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Abstract. Derangements are a popular topic in combinatorics classes. We study a general-
ization to face derangements of the n-dimensional hypercube. These derangements can be
classified as odd or even, depending on whether the underlying isometry is direct or indi-
rect, providing a link to abstract algebra. We emphasize the interplay between the geometry,
algebra, and combinatorics of these sequences, with lots of pretty pictures.

1. INTRODUCTION. Suppose you have a die sitting on a table. Instead of just look-
ing at the number on the top of the die, pay attention to the locations of the numbers
on all six sides. Now you pick it up and roll it so that it occupies the same place on
the table it did before. How many ways could you have done this so that none of the 6
numbers are in the same place?

Rolling a die so that it occupies the same place it did before it was rolled gives a
direct isometry of the cube, i.e., a geometric transformation realizable in 3 dimensions
that fixes the cube. A derangement is a permutation with no fixed points. Then our
question becomes:

How many direct isometries of the cube are derangements of the faces of the
cube?

How many additional derangements do you get if you allow yourself to turn your
cube inside out (allowing an indirect isometry via a roll through 4-dimensional space)?
Generalizing, if you have an n-dimensional hypercube, then the same question makes
sense, although it’s a bit harder to buy one and actually roll it.

We’ll need a few important facts about isometries in n dimensions. Every isometry
can be written as a composition of reflections through hyperplanes. An isometry is
direct if it can be written as a composition of an even number of reflections; other-
wise, it is indirect (as with products of transpositions in symmetric groups, this is
well-defined). Further, a direct isometry is orientation preserving, while an indirect
isometry reverses orientation. The composition of two reflections is a rotation provided
the hyperplanes corresponding to those reflections intersect. This will always be the
case with the isometries we consider here since we will always fix the centers of our
solids.
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The total number of isometries of an n-cube is 2nn!—we’ll see why in Section 3.1.
Chapters 5 and 7 of Coxeter’s classic [6] offer an excellent guide to understanding the
geometry of these isometries. Half are direct, and half are indirect.

We now have several questions at hand:

• How many of the 2nn! isometries are derangements of the (n − 1)-dimensional
faces (also called facets) of the n-cube?

• How many of these facet derangements are direct, and how many are indirect?
• What if our die is not a cube (or hypercube)? In particular, what are the counts for

a die shaped as an n-dimensional simplex?

The answers will lead us to integer sequences that have been studied before in several
contexts, as well as to two new sequences. In particular, the sequences associated with
the direct and indirect facet derangements of the n-cube are new sequences in Sloane’s
Online Encyclopedia of Integer Sequences (OEIS, [11]), arising from this paper.

These problems lie at the intersection of three fields: combinatorics, geometry, and
algebra. Our philosophy is mathematically inclusive here. Derangements are typically
studied in combinatorics classes, where they provide a good example of the principle
of inclusion-exclusion. Students need to take a class in abstract algebra to see even and
odd permutations. Finally, isometries of Euclidean space might appear in a geometry
class emphasizing transformations. But no one class typically presents all three topics
coherently.

Derangements of faces of different dimensions of the cube have been studied before.
In [4], Chen and Stanley derive explicit generating functions that count derangements
of the vertices, edges, and 2-dimensional faces for an n-cube; the number of isometries
that do fix at least one vertex is given by an especially attractive formula: (2n − 1)!! =
(2n − 1)(2n − 3) · · · 3 · 1. Chen [3] considers the entire cycle structure (encoded by
the cycle index polynomial) of the vertices of the hypercube, while the excedance of a
signed permutation is explored by Mataci and Rakotandrajao in [8]. Chen, Tang, and
Zhao [5] generalize this approach to derangement polynomials. In a different direction,
Shareshian and Wachs give an interesting connection to combinatorial topology in
[10], where Theorem 6.2 shows that the number of facet derangements of the n-cube
is the dimension of the reduced homology of the order complex of a certain poset.

Most of the material we present here is known, but our approach seeks to unify
the combinatorics, algebra, and geometry. In Section 2, we begin with a treatment of
ordinary derangements from combinatorial, geometric, and algebraic viewpoints. Sec-
tion 3 generalizes the entire approach from Section 2 to the hypercube. This gives us a
“new” combinatorics problem (we call it the couples coatcheck problem, generalizing
the hatcheck problem for ordinary derangements) and (what we believe to be) a new
recursion for the facet derangements for the n-cube. We also present several known
formulas for the number of facet derangements.

Section 4 studies the partition of the facet derangements of the (n − 1)-simplex
and the n-cube into direct and indirect isometries. This is where the connections to
geometry are deepest, and where some very pretty relationships are developed.

The geometry of 3 dimensions gives us a chance to test our geometric intuition, so
Section 5 describes these isometries and derangements in some detail. We conclude by
offering a few suggestions for further study in Section 6.

2. DERANGEMENTS AND SIMPLICES.

2.1. Counting ordinary derangements. One of the standard problems in a combi-
natorics class asks the following question:
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Hatcheck problem. n people check their hats at the beginning of a party. How
many ways can the hats be returned later so that no one gets his or her own hat
back?

Slightly more modern versions might involve returning cell phones to students after
an exam, or designing a cryptoquote so that no letter stands for itself (usually called a
substitution cypher) in the coded message.

Permutations of {1, 2, . . . , n} with no fixed points are called derangements. The fol-
lowing formula that gives the number of derangments can be found in every combina-
torics book in the section that introduces inclusion-exclusion as a counting technique.
If dn denotes the number of derangements on an n-element set, then

dn = n!
n∑

k=0

(−1)k

k! . (1)

From the formula, we get d0 = 1. You can give any explanation you like for what
happens when no people check their hats, as long as you get the answer 1.

This formula has a very attractive probabilistic consequence: if the hats are ran-
domly returned to the party-goers, then the probability that no one receives his or her
own hat is approximately e−1. When n is large, this probability is (essentially) inde-
pendent of n, which is surprising (unless you already know this, in which case it isn’t).
The number of derangements for n ≤ 7 is given in Table 1. Note that the ratio d7/7!
agrees with e−1 ≈ 0.367879 . . . to 4 decimal places.

Table 1. Number of derangements dn for n ≤ 7.

n 0 1 2 3 4 5 6 7

dn 1 0 1 2 9 44 265 1854

dn

n! 1 0 0.5 0.3̄ 0.375 0.36̄ 0.36805̄ 0.367857 . . .

We end this preliminary discussion with one more formula—a very useful recursion
for dn that we’ll refer to later:

dn = (n − 1)(dn−1 + dn−2). (2)

The proof of this recursion follows from partitioning the derangements into those
in which 1 participates in a 2-cycle and those in which 1 is in a longer cycle. A proof
can be found in [1], for instance.

2.2. Derangements and the (n − 1)-simplex. Our first goal is to interpret derange-
ments geometrically, as derangements of the facets (or vertices) of the (n − 1)-simplex.
Recall the (n − 1)-simplex is formed by joining n affinely independent points in R

n−1,
so the 2-simplex is a triangle in the plane, the 3-simplex is a tetrahedron in 3-space,
and so on.

Geometric interpretation. A derangement on {1, 2, . . . , n} corresponds to an
isometry in R

n−1 of the regular (n − 1)-simplex in which every one of the n
facets is moved.
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Why does this work? First, the full symmetry group (including both direct and
indirect isometries) of the regular (n − 1)-simplex is the symmetric group Sn. The
group is usually thought of as acting on the n vertices of the simplex, but since every
facet has a unique vertex it does not touch, a permutation moves a vertex if and only if
it moves the “opposing” facet. Thus, for our purposes, we will think of Sn as acting on
the facets of the (n − 1)-simplex.

In 2 dimensions, a simplex is an equilateral triangle in the plane. There are only two
kinds of isometries possible: rotations (direct) and reflections (indirect). This group
of isometries is easy to visualize via the six edge permutations of the triangle. The
correspondence between the isometries and the permutations is given in Figure 1.
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Figure 1. Symmetry group = S3.

Which of these are derangements? The two rotations r = (123) and r 2 = (132)

derange the edges, and the remaining four permutations fix at least one edge, so d3 = 2,
as we saw in Table 1.

In 3 dimensions, we need to add one more kind of isometry to our tool kit: rotary
reflections. These can be hard to visualize—they correspond to compositions of reflec-
tions and rotations. For some fun (and a good exercise in geometric visualization), try
to figure out the geometry of the facet derangements in 3 dimensions. You should get
the following:

• For the regular tetrahedron, there are 9 derangements: 3 of these are rotations and
the remaining 6 are rotary reflections.

More information about the geometry of isometries in 3 dimensions appears in Sec-
tion 5. Feel free to skip ahead.

3. DERANGING THE FACETS OF A HYPERCUBE.

3.1. A problem with coats and cubes. In Section 2, we saw that ordinary derange-
ments correspond to isometries of a regular (n − 1)-simplex in which no (n − 1)-
dimensional facet is fixed. To generalize this to facet derangements of hypercubes, we
need to modify the hatcheck problem:

Couples coatcheck problem. This time, n couples each check their two coats
at the beginning of a party; the attendant puts a couple’s coats on a single hanger.
The coats are returned at the end of the party in the following way: when a couple
arrives to get their coats, the (lazy) attendant picks an arbitrary hanger and then
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hands one of those coats to one person in the couple and the other coat to the
other (again, arbitrarily). How many ways can the coats be returned so that no
one gets his or her own coat back?

If no one receives his or her own coat, we’ll say we have a c-derangement (where
“c” stands for “coat” or “couple” or “cube”). Evidently, there are two ways the people
in a couple could fail to receive their own coats: either the pair of coats belonging to
that couple was given to another couple, or the couple did receive their own coats, but
the coats were swapped between the two partners.

As before, we begin by interpreting this combinatorial problem geometrically.

Geometric interpretation. A c-derangement corresponds to an isometry in R
n

of the hypercube in which no (n − 1)-dimensional facet is fixed.

Why is this true? First, note that there are 2nn! ways to return the coats with no
restrictions:

• First, permute the n hangers in n! ways.
• Next, hand the coats back to the two members of each couple in 2n ways.

But this is precisely the number of isometries of the n-dimensional hypercube:

• First, permute the n facets around a given vertex in n! ways.
• Next, swap or don’t swap each pair of opposite facets in 2n ways.

Let’s introduce some notation: Let Qn denote the regular n-dimensional hypercube.
The 2n people are represented by the 2n symbols 1, 1∗, 2, 2∗, . . . , n, n∗, where {i, i∗}
is the i th couple. Then the 2n facets of Qn correspond precisely to the 2n people in the
coatcheck problem, with the couple {i, i∗} corresponding to a pair of opposite facets in
the hypercube. It should now be clear that moving all the facets of Qn is equivalent to
deranging the coats. (Unlike the situation with ordinary derangements and the simplex,
deranging vertices is not the same as deranging facets. In Figure 2, you can locate a
c-derangement of the square that is not a vertex derangement, and then find a vertex-
derangement that’s not a c-derangement.)

A 2-dimensional cube is a square, and its facets are the 4 bounding edges. Among
the 8 symmetries of a square (which form the dihedral symmetry group D4), there are
5 c-derangements, pictured in Figure 2. The original square is in the upper left. The
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Figure 2. The 5 side-derangements of the square.
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other two squares in the top row arise from reflections through the diagonals of the
square, and the 3 squares in the bottom row of the figure arise from rotations.

As with the simplex, the geometry is fun to explore in 3 dimensions. We return to
this in Section 5. For now, though, see if you can determine which isometries of the
3-cube are derangements. As a check, you should get the following:

• For the cube, there are 29 c-derangements: 14 rotations and 15 rotary reflections.

3.2. Some formulas for c-derangements. We are ready to derive some formulas for
the number of c-derangements. Let d̂n be the number of c-derangements of {1, 1∗, . . . ,

n, n∗}. As in the ordinary derangement case, we can find a formula for d̂n using
inclusion-exclusion. This formula is listed for sequence A000354 in the OEIS [11],
although the interpretation in terms of c-derangements is new.

Theorem 1. The number d̂n of c-derangements of the facets of Qn is given by

d̂n =
n∑

k=0

(−1)k

(
n

k

)
2n−k(n − k)!. (3)

Proof. As with ordinary derangements, we count c-derangements via inclusion-
exclusion. The number of isometries of Qn that fix (at least) 0 facets is just the
total number of isometries of Qn , that is, 2nn!. To count the number of ways to fix a
specified set of k facets, we fix those facets (which also fixes the k opposite facets)
and permute the remaining n − k pairs of opposite facets in 2n−k(n − k)! ways (the
number of isometries of an (n − k)-dimensional hypercube). Since there are

(n
k

)
ways

to choose the specified k facets, inclusion-exclusion gives us the formula.

Note that a consequence of this formula is that d̂0 = 1. As before, you can figure out
what that means yourself. Also notice that this formula guarantees that d̂n is always
odd: every term in equation (3) is even except for the term corresponding to k = n.
We’ll see two more proofs of this fact later—pay attention.

As with ordinary derangements, we can use this result to get a nice probabilistic
interpretation. Rewriting the above formula as

d̂n = 2nn!
n∑

k=0

(−1/2)k 1

k! (4)

gives us the following:

In the couples coatcheck problem, the probability that no one receives his or her
own coat approaches e−1/2 as the number of couples increases.

Table 2 gives the number of c-derangements for n ≤ 7. When n = 6, the approxima-
tion to e−1/2 ≈ 0.606531 . . . is accurate to 5 decimals. The associated series converges
faster than the series for e−1 that gave the number of (ordinary) derangements, as you
would expect from the Taylor series error estimate.

There is another formulation we like that expresses d̂n in terms of ordinary derange-
ments.
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Table 2. Number of c-derangements d̂n for n ≤ 7.

n 0 1 2 3

d̂n 1 1 5 29

d̂n

2nn! 1 0.5 0.625 0.6041 . . .

n 4 5 6 7

d̂n 233 2329 27,949 391,285

d̂n

2nn! 0.606770 . . . 0.606510 . . . 0.606532 . . . 0.606530 . . .

Proposition 1. The number of c-derangements of the facets of Qn is

d̂n =
n∑

k=0

(
n

k

)
2kdk . (5)

Proof. Each c-derangement either sends a pair of opposite facets to another pair of
opposite facets, or it fixes the pair (necessarily swapping the two facets in that pair).
First choose k pairs of facets that are not swapped with their opposites. These k pairs
can be deranged in dk ways. For each pair that gets deranged, there are two ways to
send it to its image pair. This gives 2kdk c-derangements; summing over all possible
choices for selecting the k facets gives the formula.

A generalization of equation (5) appears in [12], where Spivey and Steil define the
rising k-binomial transform of a sequence an to be

rn =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=0

(
n

i

)
ki ai if k �= 0,

a0 if k = 0.

Then the sequence d̂n is the rising 2-binomial transform of the sequence dk . The ex-
plicit connection to c-derangements does not appear in that paper, however.

The following recursion generalizes the recursion for ordinary derangements given
in equation (2). The recursion appears to be new. It also gives an inductive proof that
d̂n is always odd (our second proof of this fact).

Proposition 2. For n ≥ 2, d̂n satisfies:

d̂n = (2n − 1)d̂n−1 + (2n − 2)d̂n−2. (6)

Proof. We consider two cases for any c-derangement of {1, 1∗, . . . , n, n∗}.
Case 1. The pair (1, 1∗) is fixed by the c-derangement. In this case, 1 and 1∗ must
be swapped, and the remaining n − 1 pairs are c-deranged. This gives a total of d̂n−1

c-derangements. (This case does not appear in the proof of the ordinary derangement
recursion (2).)
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Case 2. The pair (1, 1∗) is mapped to some other pair (k, k∗). There are clearly n − 1
choices for the (k, k∗) pair, and 2 ways to map (1, 1∗) to (k, k∗). Suppose the pair
(i, i∗) maps to (1, 1∗), where i and k may or may not be equal. In either case, we
can get a permutation of 2, 2∗, 3, 3∗, . . . , n, n∗ by mapping (i, i∗) to (k, k∗) or (k∗, k),
depending on whether (i, i∗) mapped to (1, 1∗) or (1∗, 1) in the original c-derangement
(and letting everything else map as in the original c-derangement).

We now have a permutation of {2, 2∗, 3, 3∗, . . . , n, n∗}. Is this permutation a c-
derangement? Focusing on the possible images of k and k∗, we examine three possi-
bilities.

1. If the permutation maps the pair (k, k∗) to some other pair, then it must be a c-
derangement, and every c-derangement that moves the pair (k, k∗) arises in this
way.

2. If the permutation swaps k and k∗, then it is still a c-derangement, and, as above,
every c-derangement that swaps k and k∗ arises in this way.

3. If the permutation fixes k (and, therefore, k∗), it is a c-derangement of the n − 2
pairs that remain after removing (k, k∗).

The first two cases include all d̂n−1 c-derangements of n − 1 pairs, and the final case
(where k and k∗ are fixed) includes all d̂n−2 c-derangements of n − 2 pairs.

The recursion now follows.

Of course, we could prove the recursion (6) inductively by simply verifying it for
either of the formulas (4) or (5), which we have already established. We believe such
proofs are unsatisfying at some level, but make good exercises for students learning
mathematical induction.

4. THE PARITY OF DERANGEMENTS AND C-DERANGEMENTS.

4.1. Counting direct and indirect (ordinary) derangements. As we’ve seen,
isometries can be either direct or indirect, depending on whether they can be ex-
pressed as a product of an even or odd number of reflections, respectively. The direct
isometries of a simplex correspond to even permutations of {1, 2, . . . , n}, and the
indirect ones correspond to odd permutations.

For the facet derangements of a simplex, here’s what we have seen so far: For the
triangle, both derangements are rotations, and so are direct isometries. For the regu-
lar tetrahedron, there are 9 derangements: 3 rotations (direct) and 6 rotary reflections
(indirect).

We let en denote the number of direct derangements of the facets of an (n − 1)-
simplex and on denote the number of indirect derangements. Table 3 gives the values
of dn , en , and on for n ≤ 7.

Table 3. Number of even and odd derangements for n ≤ 7.

n 1 2 3 4 5 6 7

dn 0 1 2 9 44 265 1854

en 0 0 2 3 24 130 930

on 0 1 0 6 20 135 924

en − on 0 −1 2 −3 4 −5 6
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A very casual glance at the last row of the table should suggest a very pretty the-
orem. This pattern is known; for example, you can find the sequences en and on in
the OEIS [11]. A bijective proof using a conjugation argument can be found in [2],
and the recent paper [8] offers two more proofs based on an analysis of excedances
of permutations. The proof we give here is inductive and is included in the interest of
keeping this paper as self-contained as possible.

Theorem 2. Let en and on be the respective numbers of even and odd derangements
of {1, 2, . . . , n}. Then en − on = (−1)n−1(n − 1).

Proof. We give a recursive procedure for computing en and on . The proof then follows
by induction. The key observation is the familiar recursion given in equation (2): dn =
(n − 1)(dn−1 + dn−2).

Adapting this recursion to include the parity of the derangements is easy: If 1 is in
a transposition, we just remove that transposition. If 1 is not in a transposition, then
we just remove 1 from the cycle it participates in. In either case, this process changes
even permutations to odd ones, and vice versa.

We let e′
n denote the number of even derangements in which the transposition (1r)

appears for some r > 1 and e′′
n denote the number of other even derangements; define

o′
n and o′′

n similarly. Then en = e′
n + e′′

n and on = o′
n + o′′

n . Then we have the following
recursive relations:

e′
n = (n − 1)on−2 e′′

n = (n − 1)on−1 o′
n = (n − 1)en−2 o′′

n = (n − 1)en−1

Then

en − on = (e′
n + e′′

n) − (o′
n + o′′

n)

= (n − 1)((on−1 + on−2) − (en−1 + en−2))

= (n − 1)((on−1 − en−1) + (on−2 − en−2))

= (n − 1)((−1)n−1(n − 2) + (−1)n−2(n − 3)) (by induction)

= (−1)n−1(n − 1).

As an exercise, you can devise your own proof of Theorem 2 using determinants.
First, let A be the n × n matrix with 0’s on the main diagonal and 1’s everywhere else
(so A = J − I ). Then you can use the permutation expansion of the determinant to
show |A| = en − on . Finally, you can row reduce A to show |A| = (−1)n−1(n − 1).

Corollary 1. Let en and on be the numbers of even and odd derangements, respec-
tively. Then en = (dn + (−1)n−1(n − 1))/2 and on = (dn + (−1)n(n − 1))/2.

We don’t believe Theorem 2 is as well known as it should be. As we remarked
earlier, we believe this has to do with the fact that students study derangements in
combinatorics classes, but they study permutation groups in algebra classes.

4.2. Group theory for the cube. How can we determine whether an isometry of
Qn is direct or indirect? We know that a direct isometry is the product of an even
number of reflections, but in this setting, it can be confusing to interpret reflections
using permutation notation. For instance, consider the following c-derangement of the
cube in 3 dimensions:
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• First, reflect in a plane that contains two edges of the cube to get the facet permuta-
tion (1, 2)(1∗, 2∗).

• Then reflect in a plane parallel to facets 3 and 3∗: (3, 3∗).

The result is a c-derangement whose facet cycle structure is (1, 2)(1∗, 2∗)(3, 3∗).
This looks like a product of an odd number of transpositions, but this isometry is direct
(and so, in this case, it’s a rotation). The problem with our algebraic representations of
the isometries is the redundancy in representing the reflection (1, 2)(1∗, 2∗).

We can work around this problem by finding a better (in particular, more concise)
way to represent an isometry. For readers who know more group theory, this recod-
ing can be made precise by using the group of isometries of the hypercube, called
the hyperoctahedral group (it’s the same as the isometry group of the dual solid—the
hyperoctahedron or the n-dimensional cross-polytope; see Chapter 7 of [6] for more
information). This group is isomorphic to Z

n
2 � Sn, the semidirect product of the nor-

mal abelian 2-group Z
n
2 and the symmetric group Sn .

From a geometric perspective, we can think of this group as acting on the facets of
the hypercube as follows:

• Situate the hypercube so that the origin 0 is one of its vertices and the facets incident
to 0 are labeled 1, 2, . . . , n.

• Use elements in Sn to permute the facets surrounding 0.
• Finally, use reflections normal to the coordinate axes to move 0 to some other vertex

v. (This collection of reflections generates the normal subgroup Z
n
2.)

We saw this procedure earlier—see the discussion at the beginning of Section 3 that
explained the link between the coat problem and c-derangements. Any permutation in
Sn can be written as a product of transpositions, and you can show that interchanging
exactly two facets adjacent to a given vertex can be realized as a single reflection. Then
the factor Z

n
2 is generated by the n orthogonal reflections normal to the n coordinate

axes, and Sn is generated by reflections corresponding to transpositions. It’s worth
noting, however, that this analysis follows from the orbit-stabilizer theorem: A given
vertex v of the n-cube has orbit of size 2n—you can send any vertex to any other
vertex—while the stabilizer of v is generated by all the reflections through that vertex,
which gives Sn . More information about this action can be found in [7], for example.

Another way to understand the direct-indirect issue here is to use signed permuta-
tion matrices, i.e., permutation matrices in which each nonzero entry is ±1. Situate
the n-cube so that all its vertices are located at the points (±1, ±1, . . . , ±1). Then the
centers of the facets are ±ei , where ei is the i th standard basis vector in R

n . Now any
isometry sends the facet corresponding to ei to another facet ±e j .

This means that every isometry of the n-cube corresponds to a unique signed per-
mutation matrix, and it’s clear there are precisely 2n · n! such matrices. So, we can tell
whether an isometry is direct or indirect by evaluating its determinant.

If A is a signed permutation matrix, then det(A) = 1 precisely when A corre-
sponds to a direct isometry, and det(A) = −1 if A corresponds to an indirect
isometry.

4.3. Counting direct and indirect c-derangements. In Section 3 we gave the num-
ber of direct and indirect c-derangements for the square and cube. Here’s what we
asserted:

• Square: d̂2 = 5, with 3 direct and 2 indirect c-derangements.
• Cube: d̂3 = 29, with 14 direct and 15 indirect c-derangements.
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The next theorem shows that the difference between the numbers of direct and in-
direct c-derangements is always ±1. This will follow from the construction of a bi-
jection between the odd and even c-derangements except for central inversion. Cen-
tral inversion is the isometry that sends every point (x1, . . . , xn) to its antipodal point
(−x1, . . . , −xn). For the square, you can see the central inversion in Figure 2 in the
center of the bottom row— a 180◦ rotation indeed sends every point to its antipode.
Thus, in dimension 2, central inversion is a direct isometry. Central inversion in dimen-
sion 3 is indirect (chemists call this an improper reflection). This pattern continues: the
matrix corresponding to central inversion is −In×n , i.e., the diagonal matrix with all
entries −1. Its determinant is ±1, depending on the parity of n, the dimension of our
hypercube. Thus, central inversion (which is always a c-derangement) is direct in even
dimensions and indirect in odd dimensions.

Theorem 3. Let ên and ôn denote the numbers of direct and indirect c-derangements
of Qn respectively. Then ên − ôn = (−1)n.

Proof. We will construct a bijection between the direct and indirect c-derangments that
are not central inversion. For a given c-derangement σ , find the smallest integer k so
that the facet k is not swapped with its opposite facet. Then the map σ 
→ σ(k, k∗)
gives the bijection between direct and indirect c-derangements (except for central
inversion). Since central inversion is direct in even dimensions and indirect in odd
dimensions, the result follows.

If you like, it’s easy to reformulate the proof of this theorem using signed permuta-
tion matrices. Let A be a signed permutation matrix corresponding to a c-derangement
that is not central inversion. Then A has at least 2 nonzero entries off the main diago-
nal, so we can find the smallest k with Ak,k = 0. Then multiplying column k of A by
−1 gives the same bijection.

By the way, Theorem 3 gives a third proof1 that d̂n is always odd: d̂n = 2ên ± 1. In
Table 4, we list the first 7 values of the sequences ên and ôn .

Table 4. Number of even and odd c-derangements for n ≤ 7.

n 1 2 3 4 5 6 7

d̂n 1 5 29 233 2329 27,949 391,285

ên 0 3 14 117 1164 13,975 195,642

ôn 1 2 15 116 1165 13,974 195,643

Corollary 2. Let ên and ôn denote the numbers of direct and indirect c-derangements
of Qn respectively. Then ên = (d̂n + (−1)n)/2 and ôn = (d̂n + (−1)n+1)/2.

The sequences ên and ôn appear to be new—when we began this work, we did not
find them in the OEIS [11]. They now appear as sequences A161936 and A161937.

5. DERANGEMENT GEOMETRY IN DIMENSION 3. Time for some fun. If,
like most humans, you have trouble visualizing objects in 4 or more dimensions, then
you can start by looking at some low-dimensional examples, and then try to general-

1Three proofs mean it’s really really really true.
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ize. This sounds easier than it is, but, for the simplex and hypercube symmetries, it’s
extremely valuable. An interesting discussion about the power of analogy appears in
Section 7-1 of [6].

5.1. Derangements of the tetrahedron. For a bounded solid in R
3, there are three

kinds of isometries we need to consider: rotations, reflections and rotary reflections.
Rotary reflections are operations that correspond to combining a rotation and a re-
flection. It is possible to have a rotary reflection where neither the rotation nor the
reflection involved is itself a symmetry of the object; when this happens, the rotary
reflection is called irreducible.

The tetrahedron has 24 symmetries corresponding to the 4! permutations of S4.
Below, we classify these isometries. Before reading further, we highly recommend that
you make your own list, either with a physical tetrahedron or, more of a challenge, in
your head. The practice of the latter is great brain calisthenics.

• Direct isometries

◦ The identity is clearly not a derangement.
◦ The 8 rotations with axis through a vertex and the center of the opposite facet are

not derangements.
◦ The 3 180◦ rotations with axis through the centers of two opposite edges are

derangements.

• Indirect isometries

◦ The 6 reflections with mirror plane containing one edge of the tetrahedron are
not derangements.

◦ The 6 rotary reflections, pictured in Figure 3, are derangements.

Original 90◦ rotation Reflection

Figure 3. A rotary reflection in two steps: First rotate (the tetrahedron does not match up), then reflect.

It’s worth investigating how the rotary reflections operate. The following step-by-
step guide should help you create any of the 6 rotary reflections on your own (actual
or virtual) tetrahedron.

1. Cut the tetrahedron through the plane containing the centers of four edges (take
all edges except two that do not share a vertex). This cuts the tetrahedron into
two congruent pieces that get glued back along a square. (You now have a tricky
little puzzle.)

2. Rotate the entire tetrahedron 90◦ about an axis perpendicular to the square cross-
section. This is not an isometry of the tetrahedron.
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3. Reflect the tetrahedron through the plane containing the square. This by itself is
also not an isometry of the tetrahedron. However, from Figure 3, it’s clear that
the composition is indeed an isometry of the tetrahedron.

You didn’t really need to cut your tetrahedron into two pieces after all, but you
do need to identify the square cross-section. The rotation involved is half of one of
the 180◦ edge-rotations in the list of direct isometries. The resulting rotary reflection
is irreducible. As mentioned above, this rotary reflection induces the face permutation
(abcd), a 4-cycle. This shouldn’t be too surprising, as the square from the cross-section
meets each of the four faces, and we are rotating around this square.

5.2. c-derangements of the cube. Now we turn our attention to the ordinary 3-
dimensional cube. There are 233! = 48 isometries of a cube. We list them below,
although you should try to come up with the list yourself first. Extra credit to those
who find them all in their heads. We provide a figure for the rotary reflections, as they
are the hardest to picture.

• Direct isometries

◦ The identity is not a c-derangement.
◦ The 8 rotations through pairs of opposite vertices are c-derangements.
◦ The 6 rotations through centers of opposite edges are c-derangements.
◦ The 9 rotations through centers of opposite faces are not c-derangements.

• Indirect isometries

◦ None of the 9 reflections (3 reflecting opposite faces and 6 through opposite
edges) are c-derangements.

◦ The 15 rotary reflections are c-derangements. They are: central inversion (pic-
tured in Figure 4a), 6 reducible ones through an axis through centers of opposite
sides (pictured in Figure 4b), and 8 irreducible ones through an axis through two
opposite vertices (pictured in Figure 4c). In Figure 4, opposite faces have the
same pattern, but in different sizes.

(a) Central inversion (b) Axis through side centers (c) Diagonal axis

Figure 4. The 15 indirect face-derangements of the cube.

Note that 14 of the 29 c-derangements are direct, while 15 are indirect. The direct
isometries preserve the orientation of the cube (so you could perform these isometries
with a die), while the indirect ones reverse the orientation of the cube (so you’d need
a mirror-image die to perform them).

The indirect c-derangements are all rotary reflections. Central inversion always
corresponds to a c-derangement (see Figure 4a), but it’s an indirect isometry in 3
dimensions. It can be realized either as the composition of 3 mutually perpendicular
reflections or by a rotary reflection in a variety of ways, as we will see shortly.

We now examine the 14 remaining rotary reflections in a bit more detail. In Figure
4b, you can see the rotary reflection formed as a composition of a rotation of 90◦ or
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270◦ around an axis through the center of two opposite sides followed by a reflection
through the plane perpendicular to that axis at its midpoint. There are 3 of those axes
so there are 6 such rotary reflections, all of which are reducible. (Notice that if you do
this same rotary reflection with a rotation of 180◦, you get central inversion).

In Figure 4c, you can see the last kind of rotary reflection, which is irreducible:
a rotation of 60◦ or 300◦ around an axis through two opposite vertices followed by
a reflection through the plane perpendicular to that axis. Since there are 4 pairs of
opposite vertices, this gives 8 distinct isometries. (Once again, central inversion arises
from a rotation of 180◦ followed by reflection.) These can be quite challenging to
picture, since the initial rotation does not align the cube with itself. Figure 5 breaks
an irreducible rotary reflection down to help with visualization. Start with a hexagon
that passes through each of the six faces of the cube. Instead of the direct isometry that
rotates that hexagon through 120◦, we rotate through 60◦ (not an isometry of the cube
by itself) and then reflect.

Figure 5. An irreducible rotary reflection of the cube.

There are two aspects of this kind of rotary reflection worth noting. First, it gives a
6-cycle on the faces of the cube. Second, the regular hexagon that passes through each
of the 6 sides of the cube is well worth locating on an actual cube. Showing students
the two pieces (after having them guess about what kinds of polygons could be formed
as cross sections when slicing a cube) usually elicits some surprised looks.

6. SUGGESTIONS FOR FUTURE STUDY. We conclude with a few ideas for
projects that can help solidify some of the ideas from this paper.

1. In the proof of Theorem 3, we give a bijection between the direct and indi-
rect isometries (excluding central inversion). As a warm-up, find this bijection
explicitly for the 14 direct and 14 indirect (again, excluding central inversion)
c-derangements of the cube. (To do this, you will need to number the six faces
of your cube 1, 1∗, 2, 2∗, 3, 3∗, and then use this numbering to refer to your c-
derangements.)

2. Generalize other formulas for derangements to c-derangements. Here are two
standard examples.
• Ordinary derangements satisfy the recursion dn = ndn−1 + (−1)n . Show that

the analogous recursion holds for c-derangements: d̂n = 2nd̂n−1 + (−1)n.
• Rounding n!/e to the nearest integer gives dn . Show that rounding 2nn!/√e

to the nearest integer gives d̂n .
3. Study the vertex, edge, and face derangements for the remaining Platonic solids.

We’ve covered the faces (and the vertices) for the tetrahedron, and we’ve done
the faces of the cube (and therefore, the vertices of its dual, the octahedron). We
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haven’t considered the faces of the octahedron, and we’ve completely ignored
the icosahedron and its dual, the dodecahedron. Determining the vertex, edge,
or facet derangement numbers for these solids is a good exercise in geometric
visualization.

The symmetry group of the icosahedron is A5 × Z2, so there are 120 isome-
tries to consider. Counting the direct and indirect vertex, edge, and face derange-
ments is also a good exercise. For extra credit, describe the 45 rotary reflections
explicitly in this case.

4. Study higher-dimensional solids. There are 6 regular solids in 4 dimensions: the
4-simplex, the hypercube, the hyperoctahedron, the 24-cell, the 120-cell, and the
600-cell. All of the same questions make sense here:
• Find the number of vertex, edge, 2-dimensional, and 3-dimensional face de-

rangement numbers for the 24-cell and the 120-cell. (By duality, derange-
ments for the 120-cell and the 600-cell coincide, since the vertex derange-
ments for the 120-cell are the same as the 3-dimensional facet derangements
for the 600-cell, etc.)

• For each class of derangements, count the direct and indirect isometries.
The 24-cell has 1152 isometries and the 120-cell (and 600-cell) has 14,400.

In dimensions 5 and higher, there are only 3 regular solids: The n-simplex, the
n-cube, and its dual, the n-dimensional hyperoctahedron. A generating function
approach for the number of derangements of the k-dimensional faces of the n-
cube is given in [4].

5. Extend this approach to general root systems. In particular, the exceptional root
systems E6, E7, and E8 are very important families of vectors that display lots of
symmetry. How many isometries move all the vectors in the root system? Much
more about root systems can be found in [7].
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A Fifth Proof of an Inequality

We give another proof of the inequality in [1].

Theorem. The sequence given by un = (1 + 1/n)n+1/2 is decreasing, so greater
than its limit, e.

Proof. For n ≥ 1, we have

(
un

un+1

)2

=
(

n+1
n

)2n+1

(
n+2
n+1

)2n+3

= (n + 1)4n+4

n2n+1(n + 2)2n+3

= n

n + 2

(
n2 + 2n + 1

n2 + 2n

)2n+2

= n

n + 2

(
1 + 1

n2 + 2n

)2n+2

>
n

n + 2

(
1 + 2n + 2

n2 + 2n
+ (2n + 2)(2n + 1)

2(n2 + 2n)2
+ (2n + 2)(2n + 1)(2n)

6(n2 + 2n)3

)

= 3n5 + 24n4 + 72n3 + 97n2 + 51n + 8

3n5 + 24n4 + 72n3 + 96n2 + 48n

> 1.
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