ES226
Engineering Mechanics: Statics
Lafayette College
Engineering Division
Exam 1
Time Span: 2 hours
Closed Book. Closed Notes. Each student is allowed a single page of handwritten notes (no photocopied notes of other students allowed), pencils, erasers, straight edge and calculator, only.

Name:

Answer each question on the same page, with final answers in the box in the bottom right-hand corner of the page. (Continue on the back of the question sheet if needed).

Show all work Clearly and Neatly

Score (Max Points 100)

Problem \#1. (Max Points 20):

Problem \#2. (Max Points 20):

Problem \#3. (Max Points 20):

Problem \#4. (Max Points 20):

Problem \#5. (Max Points 20):

Problem 1: A block weighing 400 N is suspended from a spring and two cords that are attached to blocks of weights 3 W and W as shown. The cords pass over pulleys at C and D. The spring constant is $800 \mathrm{~N} / \mathrm{m}$.

Determine the value of W.

ES226 Exam 1

Problem 2: The curved rod lies in the $x-y$ plane and a force with a magnitude of $\|\mathbf{F}\|=80 \mathrm{~N}$ acts at its end as shown.

Determine the moment of this force about point 0 .

Final Answers:

Problem 3: Part A

A container is supported by three cables that are attached to a ceiling as shown.

Determine the weight W of the container knowing that the tension in cable AB is 4.3 kN .

Problem 3: Part B

The weight is replaced by a force vector F as shown in the figure. What direction does the vector \mathbf{F} need to act in to create equal tension forces in each of the three suspending cables,
i.e. $\|\mathrm{T}\|=\left\|\mathrm{T}_{\mathrm{AB}}\right\|=\left\|\mathrm{T}_{\mathrm{AC}}\right\|=\left\|\mathrm{T}_{\mathrm{AD}}\right\|$

Final Answers:

Problem 4: Three forces and a couple act on crank $A B C$.
For $\mathrm{P}=35 \mathrm{~N}$ and $\alpha=40^{\circ}$
Determine the equivalent system consisting of the force resultant, \mathbf{F}_{R}, and the resultant moment, \mathbf{M}_{R}, about point B. You can do scalar moment calcs or run some ($\mathrm{r} \times \mathrm{F}$) or both.

Final Answers:

Problem 4: Part B

Locate the point where the line of action of the resultant force, $\mathbf{F}_{\mathbf{R}}$, intersects a line drawn through points B and C

Final Answers:

Problem 5:

The 2.4-m-wide portion of $A B C D$ of an inclined, cantilevered walkway is partially supported by members EF and GH.

The compressive force exerted by member GH on the walkway at H is 21.3 kN

Determine the moment of that force about edge AD of the walkway.

Note: Dimensions are a little tricky, so look carefully at the x, y, and z directions before you start.

Final Answers:

