the shaft measured to the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positive if it produces bending of the beam concave upward (compression in top fibers and tension in bottom fibers).
2. The shearing force is positive if the right portion of the beam tends to shear downward with respect to the left.

The relationship between the load (w), shear (V), and moment (M) equations are:

$$
\begin{aligned}
& w(x)=-\frac{d V(x)}{d x} \\
& V=\frac{d M(x)}{d x} \\
& V_{2}-V_{1}=\int_{x_{1}}^{x_{2}}[-w(x)] d x \\
& M_{2}-M_{1}=\int_{x_{1}}^{x_{2}} V(x) d x
\end{aligned}
$$

Stresses in Beams

The normal stress in a beam due to bending:

$$
\sigma_{x}=-M y / I, \text { where }
$$

$M=$ the moment at the section
$I=$ the moment of inertia of the cross section
$y=$ the distance from the neutral axis to the fiber location above or below the neutral axis

The maximum normal stresses in a beam due to bending:

$$
\sigma_{x}= \pm M c / I, \text { where }
$$

$c=$ distance from the neutral axis to the outermost fiber of a symmetrical beam section.

$$
\sigma_{x}=-M / s, \text { where }
$$

$s=I / c$: the elastic section modulus of the beam.
Transverse shear stress:

$$
\tau_{x y}=V Q /(I b), \text { where }
$$

$V=$ shear force
$Q=A^{\prime} \overline{y^{\prime}}$, where
$A^{\prime}=$ area above the layer (or plane) upon which the desired transverse shear stress acts
$\overline{y^{\prime}}=$ distance from neutral axis to area centroid
$B=$ width or thickness or the cross-section
Transverse shear flow:

$$
q=V Q / I
$$

- Timoshenko, S., and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand Co./Wadsworth Publishing Co., 1949.

Deflection of Beams

Using $1 / \rho=M /(E I)$,

$$
\begin{aligned}
& E I \frac{d^{2} y}{d x^{2}}=M, \text { differential equation of deflection curve } \\
& E I \frac{d^{3} y}{d x^{3}}=d M(x) / d x=V \\
& E I \frac{d^{4} y}{d x^{4}}=d V(x) / d x=-w
\end{aligned}
$$

Determine the deflection curve equation by double integration (apply boundary conditions applicable to the deflection and/or slope).

$$
\begin{aligned}
& E I(d y / d x)=\int M(x) d x \\
& E I y=\int\left[\int M(x) d x\right] d x
\end{aligned}
$$

The constants of integration can be determined from the physical geometry of the beam.

Composite Sections

The bending stresses in a beam composed of dissimilar materials (material 1 and material 2) where $E_{1}>E_{2}$ are:

$$
\begin{aligned}
& \sigma_{1}=-n M y / I_{\mathrm{T}} \\
& \sigma_{2}=-M y / I_{\mathrm{T}}, \text { where }
\end{aligned}
$$

$I_{\mathrm{T}}=$ the moment of intertia of the transformed section
$n=$ the modular ratio E_{1} / E_{2}
$E_{1}=$ elastic modulus of material 1
$E_{2}=$ elastic modulus of material 2
The composite section is transformed into a section composed of a single material. The centroid and then the moment of inertia are found on the transformed section for use in the bending stress equations.

COLUMNS

Critical axial load for long column subject to buckling: Euler's Formula
$P_{c r}=\frac{\pi^{2} E I}{(K \ell)^{2}}$, where
$\ell=$ unbraced column length
$K=$ effective-length factor to account for end supports
Theoretical effective-length factors for columns include:
Pinned-pinned, $K=1.0$
Fixed-fixed, $K=0.5$
Fixed-pinned, $K=0.7$
Fixed-free, $K=2.0$
Critical buckling stress for long columns:

$$
\sigma_{c r}=\frac{P_{c r}}{A}=\frac{\pi^{2} E}{(K \ell / r)^{2}}, \text { where }
$$

$r=$ radius of gyration $\sqrt{I / A}$
$K \ell / r=$ effective slenderness ratio for the column

ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into potential energy and can be recovered.
If the final load is P and the corresponding elongation of a tension member is δ, then the total energy U stored is equal to the work W done during loading.

$$
U=W=P \delta / 2
$$

The strain energy per unit volume is

$$
u=U / A L=\sigma^{2} / 2 E \quad \text { (for tension) }
$$

MATERIAL PROPERTIES

Table 1 - Typical Material Properties
(Use these values if the specific alloy and temper are not listed on Table 2 below)

