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a b s t r a c t

In a geometry, a maximal cap is a collection of points of largest size no three of which are
collinear. In AG(4, 3), maximal caps contain 20 points; the 81 points of AG(4, 3) can be
partitioned into 4 mutually disjoint maximal caps together with a single point P , where
every pair of points that makes a line with P lies entirely inside one of those caps. The caps
in a partition can be paired up so that both pairs are either in exactly one partition or they
are both in two different partitions. This difference determines the two equivalence classes
of partitions of AG(4, 3) under the action by affine transformations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A k-cap (or briefly a cap) in AG(n, 3) is a set of k points containing no three points on a line; a maximal cap is a cap of
the largest possible size. A cap is complete if it is not a subset of a larger cap. There are caps in AG(n, 3), n ≥ 3, which are
complete but smaller than a maximal cap.

The elements of AG(n, 3) can be written as n-tuples with coordinates in Z3, so the full transformation group of AG(n, 3)
is the affine group Aff (n, 3) = GL(n, 3) n Zn

3, where (A, b⃗) represents the transformation v⃗ → Av⃗ + b⃗. Alternatively, a
transformation permutes the points of AG(n, 3) by mapping n + 1 affinely independent set of points to any n + 1 affinely
independent points. The applet Swingset, developed by Coleman, Hartshorn, Long and Mills [4] provides a nice way to
visualize these affine transformations using the card game SET R⃝ [16]. Caps are invariant under the action of Aff (n, 3).

There is a large body of work by many authors examining the maximal (and complete) caps in PG(n, 3) and AG(n, 3).
The maximal caps in the geometries PG(4, 3) and AG(4, 3) were first enumerated in 1970, in a paper (written in Italian)
by G. Pellegrino [14]. In 1983, R. Hill [10] proved that all maximal caps in AG(4, 3) are affinely equivalent. Aided by the
visualization provided by SET R⃝, a rich geometric structure to these caps has been discovered. A. Forbes [8] found that the 81
points in AG(4, 3) can be partitioned into 4 mutually disjoint maximal caps with a single point a⃗ left. G. Gordon [9] realized
that any pair of points that make a line with a⃗ (there are 40 such pairs) lie in one of the caps in the partition. It is the goal of
this paper to explore more of the structure of these partitions.

The notion of partitioning finite affine or projective spaces into caps has been studied as well. There is a good summary
from 2003 in Section 13, ‘‘Large sets of caps’’, in Bierbrauer’s survey on caps [2]. However, in most cases, authors were not
looking exclusively at maximal caps. In [11], B. Kestenband looked at partitions of PG(2n, q2) into disjoint caps, although
those caps are not necessarily maximal (or even complete). Then, in [12], he extended that to AG(n, q2), finding a partition
of that space into ‘‘affine caps’’, which are unions of disjoint affine subgeometries so that no three points are collinear unless
they contained in the same affine subgeometry. Ebert [6] extended these results to a partition of PG(2n − 1, q) into caps of
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Table 1
All known sizes of maximal caps in AG(n, 3).

AG(1, 3) AG(2, 3) AG(3, 3) AG(4, 3) AG(5, 3) AG(6, 3)

2 4 9 20 45 112

Fig. 1. AG(2, 3) with one set of diagonal lines shown.

size q2+1 (n even, n ≥ 2), which gives rise to a partition of PG(3, 3) into four caps of size 10. Because AG(3, 3) is obtained by
deleting a plane from PG(3, 3), which could contain at most 4 points of any cap, Ebert’s partition will give rise to a partition
of AG(3, 3) into four caps. In Section 2, we give a partition of AG(3, 3) into three disjoint maximal caps. Theorem 22 in
Bierbrauer’s paper states that if PG(k, 3) can be partitioned into 2l caps, then AG(k + 2, 3) can be partitioned into 3l caps.
This can be used to give a partition of AG(4, 3) into 6 caps. We improve the partition to 5 caps, 4 of which are maximal.

The symmetry group ofAG(n, 3) acts transitively onmaximal caps as sets; here,we show that the action is not 2-transitive
on disjoint caps. Further, we show that the symmetry group does not act transitively on partitions of the affine geometry into
maximal caps, andwe find the equivalence classes of the action.Wewill look at partitions of AG(n, 3), for n = 2, 3 and 4; we
show in Section 2 that the action of the symmetry group is transitive on partitions for AG(2, 3) and AG(3, 3). In Section 3, we
show that the partitions in AG(4, 3) are in two affine equivalence classes in AG(4, 3) and isolate the fundamental difference
between those classes.

