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Abstract. We show that the connectivity at infinity for configuration
spaces on complete graphs is determined by the connectivity of chess-
board complexes.

1. Introduction

The recent interest in braid groups on graphs was sparked by work of
Abrams and Ghrist [1, 2, 13]. In addition to highlighting the connection
to robot motion planning, these papers present non-positively curved clas-
sifying spaces for these groups. One of the striking, elementary examples of
this construction is that the space for two robots on the complete graph K5

is the closed orientable surface of genus 6. Early work on these classifying
spaces established basic topological properties, such as their Euler numbers
[11] and presentations of their fundamental groups [9, 17]. Recent progress
has, however, found it necessary to focus on special cases in order to get
concrete topological results. As a case in point, the computation of inte-
gral homology and cohomology rings was undertaken in the case where the
underlying graphs are trees [8, 10] and for 2-braid groups on planar graphs
[4].

In this paper we work with something of the opposite extreme from trees
and planar graphs, and determine the connectivity at infinity of braid groups
on complete graphs. Connectivity at infinity is essentially the study of con-
nectivity properties that persistently occur in the complements of compact
sets. For example, Rn, for n ≥ 2, is 0-connected at infinity (that is, one-
ended) and in general Rn is (n − 2)-connected at infinity. Connectivity at
infinity is a topological invariant of a group, and it has important implica-
tions from group cohomology to manifolds. If a group G admits a finite,
m-dimensional classifying space K = K(G, 1), then the universal cover K̃ is
at best (m− 2)-connected at infinity; if K̃ is (m− 2)-connected at infinity,
this implies that G is an m-dimensional duality group (see [12]).

As a corollary to our main theorem, we show that:

Corollary 1.1. Let n ≥ m ≥ 2. The group of m-robots on a complete graph
Km+n is an m-dimensional duality group if and only if n ≥ 2m− 1.
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Our paper is structured in the following way. Section 2 provides back-
ground information about configuration spaces for graphs, connectivity at
infinity, and local-to-asymptotic theorems for CAT(0) cubical complexes.
Section 3 establishes the connection between link of a vertex in configura-
tion space on a complete graph and the well known chessboard complexes.
We prove the main result about connectivity at infinity for braid groups
on complete graphs in Section 4. The key step in our argument uses es-
tablished properties of chessboard complexes and the relationship between
connectivity at infinity and connectivity of links of vertices for CAT(0) cu-
bical complexes.

2. Background

2.1. The classifying space for the group of robots on a graph.

Definition 2.1. Let G be a finite, connected, simple graph, viewed as a
simplicial complex. Let σ be vertex or edge of G. Define ∂σ be σ when σ
is a vertex, and ∂σ be its two vertices when σ is an edge. Fix a natural
number m. The discretized m-point configuration space on G, Cm(G), is
the subcomplex of G× · · · ×G︸ ︷︷ ︸

m copies

consisting of the product cells σ1 × · · · × σm

satisfying ∂σi ∩ ∂σj = ∅ for all i 6= j.

One might view Cm(G) as follows. Suppose m labelled robots are posi-
tioned at distinct vertices of G. Each robot may move from its vertex to
an adjacent vertex by traveling along an edge, with the caveat that a robot
cannot travel along an edge if there is another robot at one of the edge’s ver-
tices. Under this restriction, the set of allowed configurations of the robots
is Cm(G). The fundamental group of Cm(G) describes the collection of all
allowed motions of these robots, beginning and ending in a fixed position.
Because of the analogy with the pure braid groups, these groups are often
referred to as pure braid groups on graphs.

The fundamental group of Cm(G) is often called the group of m robots on
G or the m-strand pure braid group on G.

The space Cm(G) comes with a natural cubical structure. Vertices of
Cm(G) correspond to configurations where all the robots are located at
vertices of G; edges of Cm(G) correspond to a single robot moving along an
edge of G; squares in Cm(G) correspond to two robots moving along two
edges in G; and so on. (See Figure 1.) The fact that the resulting cubical
complex is locally CAT(0), that is it satisfies the well-known link condition,
was established by Abrams [1]:

Theorem 2.2. The space Cm(G) is a locally CAT(0) cube-complex. Hence
Cm(G) is a K(π, 1).

Remark 2.3. Because our arguments are combinatorial, we are working
with the combinatorial or discretized definition for configuration spaces on
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Figure 1. An example of a vertex, edge, square, and cube
in C3(K7). A thickened edge denotes the path travelled by a
robot.

a graph. One could take a topological perspective, working with the space:

Ctop
m (G) = {(x1, . . . , xm) | xi 6= xj if i 6= j} ⊂ G× · · · ×G .

Abrams proved that given any m and G there is a subdivision of G, G′, such
that Ctop

m (G) deformation retracts onto Cm(G′).

2.2. Topology at infinity for CAT(0) cube complexes. Because of the
connection to the classical braid groups and because some well-known exam-
ples of the complexes Cm(G) are surfaces or pseudo-manifolds, it is natural
to wonder if there are general situations where the complexes Cm(G) exhibit
manifold-like behavior.

Definition 2.4. Let X̃ be the universal cover of a finite, aspherical, CW
complex X. We say X̃ is m-connected at infinity if given any compact
C ⊂ X̃ there is a compact D ⊃ C such that any map φ : Sn → X̃ − D
extends to a map φ̂ : Bn+1 → X̃ − C for all −1 ≤ n ≤ m.

Since being (−1)-connected is the same as being non-empty, the property
of being (−1)-connected at infinity is equivalent to saying X̃ is infinite. The
property 0-connected at infinity is often called one-ended, and 1-connected
at infinity is often called simply-connected at infinity. If the complex X̃ is
a manifold of dimension d ≥ 4, then work of Stallings and Freedman shows
that being simply connected at infinity is both necessary and sufficient for
establishing that X̃ is homeomorphic to Rd.
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Connectivity at infinity is an invariant of the fundamental group. That is,
let X and Y be two K(G, 1)s (with G a fixed group). Then if the universal
cover X̃ is m-connected at infinity, then so is the universal cover Ỹ . There is
also a notion of acyclic at infinity, where one replaces the homotopical con-
dition in the definition above with the corresponding homological condition.
This homological version is then equivalent to the vanishing of cohomology
with compact supports, which is the standard way to define the notion of a
duality group. An excellent, detailed discussion of connectivity at infinity
and related notions can be found in [12].

We use the following result from [7]:

Theorem 2.5. Let X be a finite, locally CAT(0) cube-complex with univer-
sal cover X̃. If the link of every vertex in X is n-connected, and remains
n-connected when any closed simplex is removed, then X̃ is n-connected at
infinity.

There is a partial converse to this statement, originally presented in the
context of general CAT(0), piecewise-Euclidean complexes in [6]. In the
context of a cube complex, Corollary 5.3 of that paper implies the following
result.

Theorem 2.6. Let X be a finite, locally CAT(0) cube-complex with univer-
sal cover X̃, and fix an integer n, n ≥ −1. Assume the link of every vertex
in X is n-connected, and remains n-connected when any closed simplex is
removed. If the link of some vertex v has Hn+1(Lk(v)) 6= 0, then X̃ is not
(n+ 1)-connected at infinity.

When n = −1 this result provides a local method of establishing that X̃ is
not one-ended. First it must be the case that the link of every vertex is non-
empty and remains non-empty when any closed simplex is removed. Then,
if there is a vertex with a disconnected link (a link that is not 0-connected),
it follows that X̃ is not 0-connected at infinity.

3. Links in Cm(Km+n) and Chessboard Complexes

In the remainder of this paper we study Cm(Km+n), where Km+n denotes
the complete graph on m+n vertices. The central question is to understand
the connectivity at infinity of the universal cover of Cm(Km+n), denoted by

˜Cm(Km+n). Theorems 2.5 and 2.6 connect the connectivity at infinity of
˜Cm(Km+n) to connectivity properties of links of vertices. For this reason we

focus on the link of a vertex in Cm(Km+n), which we denote by Lk(m,n).
By symmetry, the links of all vertices in Cm(Km+n) are isomorphic, so the
notation is not ambiguous.

A permissible placement of rooks on an m×n chessboard is any placement
in which no two rooks are in the same row or in the same column. The set of
all permissible placements forms a partially ordered set, with the order being
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given by containment. The simplicial realization of this poset is denoted by
∆m,n. The same complex can be constructed as the matching complex on
the complete bipartite graph Km,n. The elements of the underlying poset
are edges of Km,n that “match” vertices in the two parts of the bipartite
graph, and the ordering is again by containment. The isomorphism between
these two complexes is illustrated in the middle and rightmost picture in
Figure 2.

Lemma 3.1. The link of any vertex in Cm(Km+n) is isomorphic to ∆m,n.

Proof. In Cm(Km+n), let v be the vertex associated with the configuration
where the robots are positioned at the vertices r1, · · · , rm and the available
vertices are f1, · · · , fn.