Material	Modulus of Elasticity, E [Mpsi (GPa)]	Modulus of Rigity, G [Mpsi (GPa)]	Poisson's Ratio, v	Coefficient of Thermal Expansion, a $\left[10^{-6} /{ }^{\circ} \mathrm{F}\left(10^{-6} /{ }^{\circ} \mathrm{C}\right)\right]$	$\begin{gathered} \text { Density, } \rho \\ {\left[\mathbf{l b} / \mathbf{i n}^{3}\left(\mathbf{M g} / \mathbf{m}^{3}\right)\right]} \end{gathered}$
Steel	29.0 (200.0)	11.5 (80.0)	0.30	6.5 (11.7)	0.282 (7.8)
Aluminum	10.0 (69.0)	3.8 (26.0)	0.33	13.1 (23.6)	0.098 (2.7)
Cast Iron	14.5 (100.0)	6.0 (41.4)	0.21	6.7 (12.1)	$0.246-0.282$ (6.8-7.8)
Wood (Fir)	1.6 (11.0)	0.6 (4.1)	0.33	1.7 (3.0)	-
Brass	14.8-18.1 (102-125)	5.8 (40)	0.33	10.4 (18.7)	$0.303-0.313$ (8.4-8.7)
Copper	17 (117)	6.5 (45)	0.36	9.3 (16.6)	0.322 (8.9)
Bronze	13.9-17.4 (96-120)	6.5 (45)	0.34	10.0 (18.0)	0.278-0.314 (7.7-8.7)
Magnesium	6.5 (45)	2.4 (16.5)	0.35	14 (25)	0.061 (1.7)
Glass	10.2 (70)	-	0.22	5.0 (9.0)	0.090 (2.5)
Polystyrene	0.3 (2)	-	0.34	38.9 (70.0)	0.038 (1.05)
Polyvinyl Chloride (PVC)	<0.6 (<4)	-	-	28.0 (50.4)	0.047 (1.3)
Alumina Fiber	58 (400)	-	-	-	0.141 (3.9)
Aramide Fiber	18.1 (125)	-	-	-	0.047 (1.3)
Boron Fiber	58 (400)	-	-	-	0.083 (2.3)
Beryllium Fiber	43.5 (300)	-	-	-	0.069 (1.9)
BeO Fiber	58 (400)	-	-	-	0.108 (3.0)
Carbon Fiber	101.5 (700)	-	-	-	0.083 (2.3)
Silicon Carbide Fiber	58 (400)	-	-	-	0.116 (3.2)

Table 2 - Average Mechanical Properties of Typical Engineering Materials
(U.S. Customary Units)
(Use these values for the specific alloys and temperature listed. For all other materials refer to Table 1 above.)

Materials	Specific Weight γ ($\mathrm{lb} / \mathrm{in}^{3}$)	Modulus of Elasticity E $\left(10^{3} \mathrm{ksi}\right)$	Modulus of Rigidity G $\left(10^{3} \mathrm{ksi}\right)$	Yield Strength (ksi) σ_{y}			Ultimate Strength (ksi) σ_{u}			\% Elongation in 2 in. specimen	Poisson's Ratio V	Coef. of Therm. Expansion α $\left(10^{-6}\right) /{ }^{\circ} \mathrm{F}$
Metallic												
Aluminum \quad 2014-T6	0.101	10.6	3.9	60	60	25	68	68	42	10	0.35	12.8
Wrought Alloys \quad 6061-T6	0.098	10.0	3.7	37	37	19	42	42	27	12	0.35	13.1
Cast Iron - Gray ASTM 20	0.260	10.0	3.9	-	-	-	26	97	-	0.6	0.28	6.70
Alloys \quad Malleable ASTM A-197	0.263	25.0	9.8	-	-	-	40	83	-	5	0.28	6.60
Copper - Red Brass C83400	0.316	14.6	5.4	11.4	11.4	-	35	35	-	35	0.35	9.80
Alloys L Bronze C86100	0.319	15.0	5.6	50	50	-	95	95	-	20	0.34	9.60
$\begin{gathered} \text { Magnesium } \\ \text { Alloy } \end{gathered} \text { [Am 1004-T611] }$	0.066	6.48	2.5	22	22	-	40	40	22	1	0.30	14.3
Steel - Structural A36	0.284	29.0	11.0	36	36	-	58	58	-	30	0.32	6.60
Alloys - Stainless 304	0.284	28.0	11.0	30	30	-	75	75	-	40	0.27	9.60
- Tool L2	0.295	29.0	11.0	102	102	-	116	116	-	22	0.32	6.50
$\begin{aligned} & \text { Titanium } \quad[\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}] \\ & \text { Alloy } \end{aligned}$	0.160	17.4	6.4	134	134	-	145	145	-	16	0.36	5.20
Nonmetallic												
Low Strength	0.086	3.20	-	-	-	1.8	-	-	-	-	0.15	6.0
Concrete - High Strength	0.086	4.20	-	-	-	5.5	-	-	-	-	0.15	6.0
Plastic - Kevlar 49	0.0524	19.0	-	-	-	-	104	70	10.2	2.8	0.34	-
Reinforced L 30\% Glass	0.0524	10.5	-	-	-	-	13	19	-	-	0.34	-
Wood Seld Douglas Fir	0.017	1.90	-	-	-	-	$0.30^{\text {C }}$	$3.78{ }^{\text {d }}$	0.90 d	-	0.29 C	-
Srade Sele White Spruce	0.130	1.40	-	-	-	-	$0.36{ }^{\text {C }}$	$5.18{ }^{\text {d }}$	0.97 ${ }^{\text {d }}$	-	$0.31{ }^{\text {c }}$	-