Finally, Aff (4, 3) is of order 1,965,150,720. In Section 4, we briefly examine various subgroups of this group that fix
particular caps and partitions as sets.

2. Caps in AG(n, 3), with a focus on n < 4

Table 1 enumerates the known sizes of maximal caps in AG(n, 3) for n ≤ 6, the only sizes known at this time.
The sizes for maximal caps in dimensions 1 and 2 can be found by inspection. The size for dimension 3 was first analyzed

by Bose in 1947 [3]. In 1970, Pellegrino provided the first proof that there are 20 points in a maximal cap in AG(4, 3) [14] by
finding caps in PG(4, 3), one of which lies entirely in an induced AG(4, 3). Edel, Ferret, Landjev and Storme first classified the
maximal caps in AG(5, 3) in 2002 [7]. The results in dimensions 4 and 5 came from looking at caps in the projective space
PG(n, 3), and removing points. In 2008, A. Potechin found the size of the maximal caps in AG(6, 3) [15]; this result came
from looking at caps in AG(5, 3) and analyzing how those can extend to the higher dimension. It is still not known how large
maximal caps are in dimensions larger than 6. In all dimensions where the sizes of maximal caps are known, all maximal
caps are affinely equivalent. Hill first showed this for AG(4, 3) in 1983 [10]; this result has been extended to all dimensions
where the sizes of maximal caps are known in the papers that first identified the maximal caps.

The points in AG(n, 3) can be realized as n-tuples of elements of F3. In this case, as Davis andMaclagan [5] point out, lines
are easy to identify: three points in AG(n, 3) are collinear if and only if their sum is 0⃗ mod 3.

In dimensions 2 and 4, themaximal caps consist of pairs of points from a pencil of lines through a fixed point; we call that
point the anchor point. In dimensions 3 and 5, maximal caps sum to 0⃗ mod 3. In dimension 3 and lower, we can find results
about caps simply by inspection. In this paper, we extend this direct analysis to dimension 4. We begin in dimension 2.

To aid in the visualization, we will use the same scheme as is used by Davis and Maclagan [5]: AG(2, 3) is represented by
a 3 × 3 grid, as pictured below in Fig. 1. There are 12 lines in AG(2, 3): 3 horizontal, 3 vertical, 3 diagonals as pictured, and
the 3 diagonals in the opposite direction.

Proposition 2.1. In AG(2, 3), a maximal cap has 4 points and consists of two lines through an anchor point, with the anchor
removed; all maximal caps are affinely equivalent. AG(2, 3) can be partitioned into two disjoint caps together with their common
anchor point. Any two partitions are affinely equivalent.

Proof. The structure of themaximal caps and their affine equivalence can easily be determined by inspection. The four lines
through the point 0⃗ (in the upper left) are shown in Fig. 2 as a pair of points of the same size and shading. Any two of these
pairs will form amaximal cap. The anchor is uniquely determined by the cap, since the sum of the coordinates for the points
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Fig. 2. A partition of AG(2, 3) into 4-caps with anchor point in the upper left.

Fig. 3. AG(3, 3) with two sets of collinear points shown.

in a cap gives the coordinates for the anchor. Thus, since any point has four lines through it, the remaining four points must
be a cap with the same anchor. An affine transformation is determined by the images of the anchor, one large black point
and one small black point, so any two caps are equivalent; since the partition is determined by a cap, so all partitions are
affinely equivalent as well. �

Wewill represent AG(3, 3) by three 3×3 grids. Two examples of lines are shown in Fig. 3. When coordinatizing AG(3, 3),
we can have the first coordinate give the AG(2, 3) subgrid, and the last two give the pointwithin that subgrid. Thus, a linewill
either consist of three points in one subgrid of AG(3, 3) in the same position as a line from AG(2, 3) (so the first coordinates
will be the same), or three points with one in each of the three subgrids such that, if you superimpose the three subgrids,
the points are either in the same position (the open circles in Fig. 3: the last two coordinates will be the same) or are in the
position as a line in AG(2, 3) (the solid dots in Fig. 3).

A set of q2 + 1 points with no 3 on a line is called ovoid in PG(3, q); at each point P of the ovoid, all lines through P that
meet the ovoid only at P lie in a single (tangent) plane. If that plane is deleted, we get AG(3, q), with a cap of size q2. So, for
AG(3, 3), a maximal cap has 9 points.

