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Abstract. Given a group G with generators ∆, it is well-known that the set

of color-preserving automorphisms of the Cayley color digraph Γ = Cay∆(G)
is isomorphic to G. Many people have studied the question of when the full

automorphism group of the Cayley digraph is isomorphic to G. This paper ex-

plores what happens when the full automorphism group of G is not isomorphic
to G: how much larger it can be and what kinds of structures can be found.

The group of automorphisms that permute the color classes is a semidirect

product; we look more closely at that and other sub-structures.

1. Introduction

Automorphisms of Cayley graphs have been studied in many contexts. It is well
known that if a Cayley graph has its edges colored corresponding to the generators,
then the group of automorphisms which leave the colors unchanged is isomorphic
to the original group. In [7], Fiol, Fiol and Yebra introduced the notion of color-
permuting automorphisms, which are those which act as a permutation on the
color classes. This paper extends their results and gives a preliminary examination
of some of the group structures which can arise for the group of color-permuting
automorphisms as well as for the full group of digraph automorphisms of the Cayley
graph.

If G is a group with generators ∆ = {h1, h2, . . . , hn}, then the Cayley graph Γ
of G for ∆ is a directed graph associated with G and ∆ where the edges have been
assigned colors; it is sometimes referred to as the Cayley color graph. Its vertex
set consists of the group elements of G. Each generator hi is assigned a color ci;
for two group elements g1 and g2, there will be an edge colored ci directed from g1

to g2 if g2 = g1hi. If hi is an element of order 2 in G, then the two edges between
g and ghi are usually drawn as a single undirected edge, colored ci. Certainly, the
Cayley graph will depend on the generators chosen. Different sets of generators for
the same group can give rise to quite different graphs.

A digraph automorphism of a digraph D is a permutation of the vertices of D that
preserves directed adjacencies, so there is a directed edge from u to v in D if and
only if there is a directed edge from φ(u) to φ(v). The set of digraph automorphisms
of D forms a group under composition, denoted Aut(D).

If G is a nontrivial finite group with generators ∆, then an element of Aut(Γ)
is color-preserving if the colors of the edges after the vertex permutation are the
same as they were before. Clearly, the set of color-preserving automorphisms is a
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subgroup of Aut(Γ); this subgroup is isomorphic to G (see, for example, Theorem
4-8 in [14]). However, there can be automorphisms of the Cayley graph that are
not color-preserving: in some cases, the colors will be consistent, so that all edges
of a given color will be some other color, while in other cases, the colors will have
changed so there is no discernible pattern. This situation gives rise to natural
questions: When will there be non-color-permuting atuomorphisms? How much
larger than the original group can the group of color-preserving automorphisms
be? How much larger can the full automorphism group of the Cayley graph be?
How do these groups relate to the original group G?

These questions take the discussion of automorphisms of the Cayley graph in a
different direction than most previous work in the area. We will now give a brief
survey of some of the previous work on automorphism groups of Cayley graphs
and its relation to the work in this paper. Much work has been done on finding
graphs with a given automorphism group; a graph X is called a graphical regular
representation of a group G if the automorphism group of X is isomorphic to G
and if it acts transitively on the vertex set of X. In [9], C. Godsil characterized the
only finite groups without graphical regular representations. For these groups, all
Cayley graphs will have non-color-preserving automorphisms. Others have studied
the question of when the group of automorphisms of a Cayley graph of a group is
isomorphic to that group. For example, in 1982, L. Babai and C. Godsil conjectured
that unless a group G belongs to a known class of exceptions, the automorphism
groups of almost all Cayley graphs of G are isomorphic to G [1]. This conjecture
remains open. If the conjecture is true, the collection of Cayley graphs whose
automorphism group is larger than the original group is small. In this paper, we
examine more closely this collection. What is the structure of those Cayley graphs?
When is it possible to have such graphs? Answers to these questions might shed
light on the conjecture.

Other authors have considered this situation as well. W. Imrich and M. E.
Watkins, in a 1976 paper [10], considered the full automorphism group of the Cayley
graph of a group G. They were concerned with generating sets that were closed
under inverses, so the Cayley graph is undirected; they wanted to minimize the
index of G in Aut(Cay(G)) for a given group where the index is always greater
than 1 (that is, those without a graphical regular representation). The techniques
we develop here can be used to examine these questions in the directed case as well
as the undirected case.

Other authors have looked at the undirected case as well. For example, in a 1952
paper [8], R. Frucht constructed a one-regular graph of degree three; while doing
so, he proved that if a generating set w of a group G is invariant under a group
automorphism π of G, then π is an automorphism of the Cayley graph of G with
respect to w (in that paper, all his generators were of order 2, so all the Cayley
graphs were undirected). In this paper, we extend that result to Cayley graphs
for generators with larger order. A 1991 paper by U. Baumann [2] examined the
relationship between automorphisms of groups and automorphisms of their Cayley
graphs, in cases where all generators have order 2. Baumann extended Frucht’s
idea to identify a subgroup of the full graph automorphism group containing all
automorphisms induced by the group automorphisms that leave the generating set
invariant. In that paper, Theorem 1 states that if an automorphism of the Cayley
graph permutes the colors, it must be induced by a group automorphism of the
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generators (although he didn’t state the result in that form). We show here that
the same result holds in the directed case.

In a 1992 paper [7], Fiol, Fiol and Yebra specifically defined color-permuting
automorphisms. Their definition was a generalization of the idea of a chromatic
automorphism of a vertex-colored graph defined by Chvátal and Sichler [5]. The
goal in [7] was to give necessary and sufficient conditions for the arc-colored line
digraph of a Cayley digraph also to be a Cayley digraph. In that paper, they men-
tion (without proof) that G is a normal subgroup of the group of color-preserving
automorphisms of the Cayley graph, which we cite here as part of Theorem 2.5.
In [6], Fang, Praeger and Wang look at the (undirected) Cayley graph for finite
simple groups, giving some sufficient conditions for G to be a normal subgroup of
the full automorphism group of the Cayley graph. We will take this idea further in
this paper, looking at the case where the Cayley graph is directed.

In 2000, R. Jajcay [11] considered undirected Cayley graphs of groups generated
by generating sets X that are closed under inverses. In this paper, he showed that
the full automorphism group of a Cayley graph could be described using rotary
extensions, a generalization of split extensions or semidirect products. A rotary
extension, in contrast to the semidirect product of a group H by another group K ≤
Aut(H), is an extension of H by a subgroup of the group of all permutations on H
stabilizing the identity. He then demonstrated that the full automorphism group of
the Cayley graph of G is a rotary extension of G with a subgroup of the stabilizer of
the identity vertex in Aut(Cay(G)). His goal in doing so was to address the problem
of classifying all finite groups G that are isomorphic to the full automorphism group
of some graph (which is necessarily a Cayley graph), a problem closely related to
the problem of graphical regular representations previously mentioned.

In [12], Praeger defines normal edge-transitive Cayley graphs as those where
a subgroup of automorphisms normalizes G and acts transitively on the edges of
G. In that paper, she shows that the Cayley graph is normal edge-transitive as
an undirected graph when the automorphisms of G that fix the generators S as
a set is transitive on S. This happens precisely when the normalizer of G in the
group of automorphisms of the Cayley graph is a semi-direct product. This group
is the same as the color-permuting automorphisms we discuss in this paper. In
another paper [15], Xu calls a Cayley digraph normal if G is normal in the full
automorphism group of the Cayley graph. In the paper, he gives examples where
the Cayley graph is normal and finds some results.

In this paper, we focus on directed versions and extensions of many of these
questions. In Section 2, we look at the subgroups consisting of color-preserving au-
tomorphisms, color-permuting automorphisms and the subgroup of automorphisms
that fix the identity vertex, showing that the latter is a subgroup of products of
symmetric groups; we also show how that structure is obtained. Next, in Section
3, we show that Aut(Γ) is isomorphic to a semidirect product of G with A, the
subgroup of automorphisms that fix the identity vertex. We also determine the
structure of A, based on the relations for the generators. We also look at other
subgroups that help determine the structure of the various automorphism groups.
Finally, in Section 4, we list several open problems.
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2. Automorphisms Preserving Colors, Permuting Colors and Fixing
the Identity

Let G be a non-trivial finite group with generators ∆ = {h1, h2, . . . , hn}. Let Γ
denote the Cayley graph of G determined by ∆, and let Aut(Γ) denote the group
of digraph automorphisms of Γ.

The next definition follows the terminology of Fiol, Fiol and Yebra in [7].

Definition 2.1. Let G be a nontrivial finite group with generators ∆ = {h1, h2,
. . . , hn}. Let {c1, . . . , cn} be a set of colors.

• An element φ of Aut(Γ) is called color-preserving if the edge from gi to gj
is colored ck if and only if the edge from φ(gi) to φ(gj) is colored ck. We
denote by AutG(Γ) the collection of color-preserving automorphisms.
• An element φ of Aut(Γ) is called color-permuting if there exists a permu-

tation τ of {1, 2, . . . , n} so that whenever the edge from gi to gj is colored
ck, the edge from φ(gi) to φ(gj) is colored cτ(k). We denote by AutP (Γ)
the collection of color-permuting automorphisms.

2.1. The Subgroups of Color-Preserving and Color-Permuting Automor-
phisms. If we represent left multiplication of the vertices by the element g as
λg : h 7→ gh, then clearly λg induces a color-preserving automorphism of the Cay-
ley graph. Theorem 2.2 states that all color-preserving automorphisms arise in
this fashion. The result is well-known; see, for instance, [14] (Theorem 4-8) or
[4] (Theorem 9.7). This justifies the notation AutG(Γ) for the color-preserving
automorphisms of G.

Theorem 2.2. Let G be a non-trivial, finite group with generators ∆. Let Γ be the
Cayley graph of G for ∆. Then AutG(Γ) ∼= G.

Example 2.3. Consider the alternating group A4 generated by ∆ = {(123), (142)}.
The Cayley graph Γ is pictured in Figure 1.
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Figure 1. Cayley graph of A4 in Example 2.3

AutP (Γ) has 24 elements: there are 12 possible images for (1), and the image
of (123) must be one of the two vertices adjacent to the image of (1). One choice
will lead to a color-preserving automorphism and the other will lead to a color-
permuting one.

Example 2.4. For an example of a Cayley graph which has non-color-preserving
automorphisms, let H be the subgroup of S8 generated by ∆ = {(1234)(56)(78),
(12)(34)(5678)}. The Cayley graph Γ′ of H is pictured in Figure 2a; it is a hyper-
cube. In the figure, vertex 1 corresponds to the identity, vertex 5 corresponds to
(1234)(56)(78), and vertex 7 corresponds to (12)(34)(5678).
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Figure 2. An automorphism which is not color-permuting.

For this graph, there are color-preserving and color-permuting automorphisms,
but those only account for half of the automorphisms of this digraph. For example,
the automorphism φ pictured in Figure 2b interchanges vertices 5 and 7, vertices 2
and 4, vertices 9 and 11, and vertices 14 and 16; it is not color-permuting.

We can ask the following questions:
(1) Is AutG(Γ)) / AutP (Γ)?
(2) Is AutG(Γ) / Aut(Γ)?
(3) Is AutP (Γ) / Aut(Γ)?

By the following theorem, the answer to question (1) is yes. This result is
mentioned in [7] without proof.

Theorem 2.5. Let G be a non-trivial finite group with generators ∆ and Cayley
graph Γ for ∆. Then G ∼= AutG(Γ) / AutP (Γ).

Proof . Let σ represent any color-permuting automorphism in AutP (Γ) and φ
be a color-preserving automorphism in AutG(Γ). Then σ−1φσ must be a color-
preserving automorphism, since σ−1 will send an edge colored ci to an edge colored
cj , φ will send an edge colored cj to another edge colored cj , and then σ will take
an edge colored cj to an edge colored ci; the net effect is that all edges keep their
original colors.

For question (2), AutG(Γ) may be normal in Aut(Γ), but it needn’t be. In [15],
Xu called a Cayley digraph normal if AutG(Γ) / Aut(G). Subsequent papers and
others have considered this question, which is far from settled. In [6], Fang, Praeger
and Wang consider undirected Cayley graphs for certain finite simple groups, giving
a sufficient condition for when G is a normal subgroup of the full automorphism
group of the Cayley graph. As an example, in H of Example 2.4, the set of color-
preserving automorphisms is not normal in the full automorphism group. If we
designate by ψ the color-preserving automorphism which sends vertex 1 to vertex
5, then ψ is given by the vertex permutation (1, 5, 9, 13) (2, 6, 10, 14)(3, 16, 11, 8)
(4, 15, 12, 7). If we consider the same (non-color-permuting) automorphism φ from
before, then the automorphism φψφ−1 is not color preserving.

For question (3), we again have that AutP (Γ) may be normal in Aut(Γ), but
it needn’t be. This question has not been studied previously, so the characteriza-
tion of groups G and generating sets where this holds is still open. If the index
|AutP (Γ) : Aut(Γ)| = 2 (as it is in Example 2.4), then certainly AutP (Γ) / Aut(Γ).
However, if G = D4 generated by ∆ = {(12), (34), (14)(23)}, then AutP (Γ) is
not normal in Aut(Γ). The Cayley graph is shown in Figure 3. In this case,
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|AutP (Γ)| = 16, generated by the color-preserving automorphisms and the color-
permuting automorphism fixing the identity that interchanges the vertices corre-
sponding to (12) and (3, 4). The full automorphism group of the Cayley graph is of
order 48, the isometry group of the cube. It has no normal subgroup of order 16.
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Figure 3. Cayley graph of D4 generated by ∆ = {(12), (34), (14)(23)}

2.2. The Color-Permuting Automorphisms that Fix the Identity Vertex.
If a color-permuting automorphism fixes the identity vertex, then that automor-
phism corresponds to an automorphism of G that permutes the generating set ∆.
Thus, those generators must behave in the same way in the group relations. Bray,
Curtis and others study symmetric presentations; some of that work has appeared
in, for example, [3]. Our focus, however, is on how such a presentation corresponds
to an automorphism of the Cayley graph.

Let AP denote the subgroup of color-permuting automorphisms that fix the
identity vertex, and let Aut(G,∆) denote the group automorphisms of G that fix
∆ as a set. We thus have that AP ∼= Aut(G,∆).

For A4 generated by ∆ = {(123), (142)}, the relations are a3 = b3 = (ab)3 = (1);
note that (ba)3 = (1) as well. Thus, there will be color-permuting automorphisms.
However, in H of Example 2.4, the presentation is 〈a, b | a4 = b4 = (ab)2 =
(ab−1)2 = 1〉. One can verify that a and b are interchangeable in these relations, but
it is also possible to change the colors of some edges only and have the new coloring
represent the relations in different ways. For example, since aaaa = abab = e, the
two edges corresponding to b in the 4-cycle (abab) could have their color changed to
that corresponding to a, and that 4-cycle would become the 4-cycle (aaaa). At the
same time, that would mean that the 4-cycle (baba) becomes (bbbb), (bbbb) becomes
(abab), etc. In the example of φ given, that is exactly what happens, as one can
verify from Figure 2.

For another example, consider the subgroup of S6 generated by ∆ = {a1, a2, a3} =
{(123), (345), (156)}. Here, a3

i = (1) for all i, (aiaj)5 = (1) if i 6= j and (abc)5 = (1),
yet (bac)4 = (1). Thus, we can only permute the generators in the Cayley graph
with a Z3 action, not the full action of S3. The Cayley graph for this group has
360 vertices and 1080 edges.

We summarize these ideas in the following theorem.

Theorem 2.6. Let G be a non-trivial group with n generators ∆ and let AP denote
the subgroup of automorphisms in AutP (Γ) which fix the vertex corresponding to
the group identity. Then AP ∼= Aut(G,∆), a subgroup of Sn.

We finish the section by putting these results together to describe the structure
of the color-permuting automorphisms of the Cayley graph. Any color-permuting
automorphism which sends the identity vertex to a vertex α can be written as a
product of a color-permuting automorphism which fixes the identity followed by a
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color-preserving automorphism sending the identity vertex to α. That product can
easily be shown to be a semidirect product.

Theorem 2.7. Let G be a non-trivial finite group with n generators ∆. Then there
is a subgroup AP of AutP (Γ) isomorphic to a subgroup of Sn such that AutP (Γ) ∼=
GoAP .

This theorem shows that AutP (Γ) can always be expressed as a semidirect prod-
uct of G with a subgroup of Sn that is determined by understanding how the
generators can be interchanged in the group relations. As we will see in the next
section, sometimes a stronger result occurs, where AutP (Γ) will be a direct product
with a group isomorphic to A.

This theorem is similar to one in [7]. In that paper, Fiol, Fiol and Yebra showed
that the group of color-permuting automorphisms is isomorphic to a semidirect
product of G with H∗, a subgroup of Aut(G) which sends ∆ to itself. However,
they give no information about the structure of H∗.

Finally, note that all of the subgroups we have been discussing can be viewed as
subgroups of the holomorph of G. Generally, the holomorph of a group G is the
semidirect product GoAut(G), where the multiplication is given by (g, φ)(h, ψ) =
(gφ(h), φψ). In our context, it is useful to view the holomorph as a permutation
group acting on G; in this case, the holomorph is the normalizer of the subgroup
of left regular representations of G in the full permutation group Sym(G) of G.
Because any automorphism of the Cayley graph corresponds to an element of the
full permutation group of G, we can see how the groups we are interested in will
be subgroups of Sym(G). We will discuss this further in the next section.

3. Direct and Semidirect Products

For the Cayley graph A4 generated by ∆ = {(123), (142)} of Example 2.3, The-
orem 2.7 shows that AutP (Γ) ∼= A4 o S2. However, it is also true that AutP (Γ) ∼=
A4×S2. Why in this case can the semidirect product be decomposed (in a different
way) into a direct product? In particular, if Γ′ is the Cayley graph for A4 generated
by ∆1 = {(123), (124)}, then again, AutP (Γ′) ∼= A4oS2, but in this case, the center
is trivial, so it is not possible to express AutP (Γ′) as a direct product A4×S2. The
two Cayley graphs are shown below in Figure 3.
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(a) Cay∆(A4) (b) Cay∆1(A4)
Figure 3. Cayley graphs for two generating sets of A4.

The difference here arises from the structure of Aut(G,∆). In the first case,
the element of Aut(G,∆) that interchanges the two generators can be realized as
conjugation by the element (12)(34), which is an element of A4, so it is an inner
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automorphism. In fact, the central element of Aut(Γ) sends the vertex (1) to the
vertex (12)(34). (One may visualize this as a central inversion of the directed-edge
cuboctahedron that the Cayley graph represents.) On the other hand, the element
of Aut(G,∆′) that interchanges the two generators can be realized as conjugation by
the element (3, 4), so it is not an inner automorphism. (The reader can verify that
no central inversion of this directed-edge cuboctahedron preserves the directions of
the arrows.)

This situation can be generalized. But first, we need several definitions.

3.1. Inner Automorphisms and Centralizers.

Definition 3.1. Let G be a group generated by ∆. Let AI represent the elements
of AutP (Γ) that arise from inner automorphisms. That is, if g ∈ G and γg : h 7→
ghg−1 = hg, AI = {γg|g ∈ N(∆)}. Further, let AutI(Γ) = AutG(Γ) ·AI .

Each γg is a color-permuting automorphism, since it fixes ∆ as a set. However,
any elements of Z(G), the center of G, induce the identity automorphism. Thus, we
have AI ∼= N(∆)/Z(G). The following proposition shows how AutI(Γ) fits between
AutG(Γ) and AutP (Γ).

Proposition 3.2. AutG(Γ) / AutI(Γ) / AutP (Γ).

Proof . The first assertion is immediate from Theorem 2.5. The proof of the second
is the same as the proof that Inn(G), the group of inner automorphisms of G, is a
normal subgroup of Aut(G).

Example 3.3. Consider A5 generated by ∆ = {(123), (124), (125)}. The gener-
ators can be permuted via conjugation by any permutation of {3, 4, 5}, however,
only conjugation by 3-cycles will be inner automorphisms. Thus, AutG(Γ) ∼= A5,
AutI(Γ) ∼= A5 × Z3, and AutP (Γ) ∼= (A5 × Z3) o Z2

∼= A5 o S3.

Right multiplication of vertices (in our context) does not usually produce an
automorphism of the Cayley graph. However, in certain cases, it does.

Definition 3.4. Denote by ρg right multiplication by g ∈ G, that is, ρg : h 7→ hg.
Let R = {ρg|g ∈ N(∆)}, so R ∼= N(∆).

Proposition 3.5. (1) R = CentAut(Γ)(AutG(Γ)).
(2) AutI(Γ) = R ·AutG(Γ).

Proof .
(1) Follows immediately from the fact that the centralizer of G in Sym(G) is

the set of right multiplications; we are restricting our view to the subgroup
Aut(Γ).

(2) Follows from the definitions.

R ∩ AutG(Γ) ∼= Z(G); if R∩AutG(Γ) = {eG}, then AI will be a direct product.
When does that happen? g ∈ R ∩AutG(Γ) precisely when g ∈ Z(G), the center of
G.

Corollary 3.6. If AutP (Γ) ∼= AutG(Γ)×H for some H, then AutP (Γ) = AutI(Γ).

Corollary 3.7. If Z(G) = eG, then AutI(Γ) = AutG(Γ)×R.
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We have the following theorem that holds in the case where all automorphisms
of G are inner automorphisms.

Theorem 3.8. Consider the semidirect product G o H, where Aut(G) = Inn(G)
and multiplication is realized by (x, a) · (y, b) = (xya, ab). Suppose that in the map
γ : H → Aut(G), h ∈ H corresponds to conjugation by gh ∈ G. Then (gh, h−1) is
in the centralizer of G in GoH. Finally, if H = Z2

∼= S2, then the element (gh, h)
is in the center of Go S2.

Proof . Let (a, e) be an element of G oH corresponding to an element of G, and
let (gh, h) be as in the hypothesis of the theorem. We have that ah = ghag

−1
h ,

ah
−1

= g−1
h agh and that (gh, h−1)−1 = ((g−1

h )h, h). Then

(gh, h−1)(a, e)(gh, h−1)−1 = (ghah
−1
, h−1)((g−1

h )h, h)

= (gh(g−1
h agh)((g−1

h )h)h
−1
, hh−1)

= (aghg−1
h , e)

= (a, e).

The last statement of the theorem follows easily.

4. Open Questions

(1) What groups can be realized as A, the color-permuting automorphisms that
fix the identity (as in Theorem 2.6)?

(2) In general, when is the color-permuting automorphism group of a Cayley
graph expressible as a direct product?

(3) Do our results hold for all alternating and symmetric groups? In particular,
what happens with S6, which has non-inner automorphisms?

(4) For which groups will the Cayley graph admit non-color-permuting auto-
morphisms?

(5) What is the relationship of any group G with the full automorphism group
of its Cayley graph? (Recall, G is not always normal in the full automor-
phism group.)
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