[^1]Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

Simply Supported Beam Slopes and Deflections

| | DEFLECTION | ELASTIC CURVE |
| :--- | :--- | :--- | :--- |

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

Cantilevered Beam Slopes and Deflections

BEAM	SLOPE	DEFLECTION	ELASTIC CURVE
	$\theta_{\text {max }}=\frac{-P L^{2}}{2 E I}$	$v_{\max }=\frac{-P L^{3}}{3 E I}$	$v=\frac{-P x^{2}}{6 E I}(3 L-x)$
	$\theta_{\max }=\frac{-P L^{2}}{8 E I}$	$v_{\text {max }}=\frac{-5 P L^{3}}{48 E I}$	$\begin{array}{ll} v=\frac{-P x^{2}}{6 E I}\left(\frac{3}{2} L-x\right) & 0 \leq x \leq L / 2 \\ v=\frac{-P L^{2}}{24 E I}\left(3 x-\frac{1}{2} L\right) & L / 2 \leq x \leq L \end{array}$
	$\theta_{\max }=\frac{-w L^{3}}{6 E I}$	$v_{\text {max }}=\frac{-w L^{4}}{8 E I}$	$v=\frac{-w x^{2}}{24 E I}\left(x^{2}-4 L x+6 L^{2}\right)$
	$\theta_{\text {max }}=\frac{M_{0} L}{E I}$	$v_{\max }=\frac{M_{0} L^{2}}{2 E I}$	$v=\frac{M_{0} x^{2}}{2 E I}$
	$\theta_{\text {max }}=\frac{-w L^{3}}{48 E I}$	$v_{\text {max }}=\frac{-7 w L^{4}}{384 E I}$	$\begin{aligned} & v=\frac{-w x^{2}}{24 E I}\left(x^{2}-2 L x+\frac{3}{2} L^{2}\right) \\ & 0 \leq x \leq L / 2 \\ & v=\frac{-w L^{3}}{192 E I}(4 x-L / 2) \\ & L / 2 \leq x \leq L \end{aligned}$
	$\theta_{\text {max }}=\frac{-w_{0} L^{3}}{24 E I}$	$v_{\max }=\frac{-w_{0} L^{4}}{30 E I}$	$v=\frac{-w_{0} x^{2}}{120 E I L}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)$

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

DESIGN OF STEEL COMPONENTS
 (ANSI/AISC 360-10)

LRFD, $E=29,000 \mathrm{ksi}$

BEAMS

For doubly symmetric compact I-shaped members bent about their major axis, the design flexural strength $\phi_{b} M_{n}$ is determined with $\phi_{b}=0.90$ as follows:

Yielding

$M_{n}=M_{p}=F_{y} Z_{x}$
where
$F_{v}=$ specified minimum yield stress
$Z_{x}=$ plastic section modulus about the x-axis