In AG(3, 3), the caps sum to 0⃗, and there is no anchor. AG(3, 3) can be partitioned into 3 disjoint maximal caps. It is
interesting to note that all maximal caps in AG(5, 3) have 45 points, which also sum to 0⃗; could it always be true that
maximal caps sum to 0⃗ mod 3 in odd dimensions? However, AG(5, 3) cannot have a similar decomposition into disjoint
caps, as 45 does not divide 243.

Proposition 2.2. (1) In AG(3, 3), all maximal caps are affinely equivalent; the coordinates for a maximal cap sum to 0⃗ mod 3.
(2) AG(3, 3) can be partitioned into three mutually disjoint maximal caps. Every maximal cap in AG(3, 3) is in a unique partition

of AG(3, 3); thus, all partitions are equivalent.

Proof. (1) An example of a maximal cap in AG(3, 3) is pictured in Fig. 4; label these points b⃗1, . . . , b⃗9. The reader can verify
that there are no lines in the set of points and that the sum of coordinates is 0⃗ mod 3.

In 1947, R.C. Bose first proved that the size of a maximal cap in PG(3, s) is s2 + 1 when s is a power of an odd prime [3]
and used a quadric surface to find a cap of that size. He showed that certain planes intersect the cap in a single point, so
deleting that plane gives a cap in AG(3, q) of size q2. In 1955, Barlotti [1] and Panella [13] independently showed that, when
q is odd, all maximal caps in PG(3, q) are the q2 + 1 points of an elliptic quadric, so all are projectively equivalent. This gives
us the rest of (1).

(2) Fig. 5 shows a decomposition of AG(3, 3) into 3 disjoint maximal caps. Notice that one of the caps is b⃗1, . . . , b⃗9. Since
all 9-caps of AG(3, 3) are affinely equivalent, it suffices to show that this partition is the only partition containing b⃗1, . . . , b⃗9.

Given anymaximal cap C and 3 parallel planes of AG(3, 3), C must intersect those 3 planes in sets of size 4, 4 and 1 or 3, 3
and 3. (The only other possibility would be for C to intersect those planes in 4, 3 and 2 points, since a cap cannot have more
than 4 points in a plane. However, we can find an affine transformation so that each plane corresponds to one coordinate
of the vectors; if the cap intersects those 3 planes in 4, 3 and 2 points, the sum of the cap for that coordinate cannot be
0 mod 3.) Thus, given C = {b⃗1, . . . , b⃗9}, for any partition containing C , the other two caps must intersect the three planes
in 1 or 4 points. In the first two planes, if another cap has a 4-point intersection with the plane, then viewing the plane as
AG(2, 3), the anchor for that cap must be the same as the anchor for the 4 points of C , so the only possibility for the first 2
planes is what is shown. Thus, the other two caps comprising the partition are completely determined. �

3. Disjoint and intersecting maximal caps of AG(4, 3)

We will represent AG(4, 3) by a 9 × 9 grid, which we can view as three copies of AG(3, 3) or nine copies of AG(2, 3)
(arranged as AG(2, 3)). A line will consist of three points that appear either in the same 3× 3 subgrid (as a line in AG(2, 3)),
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Fig. 4. A maximal 9-cap in AG(3, 3).

Fig. 5. AG(3, 3) partitioned into 3 disjoint maximal caps.

Fig. 6. A maximal cap S in AG(4, 3); the anchor point is in the upper left.

or in three subgrids that correspond to a line in AG(2, 3) so that, when the subgrids are superimposed, the points are either
in the same position or they are a line in AG(2, 3). When coordinatizing AG(4, 3), we can have the first two coordinates give
the AG(2, 3) subgrid, and the second two give the point within that subgrid. A maximal cap in AG(4, 3) contains 20 points
in 10 pairs, where each pair completes a line with the anchor point; one such cap S is shown in Fig. 6. All maximal caps are
affinely equivalent (Pellegrino [14] and Hill [10]). Considering the points as 4-tuples, S is the first cap lexicographically with
0⃗ as its anchor point.

Lemma 3.1. For any maximal cap S in AG(4, 3), there exists an anchor point a⃗, so that the cap consists of 10 pairs of points, each
of which forms a line with a⃗. The sum of the coordinates of the points in S is −a⃗ mod 3, so the anchor point is unique.

