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ABSTRACT 

We examine some properties of the 2-variable greedoid polynomial 
f(G;t,  z) when G is the branching greedoid associated to a rooted graph 
or a rooted directed graph. For rooted digraphs, we show a factoring 
property of f (G;t ,z)  determines whether or not the rooted digraph 
has a directed cycle. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In [4], a two-variable polynomial f ( G ;  t ,  z )  on greedoids was introduced. 
This paper will concentrate on the restriction of the polynomial to the 
greedoids associated with rooted graphs and rooted directed graphs. In 
Section 2, we examine the role of greedoid loops in rooted graphs and 
digraphs; in Theorem 1, we show that if a rooted graph or digraph has no 
greedoid loops, then it is completely determined by its greedoid structure. 
In Section 3, we consider factorization of the polynomial. We first show, 
in Proposition 3, that for a general greedoid, if the polynomial has a factor 
in z alone, then that factor is a power of z + 1. We next examine the 
multiplicity of z + 1, first for general greedoids, then for rooted graphs, 
and finally for rooted digraphs. In particular, in Theorem 2, we show that 
the multiplicity of z + 1 in the polynomial for a rooted graph gives the 
number of greedoid loops in the rooted graph, while Theorem 3 shows that 
in a rooted digraph, the multiplicity is connected with greedoid loops and 
directed cycles. Section 4 looks at several examples of rooted digraphs and 
their polynomials to see what more can be said about multiplicities. 
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We begin with some definitions. A greedoid G = ( E , r )  consists of a 
ground set E ,  along with a rank function r :  2E - N U {0}, such that for 
any A, B 5 E and any x,y E E, 

R1. r(A) I IA1 
R2. If A 
R3. If r (A)  = r (A  U {x}) = r(A U { y } ) ,  then r(A) = r (A U {x,y}). 

A subset F of E is called feasible if r ( F )  = IFI; in fact, a greedoid can 
also be defined by specifying the collection of feasible sets F and then 
defining the rank function by r (A)  = max((F1: F C A,  F E F) .  For more 
information on greedoids, see [2]. Greedoids were introduced by Korte and 
Lovasz in a number of papers; see, for example, [5]. 

We now define the polynomial f ( G ;  t ,  z) (or f ( G )  for short) by: f ( G )  = 
LCE t'(G)-r(A)zlAl-r(A). This polynomial is a generalization of the (corank- 
nullity version of the) Tutte polynomial of a matroid; when the greedoid 
is actually a matroid, the new polynomial and the Tutte polynomial are 
identical. General information about the Tutte polynomials of matroids may 
be found in [3] or [7]. 

Some simple calculations show that if G is a greedoid whose only element 
is feasible, then f(G) = t + 1, and if G is a greedoid with n elements, none 
of which is feasible (so r (G)  = 0), then f ( G )  = (z + l)fl. 

If G is a greedoid with an element e, then the deletion of e, G - e ,  
is defined by specifying the feasible sets: F1 = { F  C E - e :  F E F}.  If 
{ e }  is feasible, then the contraction of e, G / e ,  is defined by specifying the 
feasible sets: F2 = { F  C E - e:  ( F  U {e} )  E F}.  

B ,  then r(A) I r ( B )  

Proposition 1 and Proposition 2 are proven in [4]. 

Proposition 1. If { e }  is feasible, then f ( G )  = f ( G / e )  + tr(G)-r(G-e) 
f ( G  - el .  

Define the direct sum of two greedoids G1 and G2 with disjoint ground 
sets El and E2 by specifying that the feasible sets of GI CB G2 are precisely 
the disjoint unions of the feasible sets of G1 and G2. 

Proposition 2. 
f (G1)  - f (G2) .  

If G is a greedoid with G = G1 @ G2, then f ( G )  = 

We now turn our attention to rooted graphs and rooted directed graphs. A 
rooted graph G is a graph with a distinguished vertex, denoted *. We call the 
set of edges of the graph E(G)  (or simply E )  and the set of vertices V ( G )  
(or simply V). A rooted subgraph T is a rooted tree if, for every vertex v in 
V, there is a unique path in T from * to v. Then we can define a greedoid G 
with ground set E and rank function r given by r(A) = max(1TI: T C A, T 
a rooted tree} for A C E. This is clearly equivalent to defining the feasible 
sets to be the edge-sets of rooted trees. 

A rooted directed graph D is a digraph with a distinguished vertex, again 
denoted *. Again, we call the set of edges of the graph E(D) ,  or E,  and 
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the set of vertices V ( D ) ,  or V. A rooted subdigraph A is called a rooted 
arborescence if, for every vertex v in V, there is a unique directed path in 
A from * to u.  Again, we define D to be the greedoid with ground set E 
whose feasible sets are the edge-sets of rooted arborescences. In this paper, 
we will consider the greedoid polynomial on the associated greedoids of 
rooted graphs or rooted digraphs (f@) or f(D)). The greedoids associated 
with rooted graphs and rooted directed graphs are called branching greedoids 
and directed branching greedoids, respectively. 

For both rooted graphs and rooted digraphs, we note that deletion of e 
in the associated greedoid corresponds to removing the edge e from the 
graph or digraph, i.e., (G - e )  = ?? - e .  If e is an edge in G emanating 
from * (so that {e} is feasible), contraction of e in the associated greedoid 
corresponds to erasing the edge e and identifying the two end points of e, 
i.e., ( G / e )  = G/e.  

2. THE ROLE OF GREEDOID LOOPS IN ROOTED 
GRAPHS AND DIGRAPHS 

Following the usual greedoid convention, we define a greedoid loop in a 
rooted graph or rooted digraph to be an edge that is in no feasible set of the 
associated greedoid. In a rooted graph, a greedoid loop can only be an edge 
from a vertex to itself (i.e., the usual graph-theoretic loop) or an edge in a 
part of the graph that is disconnected from *. In a rooted digraph, however, 
the situation is somewhat more complicated. A directed edge e with initial 
vertex u and terminal vertex w is a greedoid loop if and only if w lies on 
every directed path from * to v .  In Figure 1, for example, e is a greedoid 
loop in each of the rooted digraphs H I ,  H z ,  H3, and H4. 

No two of the four are isomorphic as rooted digraphs, but they all 
have isomorphic greedoid structures-hence their polynomials are the same. 
One can compute f ( H i )  = (z + 1) ( t2 (z  + 1) + (t  + 1)). Clearly, given a 
rooted graph or digraph, we can append greedoid loops in different ways 
to create nonisomorphic rooted graphs or digraphs; the underlying greedoid 
structure will only be able to distinguish how many greedoid loops have been 

* * * e  * 

P\ e 
Hl H2 H3 

FIGURE 1 
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added. The following theorem shows that if two rooted graphs or digraphs 
have the same greedoid structure, then the only way they could differ as 
graphs or digraphs is in the location of greedoid loops. 

Theorem 1. A rooted graph (respectively, rooted digraph) with no greedoid 
loops and no isolated vertices can be uniquely reconstructed from the list 
of feasible sets of the associated greedoid. That is, if GI and G2 are rooted 
graphs (digraphs) with no greedoid loops whose associated greedoids are 
isomorphic, then GI and Gz are isomorphic as rooted graphs (digraphs). 

Proof. An outline of the proof follows. An alternate proof can be 
constructed from the fact that the poset of flats of the greedoid is the 
branching greedoid of the vertex search greedoid. 

The result for rooted graphs follows by induction, either deleting one of 
a parallel edge emanating from * (which can be recognized by the fact that 
{el and {f} are each feasible in the associated greedoid but {e,f} is not) or, 
if there are no such edges, by contracting an edge emanating from * (an 
edge where {e} is feasible). 

For a rooted digraph D, one can first show that there must be an edge e 
such that D - e has no greedoid loops. This follows from the fact that if 
an edge f becomes a greedoid loop when e is deleted, then any edge that 
becomes a greedoid loop when f is deleted also becomes a greedoid loop 
when e is deleted. 

To reconstruct D, delete an edge e so that D - e has no greedoid loops. 
Use induction to reconstruct D - e from D - e .  The edge e can be replaced 
in D by finding its initial and terminal vertices; to determine the initial 
vertex, find a directed path containing e; to determine the terminal vertex, 
one can examine a basis containing e in D (which corresponds to a 
spanning arborescence B in D) and then consider B - e in D - e.  Since, in 
a spanning arborescence, every vertex must have indegree 1, by considering 
three cases (either B - e is a spanning arborescence for D - e ,  or it is 
connected but misses a vertex, or it is not connected in D - e) ,  one can 
determine the terminal vertex of e. Thus, D can be completely reconstructed. 

This result can be compared with Whitney 's 2-isomorphism theorem, 
which states that two graphs (each having no isolated vertices) give the 
same matroid structure if and only if the graphs are 2-isomorphic. See [6] 
for details. 

3. FACTORIZATION OF THE POLYNOMIAL 

We begin the discussion of the factorization of the polynomial with a result 
on general greedoids, and then look at the implications of this factorization 
for rooted graphs and rooted digraphs. 
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Proposition 3. 
g ( z )  = (z + 1)" for some a L 0. 

Let G be a greedoid. If f ( G ; t , z )  = f l ( t , z ) g ( z ) ,  then 

Proof. Let G be a rank r, cardinality n greedoid with k feasible sin- 
gletons. Note that k I n and r I n. If k = r = n, then f(G) = ( t  + l)fl, 
so g ( z )  = 1. Next, if k < n, collect all terms in f(G;t,z) corresponding 
to subsets A of rank 0; this corresponds to all possible subsets of the set 
S of n - k nonfeasible singletons. For each such subset A,  the term con- 
tributed to f(G) is t'zIAl, so we have Lcs t'zlAl = t'(z + l)n-k. Thus, we 
have f ( G ; t , z )  = t '(z + l)fl-k + t'-'q(z) + -... So, if t '(z + l)n-k + 
t'-'q(z) + = fl(t,z)g(z), g(z) must divide ( z  + l)fl-k, hence g ( z )  = 
(z + I)", as desired. 

Proposition 4. If G is a greedoid with k loops, then (z + l ) k  divides f ( G ) .  

Proof. 
sition 2. 

This follows immediately from the definition of f ( G )  and Propo- 

Lemma 1. Let G be a greedoid with e E G feasible. The multiplicity 
of z + 1 in f(G) will exactly equal the smaller multiplicity of z + 1 in 
f ( G / e )  or f ( G  - e ) .  

Proof. Due to the recursion f ( G )  = f ( G / e )  + tr(G)-'(G-e)f(G - e ) ,  
and the fact that f(1oop) = z + 1, we see by induction that the polynomial 
f(G) can, in fact, be written as a polynomial with positive coefficients in t 
and ( z  + 1). The lemma follows immediately. 

The following theorem is exactly analogous to a result on the Tutte 
polynomial of a matroid. 

Theorem 2. Let G be a rooted graph with f(c) = (z + l)"fl(t, z), where 
z + 1 does not divide fl(t, z). Then a is the number of greedoid loops in G .  

Proof. The theorem is clearly true if G has one edge, so assume it is 
true for all graphs with n - 1 or fewer edges and that G has n 2 2 edges. 
For each greedoid loop in G, f(c) has a factor of z + 1, so we may assume 
G has no greedoid loops and prove that f(c) has no factors of z + 1. 

Let e be an edge in G that is incident with *. If the contraction G / e  has a 
greedoid loop, then there is an edge fthat is parallel with e, so there will only 
be a factor of z + 1 in G/e if e is one of a set of parallel edges. However, 
in this case, G - e has no greedoid loops, for the only way greedoid loops 
will appear in G - e is for there to be edges incident to e that cannot be 
reached from * by any other edges. Thus, - either G/e or G - e has no 
greedoid loops. So, by induction, either f ( G / e )  or f(G - e) has no factors 
of z + 1. Then, by Lemma 1, the proof is complete. 
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Recall that for a greedoid G,  f(G) = (z + l)f(G - e ) ,  if e is a loop. For 
a rooted directed graph, recall that a directed cycle is a sequence of edges 
el ,  e2, .  . . , e n ,  where the terminal vertex of ei is equal to the initial vertex 
of e i+l ,  the terminal vertex of en is equal to the initial vertex of e l ,  and no 
vertex is visited twice along the way. We now show that the multiplicity 
of z + 1 in a rooted digraph is connected with directed cycles as well as 
greedoid loops. 

Theorem 3. 
Then D has a directed cycle if and only if z + 1 divides f(r>). 

Let D be a rooted directed graph with no greedoid loops. 

Proof. First, we wish to show that if D has no greedoid loops but does 
have a directed cycle, then f(n) has a factor of z + 1. We again proceed 
by induction. 

Any rooted digraph with three or fewer edges either has greedoid loops 
(and thus a factor of z + 1) or has no directed cycles, so the base case of 
the induction is vacuously satisfied. 

Assume D is a digraph with n edges, n 2 4; D has no greedoid loops but 
does have a directed cycle. Suppose e is a feasible edge with terminal vertex 
u.  Clearly, a directed cycle in D cannot contain e, as there are no greedoid 
loops in D. Thus, any directed cycle in D will remain a directed cycle in 
the deletion D - e ,  possibly containing a greedoid loop. (See Figure 2: if 
e is deleted, then f becomes a greedoid loop.) Thus, by induction, z + 1 
divides f(D - e ) .  

Next, if D contains a directed cycle that does not pass through u,  then it 
will remain a directed cycle in D / e .  If the directed cycle does pass through 
u,  then there must be an edge pointing - into u ,  and hence there is a greedoid 
loop in D / e .  By induction, f ( D / e )  has factors of z + 1. Thus, by Lemma 
1, z + 1 divides f@), as desired. 

For the converse, we will show that if D is a rooted directed graph with 
no greedoid loops and no directed cycles, then either D - e or D / e  has 
no greedoid loops and no directed cycles. Using induction and Lemma 1, 
we will then have that f(D) has no factors of z + 1. So, assume that D is 
such a rooted directed graph. 

A V 
f 

FIGURE 2. 
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If the number of edges in D is 1, the result is clear, so assume that D 
has n edges, where n 2 2. Let e in D be an edge that is feasible in Td. (We 
know that such an edge must exist, for D has no greedoid loops.) Thus, the 
initial vertex of e is *; let u be the terminal vertex of e. 

Since D has no directed cycles, neither D / e  nor D - e can have a 
nontrivial directed cycle (that is, one not containing a greedoid loop). Thus, 
we need only show that either D / e  or D - e has no greedoid loops. 

Clearly, if e is one of a set of parallel edges (emanating from *) or if there 
is an edge f pointing into u,  then contracting e will create a greedoid loop. 
We will show that those are the only conditions under which contracting e 
will create a greedoid loop. Suppose e is not one of a set of parallel edges 
and e’ is an edge in D that becomes a greedoid loop in D / e .  Since D has 
no greedoid loops, there is a shortest directed path from * to the initial 
vertex of e’. If e is in that path or if the path does not contain v ,  e’ could 
not be a greedoid loop in D / e ,  so the path does not contain e but passes 
through v. But we could then use e to give us a shorter path, contradicting 
minimality, unless e’ has v as its terminal vertex. Hence, there is an edge 
pointing into u.  Thus, D / e  will have a greedoid loop only if (1) e is one 
of a set of parallel edges or (2) there is another edge pointing into u,  the 
terminal vertex of e. We now show that under both of these conditions, 
D - e has no greedoid loops. 