Lateral-Torsional Buckling

Based on bracing where L_{b} is the length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section with respect to the length limits L_{p} and L_{r} :
When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
When $L_{p}<L_{b} \leq L_{r}$
$M_{n}=C_{b}\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq M_{p}$
where
$C_{b}=\frac{12.5 M_{\text {max }}}{2.5 M_{\text {max }}+3 M_{\mathrm{A}}+4 M_{\mathrm{B}}+3 M_{\mathrm{C}}}$
$M_{\text {max }}=$ absolute value of maximum moment in the unbraced segment
$M_{\mathrm{A}}=$ absolute value of maximum moment at quarter point of the unbraced segment
$M_{\mathrm{B}}=$ absolute value of maximum moment at centerline of the unbraced segment
$M_{\mathrm{C}}=$ absolute value of maximum moment at three-quarter of the unbraced segment

Shear

The design shear strength $\phi_{v} \mathrm{~V}_{n}$ is determined with $\phi_{v}=1.00$ for webs of rolled I-shaped members and is determined as follows:
$V_{n}=0.6 F_{y}\left(d t_{w}\right)$

COLUMNS

The design compressive strength $\phi_{c} P_{n}$ is determined with $\phi_{c}=0.90$ for flexural buckling of members without slender elements and is determined as follows:
$P_{n}=F_{\mathrm{cr}} A_{g}$
where the critical stress F_{cr} is determined as follows:
(a) When $\frac{K L}{r} \leq 4.71 \sqrt{\frac{E}{F_{y}}}, F_{\text {cr }}=\left[0.658^{\frac{F_{y}}{F_{e}}}\right] F_{y}$
(b) When $\frac{K L}{r}>4.71 \sqrt{\frac{E}{F_{y}}}, F_{\text {cr }}=0.877 F_{e}$
where
$K L / r$ is the effective slenderness ratio based on the column effective length $(K L)$ and radius of gyration (r)
$K L$ is determined from AISC Table C-A-7.1 or AISC Figures C-A-7.1 and C-A-7.2 on p. 158.
F_{e} is the elastic buckling stress $=\pi^{2} E /(K L / r)^{2}$

VALUES OF C_{b} FOR SIMPLY SUPPORTED BEAMS		
LOAD	LATERAL BRACING ALONG SPAN	C_{b}
	NONE LOAD AT MIDPOINT	$\underset{*}{*} \quad$1 1
	AT LOAD POINT	$\underset{*}{*} \times 1.67$ *
	NONE LOADS AT THIRD POINTS	
	AT LOAD POINTS LOADS SYMMETRICALLY PLACED	$\underbrace{\text { * }}_{1.67}$
	NONE LOADS AT QUARTER POINTS	
	AT LOAD POINTS LOADS AT QUARTER POINTS	
	NONE	
	AT MIDPOINT	
	AT THIRD POINTS	
	AT QUARTER POINTS	
	AT FIFTH POINTS	
NOTE: LATERAL BRACING MUST ALWAYS BE PROVIDED AT POINTS OF SUPPORT PER AISC SPECIFICATION CHAPTER F. Adapted from Steel Construction Manual, 14th ed., AISC, 2011.		

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.

TABLE C-A-7. 1 APPROXIMATE VALUES OF EFFECTIVE LENGTH FACTOR, K						
BUCKLED SHAPE OF COLUMN IS SHOWN BY DASHED LINE.	(a) \qquad		(c)	(d)	(e) \downarrow 0 \vdots \vdots \vdots \vdots \vdots \vdots 	
THEORETICAL K VALUE	0.5	0.7	1.0	1.0	2.0	2.0
RECOMMENDED DESIGN VALUE WHEN IDEAL CONDITIONS ARE APPROXIMATED	0.65	0.80	1.2	1.0	2.10	2.0
END CONDITION CODE	шщ ROTATION FIXED AND TRANSLATION FIXED щल ROTATION FREE AND TRANSLATION FIXED Th ROTATION FIXED AND TRANSLATION FREE i ROTATION FREE AND TRANSLATION FREE					

FOR COLUMN ENDS SUPPORTED BY, BUT NOT RIGIDLY CONNECTED TO, A FOOTING OR FOUNDATION, G IS THEORETICALLY INFINITY BUT UNLESS DESIGNED AS A TRUE FRICTION-FREE PIN, MAY BE TAKEN AS 10 FOR PRACTICAL DESIGNS. IF THE COLUMN END IS RIGIDLY ATTACHED TO A PROPERLY DESIGNED FOOTING, G MAY BE TAKEN AS 1.0. SMALLER VALUES MAY BE USED IF JUSTIFIED BY ANALYSIS.