Proof. One can verify that the set S pictured in Fig. 6 contains no lines, so it must be a maximal cap. S consists of 10 pairs of
points, where the third point completing the line for each pair is the point in the upper left, 0⃗. Since any other maximal cap
is affinely equivalent to S, the same must be true for all caps.

Further, suppose that S1 is an arbitrarymaximal capwith an anchor point a⃗. Since the coordinates of three collinear points
sum to 0⃗ mod 3, if the coordinates for the points in S1 are summed with 10a⃗, the result must be 0⃗ mod 3. Thus, the sum of
the points in S1 is −a⃗ mod 3. �

The following lemma was originally verified by Forbes via a computer search; we give a direct proof. Note that an affine
transformation fixing the point corresponding to 0⃗ is a linear transformation. This will simplify some of our arguments.

Lemma 3.2. There are 8424maximal caps with anchor 0⃗; they are all linearly equivalent.

Proof. All maximal caps in AG(4, 3) are affinely equivalent. The elements of GL(4, 3) send caps with anchor 0⃗ to caps with
anchor 0⃗. Thus, by the Orbit–Stabilizer Theorem, we can count the number of caps with anchor 0⃗ by counting the matrices
in GL(4, 3) that send the cap S to itself. Since a linear transformation is determined by its action on a basis, we will find such
a basis among the vectors corresponding to points in S. If we order the points of S (as pictured in Fig. 6) lexicographically as
c1, −c1, c2, −c2, . . . , c10, −c10, we can see that c1, c2, c3 and c5 are linearly independent. So we will determine a matrix in
GL(4, 3) fixing S by specifying the images of those vectors.

Looking at Fig. 6, c1 can be sent to any of the 20 points. c2 can be sent to any of the 18 points that do not include the image
of c1 and −c1. The image of c3 is restricted by the fact that once it is chosen, all points from S in the hyperplane determined
by c1, c2 and c3 must go to points in S as well, since all points in that hyperplane are linear combinations of c1, c2 and c3. Not
all choices for the image of c3 will work. Similarly, the image of c5, the last point in S not in that hyperplane, does not have
full freedom. The reader can verify that, once the image of c1 and c2 are chosen, there are only 8 possibilities for the images
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Fig. 7. A partition of AG(4, 3) into 4 disjoint maximal caps; the anchor point 0⃗ is in the upper left.

of c3 and c5. Thus, there are 20 · 18 · 8 = 2880 matrices that fix S as a cap. Thus, there are |GL(4, 3)|/2880 = 8424 caps with
anchor 0⃗. �

The next theorem shows that AG(4, 3) can be partitioned into 4 disjoint maximal caps together with their common
anchor, just as AG(2, 3) was. This fact was first noticed by Forbes [8] and Gordon [9].

Theorem 3.3. AG(4, 3) can be partitioned into 4mutually disjoint maximal caps together with their common anchor a⃗.

Proof. One such partition, where S pictured above is one of the maximal caps, is shown in Fig. 7. The reader can verify that
the claims in the theorem hold for this partition. �

The goal of the rest of this paper is to study these partitions.
The next proposition has been verified by computer search. It would be instructive to have a geometric proof of this fact,

as it implies something important about the structure of maximal caps. The proposition is very useful in understanding the
structure of the partitions, for it shows that the partitions in Theorem 3.3 are the only kind of partitions of AG(4, 3) that can
include disjoint maximal caps.

Proposition 3.4. Any two maximal caps with different anchor points intersect in at least one point.

Proof. Because any two maximal caps are affinely equivalent, it suffices to verify that a given maximal cap has nonempty
intersection with all caps with all other anchor points. Let S be the maximal cap with anchor 0⃗ pictured in Fig. 6. Let
{S1, . . . , S8424} be the set of 8424 maximal caps with anchor 0⃗. For a cap Si in that set, if we add a⃗(mod 3) to each point
in Si (which we write as Si + a⃗), we get a cap with anchor a⃗. Thus, {Si + a⃗} is the set of 8424 maximal caps with anchor a⃗.

A computer check ran through all 80 possible anchor points a⃗ and verified that S and Si + a⃗ had nonempty intersection
for 1 ≤ i ≤ 8424. �

The same computer check verified the first claim in the next proposition. The last claims in the proposition were shown
by a different computer search by Forbes [8].