A vertex in the link of v corresponds to a movement where a robot moves
from ri to fj while the remaining m− 1 robots stay still. We denote this by
ri 7→ fj . So the vertex set of Lk(v) = {ri 7→ fj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
A set of vertices {ri1 7→ fj1 , · · · , rit 7→ fjt} forms a simplex in Lk(v) if
ip 6= iq and jp 6= jq when p 6= q. The function that replaces ri 7→ fj by (i, j)
provides an isomorphism with the chessboard complex ∆m,n. �

   
 
 

      

 

 
 
 

      

 
 
 
 
 
 

  

    
 
 

     

Figure 2. A 2-simplex in Lk(3, 4) and its associated 2-
simplices in the chessboard and matching complexes.

Example 3.2. Figure 2 indicates three representations of the same 2-
simplex in the link of a vertex in C3(K7): as coming from a cube in C3(K7),
as a 2-simplex in the matching complex of K3,4, and as a 2-simplex in ∆3,4.
We note that ∆3,4 is a torus, and therefore that C3(K7) is a pseudo-3-
manifold where the links of vertices are tori.

The connectivity degree of chessboard complexes has been an interest-
ing question for combinatorialists. Björner, Lovász, Vrećica, and Živaljević
proved a connectivity bound [5], which was eventually shown to be sharp
(see [18] and [19]). The result is:

Theorem 3.3. Let vm,n = Min
{
m,n,

⌊
m+n+1

3

⌋}
. Then ∆m,n is (vm,n−2)-

connected but not (vm,n − 1)-connected.

Remark 3.4. It should be noted that the topology of the chessboard com-
plex ∆m,n is not as simple and intuitive as its rather elementary definition
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might suggest. It is known that torsion can be present in the integral homol-
ogy of these spaces. For example, H2(∆5,5; Z) = Z3. (See [14, 15, 16, 18, 19]
and the references cited there.)

4. Connectivity at infinity for braid groups on complete
graphs

We cannot yet bundle together the local-to-asymptotic result quoted in
Theorem 2.5 with the connectivity result quoted in Theorem 3.3 to imme-
diately establish our main result, Theorem 4.8. Theorem 2.5 requires not
only that the links of vertices have certain connectivity properties, but also
the punctured links need to be sufficiently connected in order to ensure con-
nectivity at infinity. In the remainder of this section we explain how results
in the combinatorics literature establish the necessary conditions.

Let ∆m.n−σ denote the simplicial complex obtained when a closed simplex
σ is removed from ∆m,n. Here we allow the possibility that the simplex
removed could be the empty simplex. We note that there is an action by
the product of symmetric groups Σm ⊕ Σn on ∆m,n that is transitive on
k-simplices for any fixed k. This action induces a combinatorial bijection
between ∆m,n−σ and ∆m,n−σ′ whenever σ and σ′ have the same dimension.

Our approach to establishing the connectivity properties of punctured
links is to examine one approach to establishing connectivity properties of
the chessboard complexes. This approach focuses on the notion of vertex
decompositions of simplicial complexes.

Definition 4.1. A simplicial complex S is vertex decomposable if it is pure
and it is either empty, or it has a vertex v such that S − v and Lk(v) are
both vertex decomposable.

Note that if S is vertex decomposable, then there is a sequence of vertices
{v1, v2, . . .} such that S, S \ {v1}, S \ {v1, v2}, etc., are all vertex decompos-
able. This property is of interest because of the following well-known chain
of implications:

Vertex Decomposable ⇒ Shellable ⇒ Homotopy Cohen-Macaulay
A simplicial complex S is homotopy Cohen-Macaulay if given any simplex

σ ⊂ S, including σ = ∅, Lk(σ) is (Dim(Lk(σ))− 1)-connected.
We will make frequent use of the following Lemma that is immediate from

the definition of vertex decomposability.

Lemma 4.2. Let S be a simplicial complex that is vertex decomposable. If
the decomposition begins with v1, v2, v3, . . . and {v1, . . . , vk} span a simplex
σ ⊂ S, then S \ σ is vertex decomposable. Further, S \ σ is homotopy
Cohen-Macaulay.

In order to extend the connectivity results from ∆m,n to ∆m,n−σ, we will
use the following results—Theorems 4.3 and 4.5—about chessboard com-
plexes (see [20] and [3]):
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Theorem 4.3. Let m ≥ 2 and n ≥ 2m− 1. Then ∆m,n is vertex decompos-
able.