AISC Figure C-A-7.1
Alignment chart, sidesway inhibited (braced frame)

AISC Figure C-A-7.2
Alignment chart, sidesway uninhibited (moment frame)

[^2]| Figure | Area \& Centroid | Area Moment of Inertia | (Radius of Gyration) ${ }^{\mathbf{2}}$ | Product of Inertia |
| :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & A=b h / 2 \\ & x_{c}=2 b / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=b h^{3} / 36 \\ & I_{y_{c}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 4 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 2 \end{aligned}$ | $\begin{aligned} I_{x_{c} y_{c}} & =A b h / 36=b^{2} h^{2} / 72 \\ I_{x y} & =A b h / 4=b^{2} h^{2} / 8 \end{aligned}$ |
| | $\begin{aligned} & A=b h / 2 \\ & x_{c}=b / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=b h^{3} / 36 \\ & I_{y_{c}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 6 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=-A b h / 36=-b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 12=b^{2} h^{2} / 24 \end{aligned}$ |
| | $\begin{aligned} & A=b h / 2 \\ & x_{c}=(a+b) / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{aligned} I_{x_{\mathrm{c}}} & =b h^{3} / 36 \\ I_{y_{\mathrm{c}}} & =\left[b h\left(b^{2}-a b+a^{2}\right)\right] / 36 \\ I_{x} & =b h^{3} / 12 \\ I_{y} & =\left[b h\left(b^{2}+a b+a^{2}\right)\right] / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=\left(b^{2}-a b+a^{2}\right) / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=\left(b^{2}+a b+a^{2}\right) / 6 \end{aligned}$ | $\begin{aligned} I_{x_{c} y_{c}} & =[A h(2 a-b)] / 36 \\ & =\left[b h^{2}(2 a-b)\right] / 72 \\ I_{x y} & =[A h(2 a+b)] / 12 \\ & =\left[b h^{2}(2 a+b)\right] / 24 \end{aligned}$ |
| | $\begin{aligned} & A=b h \\ & x_{c}=b / 2 \\ & y_{c}=h / 2 \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =b h^{3} / 12 \\ I_{y_{c}} & =b^{3} h / 12 \\ I_{x} & =b h^{3} / 3 \\ I_{y} & =b^{3} h / 3 \\ J & =\left[b h\left(b^{2}+h^{2}\right)\right] / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 12 \\ & r_{y_{c}}^{2}=b^{2} / 12 \\ & r_{x}^{2}=h^{2} / 3 \\ & r_{y}^{2}=b^{2} / 3 \\ & r_{p}^{2}=\left(b^{2}+h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 4 \end{aligned}$ |
| | $\begin{aligned} & A=h(a+b) / 2 \\ & y_{c}=\frac{h(2 a+b)}{3(a+b)} \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =\frac{h^{3}\left(a^{2}+4 a b+b^{2}\right)}{36(a+b)} \\ I_{x} & =\frac{h^{3}(3 a+b)}{12} \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=\frac{h^{2}\left(a^{2}+4 a b+b^{2}\right)}{18(a+b)} \\ & r_{x}^{2}=\frac{h^{2}(3 a+b)}{6(a+b)} \end{aligned}$ | |
| | $\begin{aligned} & A=a b \sin \theta \\ & x_{c}=(b+a \cos \theta) / 2 \\ & y_{c}=(a \sin \theta) / 2 \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=\left(a^{3} b \sin ^{3} \theta\right) / 12 \\ & I_{y_{c}}=\left[a b \sin \theta\left(b^{2}+a^{2} \cos ^{2} \theta\right)\right] / 12 \\ & I_{x}=\left(a^{3} b \sin ^{3} \theta\right) / 3 \\ & I_{y}=\left[a b \sin \theta(b+a \cos \theta)^{2}\right] / 3 \\ & \quad-\left(a^{2} b^{2} \sin \theta \cos \theta\right) / 6 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=(a \sin \theta)^{2} / 12 \\ & r_{y_{c}}^{2}=\left(b^{2}+a^{2} \cos ^{2} \theta\right) / 12 \\ & r_{x}^{2}=(a \sin \theta)^{2} / 3 \\ & r_{y}^{2}=(b+a \cos \theta)^{2} / 3 \\ & \quad-(a b \cos \theta) / 6 \end{aligned}$ | $I_{x_{c} y_{c}}=\left(a^{3} b \sin ^{2} \theta \cos \theta\right) / 12$ |

Figure	Area \& Centroid	Area Moment of Inertia	(Radius of Gyration) ${ }^{2}$	Product of Inertia
	$\begin{aligned} & A=\pi a^{2} \\ & x_{\mathrm{c}}=a \\ & y_{c}=a \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi a^{4} / 4 \\ & I_{x}=I_{y}=5 \pi a^{4} / 4 \\ & J=\pi a^{4} / 2 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=r_{y}^{2}=5 a^{2} / 4 \\ & r_{p}^{2}=a^{2} / 2 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A a^{2} \end{aligned}$
	$\begin{aligned} & A=\pi\left(a^{2}-b^{2}\right) \\ & x_{c}=a \\ & y_{c}=a \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi\left(a^{4}-b^{4}\right) / 4 \\ & I_{x}=I_{y}=\frac{5 \pi a^{4}}{4}-\pi a^{2} b^{2}-\frac{\pi b^{4}}{4} \\ & J=\pi\left(a^{4}-b^{4}\right) / 2 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=\left(a^{2}+b^{2}\right) / 4 \\ & r_{x}^{2}=r_{y}^{2}=\left(5 a^{2}+b^{2}\right) / 4 \\ & r_{p}^{2}=\left(a^{2}+b^{2}\right) / 2 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A a^{2} \\ & \quad=\pi a^{2}\left(a^{2}-b^{2}\right) \end{aligned}$
	$\begin{aligned} & A=\pi a^{2} / 2 \\ & x_{c}=a \\ & y_{c}=4 a /(3 \pi) \end{aligned}$	$\begin{aligned} & I_{x_{c}}=\frac{a^{4}\left(9 \pi^{2}-64\right)}{72 \pi} \\ & I_{y_{c}}=\pi a^{4} / 8 \\ & I_{x}=\pi a^{4} / 8 \\ & I_{y}=5 \pi a^{4} / 8 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=\frac{a^{2}\left(9 \pi^{2}-64\right)}{36 \pi^{2}} \\ & r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=a^{2} / 4 \\ & r_{y}^{2}=5 a^{2} / 4 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=2 a^{4} / 3 \end{aligned}$
 CIRCULAR SECTOR	$\begin{aligned} & A=a^{2} \theta \\ & x_{c}=\frac{2 a}{3} \frac{\sin \theta}{\theta} \\ & y_{c}=0 \end{aligned}$	$\begin{aligned} & I_{\mathrm{x}}=a^{4}(\theta-\sin \theta \cos \theta) / 4 \\ & I_{y}=a^{4}(\theta+\sin \theta \cos \theta) / 4 \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4} \frac{(\theta-\sin \theta \cos \theta)}{\theta} \\ & r_{y}^{2}=\frac{a^{2}}{4} \frac{(\theta+\sin \theta \cos \theta)}{\theta} \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$
CIRCULAR SEGMENT	$\begin{aligned} & A=a^{2}\left[\theta-\frac{\sin 2 \theta}{2}\right] \\ & x_{c}=\frac{2 a}{3} \frac{\sin ^{3} \theta}{\theta-\sin \theta \cos \theta} \\ & y_{c}=0 \end{aligned}$	$\begin{aligned} & I_{x}=\frac{A a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & I_{y}=\frac{A a^{2}}{4}\left[1+\frac{2 \sin ^{3} \theta \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & r_{y}^{2}=\frac{a^{2}}{4}\left[1+\frac{2 \sin { }^{3} \theta \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$	$\begin{aligned} & I_{x_{x} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$

Housner, George W., and Donald E. Hudson, Applied Mechanics Dynamics, D. Van Nostrand Company, Inc., Princeton, NJ, 1959. Table reprinted by permission of G.W. Housner \& D.E. Hudson.

[^0]: - Crandall, S.H., and N.C. Dah1, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.

[^1]: a SPECIFIC VALUES MAY VARY FOR A PARTICULAR MATERIAL DUE TO ALLOY OR MINERAL COMPOSITION, MECHANICAL WORKING OF THE SPECIMEN, OR HEAT TREATMENT. FOR A MORE EXACT VALUE REFERENCE BOOKS FOR THE MATERIAL SHOULD BE CONSULTED.
 ${ }^{\mathrm{b}}$ THE YIELD AND ULTIMATE STRENGTHS FOR DUCTILE MATERIALS CAN BE ASSUMED EQUAL FOR BOTH TENSION AND COMPRESSION.
 c MEASURED PERPENDICULAR TO THE GRAIN.
 d MEASURED PARALLEL TO THE GRAIN.
 e DEFORMATION MEASURED PERPENDICULAR TO THE GRAIN WHEN THE LOAD IS APPLIED ALONG THE GRAIN.

[^2]: Steel Construction Manual, 14th ed., AISC, 2011.