Proposition 3.5. Let S be a maximal cap with anchor 0⃗. There are 198 maximal caps (necessarily with anchor 0⃗) disjoint from
S. There are 216 different partitions of AG(4, 3) containing S as a block; each of the 198 caps disjoint from S is in at least one of
the 216 partitions.

While the group Aff (n, 3) acts transitively on maximal caps, there are three equivalence classes for pairs (S1, S2) of
disjoint caps. Consider Figs. 8 and 9. Let S be themaximal cap with anchor 0⃗ in large black dots (this is the same cap pictured
in Fig. 6). Three different caps C disjoint from S are pictured in large gray dots in Figs. 8(a), (b) and 9. In each case, there are
40 points not in {0⃗} ∪ S ∪ C . In Fig. 8(a), those points can be partitioned into 2 disjoint maximal caps in only one way; in
Fig. 8(b), they can be partitioned into 2 disjoint maximal caps in two different ways. In Fig. 9, they can be partitioned into 2
disjoint maximal caps in six different ways.

Let S be a maximal cap with anchor 0⃗. By Proposition 3.5, any of the 198 maximal caps disjoint from S is in a partition.
A computer check has verified that there are 36 maximal caps disjoint from S that appear in only one partition of AG(4, 3)
containing S; there are 90 maximal caps disjoint from S that appear in exactly two partitions of AG(4, 3) containing S; and
there are 72 maximal caps disjoint from S that appear in exactly six partitions of AG(4, 3) containing S. This leads to the
following definition.

Definition. Given a maximal cap S, let S ′ be a cap (necessarily with the same anchor point) disjoint from S. If {S, S ′
} are in

one (respectively two, six) partition(s), we say S ′ is S-1-completable (respectively S-2-completable, S-6-completable).

Thus, if a maximal cap S is chosen, the 198 maximal caps disjoint from S are not all affinely equivalent when S is fixed as
a set. The next proposition summarizes how a linear transformation that fixes S as a set permutes the maximal caps disjoint
from S and the partitions containing S. These results were verified by applying linear transformations to caps and partitions.
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(a) 1-completable. (b) 2-completable.

Fig. 8. Partitions of AG(4, 3) containing S (in large black dots) and (a) a 1-completable cap and (b) a 2-completable cap (in large gray dots).

Fig. 9. Partitions of AG(4, 3) containing S (in large black dots) and a 6-completable cap (in large gray dots).

Proposition 3.6. Let S be a maximal cap with anchor 0⃗, and let T be the group of linear transformations of AG(4, 3) that fix S
as a set; let T ∈ T.

(a) If Si is S-i-completable, then so is T (Si), for i = 1, 2, 6.
(b) Any partition of AG(4, 3) containing S will have two S-6-completable caps and either an S-1-completable cap or an

S-2-completable cap.
(c) The 216 partitions of AG(4, 3) containing S are in two different equivalence classes E1 and E2 under the action of T.

E1 contains 36 partitions that consist of {{0⃗}, S, S1, S61, S ′

61}, where S1 is S-1-completable and S61 and S ′

61 are both
S-6-completable. E2 contains 180 partitions that consist of {{0⃗}, S, S2, S62, S ′

62}, where S2 is S-2-completable and S62 and
S ′

62 are both S-6-completable.
(d) T acts transitively on E1 and acts transitively on E2. If Π = {{0⃗}, S, A, B, C} and Π ′

= {{0⃗}, S, A′, B′, C ′
} and either Π, Π ′

∈ E1 with A and A′ S-1-completable, or Π, Π ′
∈ E2, with A′ and A′S-2-completable, then half the matrices in T that fix S

and send A to A′ (and thus sent Π to Π ′) send B to B′ and C to C ′ and half send B to C ′ and C to B′.
(e) An S-6-completable cap appears in exactly one partition in E1 and in five partitions in E2.

We have been considering partitions containing a particular maximal cap S with anchor 0⃗. Because all maximal caps are
affinely equivalent, this was sufficient (and much more convenient) for analyzing the structure of the partitions and the
group action. We now broaden our perspective to consider all partitions with anchor 0⃗, which will extend by translation to
all partitions.

Howmany partitions are there with anchor 0⃗? These partitions are not all linearly equivalent, so howmany equivalence
classes are there? There are 8424 caps we could have chosen as our fixed cap and 216 partitions containing that cap, and
multiplying these numbers counts each partition 4 times, so there are 454,896 partitions with anchor 0⃗. These partitions are
acted on by the full general linear group, GL(4, 3), which has order 24,261,120. Because 454,896 does not divide 24,261,120,
the partitions must be in at least two equivalence classes. To understand these equivalence classes, we need to understand
how the caps in the partitions behave with respect to each other.

Let {{0⃗}, A, B, C,D} be a partition of AG(4, 3) into 4 mutually disjoint maximal caps together with their anchor point.
Clearly, if B is A-1-completable (respectively A-2-completable, A-6-completable), then A is B-1-completable (respectively
B-2-completable, B-6-completable). This motivates the next definition.

Definition. Let {{0⃗}, A, B, C,D} be a partition of AG(4, 3) into 4 mutually disjoint maximal caps together with their anchor
point.We say {A, B} is a 1-completable pair (respectively a 2-completable pair) if the set {A, B} appears in exactly one partition
(respectively exactly two partitions).

Suppose that {{0⃗}, A, B, C,D} is a partition where C and D are A-6-completable. The next lemma shows that C and
D are themselves a 1-completable pair or a 2-completable pair. Further, a partition of AG(4, 3) into 4 mutually disjoint
maximal caps and their anchor pointmust consist of two pairs of caps, where either both pairs are 1-completable or both are
2-completable. (Note that this means that the other pair has both caps S-6-completable with respect to either cap S in the
first pair.)
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Lemma 3.7. Let {{0⃗}, A, B, C,D} be a partition of AG(4, 3) into 4 mutually disjoint maximal caps together with their anchor
point.

(1) If B is A-1-completable or A-2-completable, then D is C-1-completable or C-2-completable.
(2) Let {{0⃗}, A, B, C,D} be a partition of AG(4, 3) into 4 mutually disjoint maximal caps together with their anchor point. Then

{A, B} is a 1-completable pair if and only if {C,D} is a 1-completable pair. Thus, {A, B} is a 2-completable pair if and only
if {C,D} is a 2-completable pair.

Proof. (1) Suppose that B is A-1-completable or A-2-completable. If we consider the partition {{0⃗}, B, A, C,D} and think of
B as the fixed maximal cap, we have a partition that can contain only one B-1- or B-2-completable cap, and since A is in
only one or two partitions with B, we must have that C and D are both B-6-completable, so B is also C-6-completable (and
D-6-completable). Since both A and B are 6-completable with respect to C and D, then considering the partition as fixing C ,
it must also be true that C and D are 1- or 2-completable with respect to each other.

(2) Given the partition {{0⃗}, A, B, C,D}, assume that {A, B} is a 1-completable pair. Then C is 6-completable with respect
to A. Let Πi = {{0⃗}, A, Bi, C,Di}, 2 ≤ i ≤ 6 be the five additional partitions containing A and C . Then B is the unique
1-completable cap with respect to A among those partitions (by Proposition 3.6(e)), so WLOG, {A, B2}, . . . , {A, B6} are
2-completable pairs.

By Proposition 3.6(d), there are linear transformations Ti fixing A and sending Π2 to Πi, i = 3, . . . , 6 that fix C as well.
Shifting our point of view so thatwe are thinking of these partitions as fixing C , by Proposition 3.6(a) and (e), the existence of
the transformations Ti imply thatD2, . . . ,D6 must be 2-completable with respect to C , so {C,D} is a 1-completable pair. This
means that the pairing of caps in any partition must have either two 1-completable pairs or two 2-completable pairs. �

We can now put these results together to give the equivalence classes of partitions of AG(4, 3) with an arbitrary anchor
point. The affine group acting on the elements of AG(4, 3) is Aff (4, F3) ∼= GL(4, 3)nAG(4, 3). This action sends caps to caps,
so it also sends partitions to partitions. Thus, we can extend the structures we have found for partitions with anchor 0⃗ to all
possible partitions of AG(4, 3).

Theorem 3.8. The partitions of AG(4, 3) into 4 mutually disjoint maximal caps and the associated anchor point a⃗ are in
two equivalence classes under the action of the affine group Aff (4, 3). One equivalence class consists of partitions with
two 1-completable pairs, and the other consists of partitions with two 2-completable pairs.