The proof of this result in [20] constructs a fairly explicit vertex de-
composition of ∆m,n. For 1 ≤ i ≤ m, the i-th vertex in the ordering is
(m+ 1− i, 2(m+ 1− i)− 1). Thus if σ is a k-dimensional simplex, we may
by symmetry assume

σ = {(m, 2m− 1), (m− 1, 2m− 3), . . . , (m− k, 2m− 2k − 1)}.
If follows from the definition of vertex decomposability that ∆m,n − σ is
vertex decomposable. Using Lemma 4.2 we get

Corollary 4.4. Let m ≥ 2, n ≥ 2m − 1 and suppose σ is any simplex in
∆m,n, possibly the empty simplex. Then ∆m,n − σ is vertex decomposable.

Theorem 4.5. Let 2m − 2 ≥ n ≥ m ≥ 2 and k = bm+n+1
3 c. Then ∆(k−1)

m,n

is vertex decomposable.

Similar to the argument above, we may use the vertex decomposition
of ∆(k−1)

m,n , as explained in [3], to show that for any simplex σ ⊂ ∆(k−1)
m,n ,

∆(k−1)
m,n −σ is vertex decomposable. The essential fact is that the initial ver-

tices used in the vertex decomposition are the vertices describing a maximal
dimensional simplex in the complex. Again by Lemma 4.2 we get

Corollary 4.6. Let 2m− 2 ≥ n ≥ m ≥ 2 and k = bm+n+1
3 c. Suppose σ is

any simplex in ∆m,n, possibly the empty simplex. Then ∆(k−1)
m,n −σ is vertex

decomposable.

Theorem 4.7. Let m,n ≥ 2 and vm,n = Min
{
m,n,

⌊
m+n+1

3

⌋}
. Let σ be

any simplex in ∆m,n. Then ∆m,n − σ is (vm,n − 2)-connected.

Proof. By symmetry, assume n ≥ m.
If n ≥ 2m−1, vm,n = m. By Corollary 4.4, ∆m,n−σ is vertex decompos-

able and thus Cohen-Macaulay, which implies that H̃i(∆m,n − σ) vanishes
for i ≤ m− 2. Therefore, ∆m,n − σ is (m− 2)-connected.

If n ≤ 2m− 2, let k = bm+n+1
3 c = vm,n. By Corollary 4.6, ∆(k−1)

m,n − σ is
vertex decomposable and thus Cohen-Macaulay. Consequently, for i ≤ k−2,
H̃i(∆

(k−1)
m,n −σ) = 0. As a result, ∆(k−1)

m,n −σ is (k−2)-connected, so ∆m,n−σ
is (k − 2)-connected. �

We now state our main result.

Theorem 4.8. Let m,n ≥ 2, let d = Min {m,n}, and let

vm,n = Min

{
m,n,

⌊
m+ n+ 1

3

⌋}
.

Then ˜Cm(Km+n) is a d-dimensional complex that is (vm,n− 2)-connected at
infinity but not (vm,n − 1)-connected at infinity.
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Proof. The claim about the dimension of ˜Cm(Km+n) is immediate from

the construction of Cm(Km+n). The claim that ˜Cm(Km+n) is (vm,n − 2)-
connected at infinity follows from Theorem 2.5, together with Lemma 3.1,
Theorem 3.3, and Theorem 4.7. The claim that ˜Cm(Km+n) is not (vm,n−1)-
connected at infinity follows from Theorem 2.6, together with Lemma 3.1,
Theorem 3.3, and Theorem 4.7. �

We can now restate the result highlighted in the introduction.

Corollary 4.9. Let n ≥ m ≥ 2. Then the group of m robots on Km+n is
an m-dimensional duality group if and only if n ≥ 2m− 1.

Remark 4.10. Note that there is a complete symmetry between the vertices
occupied by the robots and the unoccupied vertices, implying a symmetry
between the roles of m and n. This explains, in particular, the symmetry
in Theorem 4.8. Similarly, it can be used to derive the next result, which is
something of a dual of Corollary 4.9.

Corollary 4.11. Let m ≥ n ≥ 2. Then the group of m robots on Km+n is
an n-dimensional duality group if and only if m ≥ 2n− 1.

We conclude by discussing the case of robots on K8. The corollaries above
imply the following results.

Number of robots Dimension and connectivity

(or strands) on K8 at infinity for C̃m(K8)
1 or 7 1-dim’l and infinite
2 or 6 2-dim’l and one-ended
3 or 5 3-dim’l and simply

connected at infinity
4 4-dim’l but only simply

connected at infinity
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