ES226 Exam 1 Page 1

ES226 Engineering Mechanics: Statics

Lafayette College Engineering Division

Exam 1 Time Span: 2 hours

Closed Book. Closed Notes. Each student is allowed a single page of handwritten notes (no photocopied notes of other students allowed), pencils, erasers, straight edge and calculator, only.

hotoco	opied notes of other students allowed), pencils, erasers, straight edge and ca	lculator, only.
	Name:	
Answer	each question on the same page, with final answers in the box in the bottom the page. (Continue on the back of the question sheet if needed Show all work Clearly and Neatly	_
	Score (Max Points 100)	
	Problem #1. (Max Points 20):	
	Problem #2. (Max Points 20):	
	Problem #3. (Max Points 20):	
	Problem #4. (Max Points 20):	
	Problem #5. (Max Points 20):	

Problem 1: A block weighing 400 N is suspended from a spring and two cords that are attached to blocks of weights 3W and W as shown. The cords pass over pulleys at C and D. The spring constant is 800 N/m.

Determine the value of W.

Final Answers:	

Problem 2: The curved rod lies in the x-y plane and a force with a magnitude of $\|\mathbf{F}\| = 80 \text{ N}$ acts at its end as shown.

Determine the moment of this force about point 0.

Final Answers:

Problem 3: Part A

A container is supported by three cables that are attached to a ceiling as shown.

 $\frac{Determine \ the \ weight \ W}{knowing \ that \ the \ tension \ in \ cable \ AB \ is \ 4.3 \ kN}.$

Final Answers:	

ES226 Exam 1

Problem 3: Part B

The weight is replaced by a force vector F as shown in the figure. What direction does the vector \mathbf{F} need to act in to create equal tension forces in each of the three suspending cables,

i.e.
$$||T|| = ||T_{AB}|| = ||T_{AC}|| = ||T_{AD}||$$

Final Answers:

ES226 Exam 1 Page 6

Problem 4: Three forces and a couple act on crank ABC. For P = 35 N and $\alpha = 40^{\circ}$

Determine the equivalent system consisting of the force resultant, $\mathbf{F}_{R,}$ and the resultant moment, $\mathbf{M}_{R,}$ about point B. You can do scalar moment calcs or run some $(r \times F)$ or both.

Final Answers:	

Problem 4: Part B

Locate the point where the line of action of the resultant force, F_R , intersects a line drawn through points B and C

Final Answers:

Problem 5:

The 2.4-m-wide portion of ABCD of an inclined, cantilevered walkway is partially supported by members EF and GH.

The compressive force exerted by member GH on the walkway at H is 21.3 kN

<u>Determine the moment of that force about edge</u> <u>AD of the walkway.</u>

Note: Dimensions are a little tricky, so look carefully at the x, y, and z directions before you start.

Final Answers:	