Proof. From Lemma 3.7, all partitions consist of two 1-completable pairs or two 2-completable pairs. Extending Proposi-
tion 3.6(a), if we see that if {{0⃗}, A, B, C,D} and {{a⃗}, A′, B′, C ′,D′

} are two partitions and (T , a⃗) is an element of Aff (4, 3), tak-
ingA toA′, etc., thenB is 1-completablewith respect toA if and only ifB′ is 1-completablewith respect toA′. So, 1-completable
pairs must go to 1-completable pairs, and 2-completable pairs must go to 2-completable pairs. Thus, one equivalence class
under the action of Aff (4, 3) is the set of partitions containing two 1-completable pairs; the other is the set of partitions
containing two 2-completable pairs. �

4. Subgroups of the affine group acting on partitions

The full automorphismgroup of AG(4, 3) is the group of affine transformations, the affine group Aff (4, 3) = GL(4, 3)nZ4
3.

This group is of order 1,965,150,720. Consider 0⃗ in AG(4, 3) and its stabilizer GL(4, 3), of order 24,261,120. Since Aff (4, 3)
is 2-transitive on points in AG(4, 3), GL(4, 3) is transitive on points. GL(4, 3) is transitive on caps with anchor 0⃗, but not
2-transitive on caps with anchor 0⃗: while we can send any cap C with anchor 0⃗ to another cap C ′ with anchor 0⃗, we can
only send C-1 completable (respectively C-2-completable, C-6-completable) caps to C ′-1 completable (respectively C ′-2-
completable, C ′-6-completable) caps, and that action extends to the action of Aff (4, 3) on all caps. Thus, without loss of
generality, we can understand the full group action by considering the stabilizer G of one particular maximal cap S as a set
(so G also necessarily stabilizes 0⃗), a subgroup of size 2880.

The results in this section were found using Mathematica [18] to compute with matrices and GAP [17] to analyze the
structure of the groups of matrices. Recall, E1 is the set of partitions containing a particular cap S (with anchor point 0⃗),
an S-1-completable cap and a second 1-completable pair (where both caps in that pair are S-6-completable); E2 is the set
of partitions containing S, an S-2-completable cap and another 2-completable pair (where both caps in that pair are S-6-
completable).

G is transitive on the partitions in E1 and transitive on the partitions in E2. The subgroup G1 of transformations of
determinant 1 is transitive on the partitions in E1 but not transitive on the partitions of E2. If Π2 is a partition in E2, then
{T (Π2) | T ∈ G1}, is half of the partitions of E2, and each S-2-completable cap appears exactly once in that set. This means
that each 2-completable cap also appears exactly once in {T ′(Π2) | T ′

∈ G − G1}.
Let Π1 be a partition in E1 and let S1 be the S-1-completable cap in Π1. There is a subgroup H of G of size 40 stabilizing

the individual caps of Π1 as sets. These transformations are all of determinant 1. H is nonabelian and has a unique subgroup
isomorphic to Z20 and so is isomorphic to Z20 o Z2. There are also 40 transformations that stabilize S and S1 as sets and
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switch the two S-6-completable caps in the decomposition; these are all of determinant 2. Thus there is a group of order 80
stabilizing S and S1 as sets.

Let Π2 be a partition in E2 and let S2 be the S-2-completable cap in Π2. There is a subgroup K of G of size 8 fixing the
individual caps of Π2 as sets; these transformations are all of determinant 1. K is isomorphic to Z4 × Z2. There are also 8
transformations that stabilize S and S2 as sets and switch the two S-6-completables in the decomposition; these are also all
of determinant 1. This group of order 16 fixing Π2 as a collection of caps is isomorphic to Z4 o Z4. There is another set of 16
linear transformations that stabilize S and S2, but which send the two S-6-completable caps inD2 to the other 2-completable
pair that appears in a partitionwith S and S2. These transformations all have determinant 2. The group of order 32 stabilizing
S and S2 is isomorphic to (Z8 × Z2) o Z2.

Let S6 be S-6-completable. Then exactly one of the partitions containing S and S6 has an S-1-completable cap, from
Proposition 3.6(e). The subgroup of G fixing S and S6 is the same subgroup of order 40 that fixes S and the unique S-1-
completable cap associated with S6.

Finally, G has 144 elements of order 5, so there are 36 distinct subgroups isomorphic to Z5. Each of these subgroups fixes
a unique element of E1. Two elements of order 5 generate the subgroup containing all the elements of order 5, which is
isomorphic to A6.

How these subgroups permute the partitions and the 1- and2-completable pairs could prove instructive in understanding
the geometric structure that distinguishes the two classes of partitions.
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