In the case of condition (l), any greedoid loop of D - e would be a 
greedoid loop in D ,  so D - e has no greedoid loops. 

In the case of condition (2), suppose f is an edge whose terminal vertex is 
u.  Let e‘ # e be an edge in D.  We will show that if e‘ is a greedoid loop in 
D - e ,  then D has a directed cycle, contrary to assumption. Since D has no 
greedoid loops, there is a shortest directed path starting with * containing f, 
say el,  e2 , .  . , , e , , f .  (Note that e cannot appear in that path.) There is also a 
shortest directed path starting with * containing e’; however, this path must 
contain e, or else e’ would not be a greedoid loop in D - e .  Thus, this path 
can be written e ,  ei , .  . . , ek, e’ (see Figure 3).  

Now, consider the walk e l ,  e2,. . . , e, , f ,  e:, . . . , ek, e’. This cannot be 
a feasible set (since e‘ is a greedoid loop in D - e). This means that 

FIGURE 3 
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there is an i z 2 such that e l ,  e2, .  . . , e, , f ,  e:, . . . , ei is feasible, while 
el,e2 ,..., e,,fie: ,..., e:+, is not. Thus, e:+] must have as its terminal 
vertex the initial vertex of one of the e j .  However, this now means that 
e j ,  . . . , e,,fi e:, . . . , e:+l is a directed cycle in D, which we cannot have. So, 
e’ cannot be a greedoid loop. Thus, D - e has no greedoid loops. 

Thus, in every case ~ where D / e  has a greedoid loop, D - e does not. 
By induction, either f ( D / e )  or f ( D  - e )  has no factors of z + 1, so by 
Lemma 1, f(D) has no factors of z + 1, and the proof is complete. 

Theorems 6.7 and 6.10 of [l] together imply a result very similar 
to Theorem 3. In our notation, this result can be written as follows: 
f(D; 0, - 1) = 0 if and only if D has no directed cycle. It is not hard to show 
directly that f(b; 0, - 1) = 0 if and only if f ( D ;  t ,  - 1) = 0, and thus derive 
Theorem 3. We point out, however, that the proofs of Theorems 6.7 and 6.10 
in [ 11 make extensive use of combinatorial topology, and in particular depend 
on shellability properties of the dual complex of the branching greedoid. The 
proof we have given, on the other hand, is entirely graph theoretic. 

4. COUNTEREXAMPLES 

Let D be a rooted directed graph, with no greedoid loops. If D has a 
directed cycle, then Theorem 3 shows that there will be at least one factor 
of z + 1 in f(D). It thus seems reasonable to expect that the multiplicity 
of z + 1 is connected in some way with the number of directed cycles. The 
following collection of counterexamples shows, among other things, that 
a straightforward answer (the number of directed cycles or the maximum 
number of disjoint directed cycles) will not suffice. Also, by considering 
examples of nonisomorphic rooted digraphs with the same polynomial, we 
will show that certain other digraph invariants are not determined by the 
polynomial f ( D ) .  

All three digraphs in Figure 4 have rank 3 and six edges. D1 has a directed 
cycle of length 2 and one of length 3, which have one edge in common. D2 
has two directed cycles of length 3, which have two edges in common. D3 
has a greedoid loop and no directed cycles. Now, 

fa) = fm2)  = m 3 )  = (z + + 0 3 t 3  + ( z  + u 2 ( t 2  + t + I )  
+ (z + 1) (t2 + 2t + 2)  + (t  + l)]. 

We see that the one factor of z + 1 cannot be counting the number 
of nondisjoint directed cycles, and that the polynomial cannot distinguish 
whether there is a directed cycle or a greedoid loop, nor can it determine 
the length of the longest or shortest directed cycle. In addition, in the first 
two cases, reversing the direction of one of the edges does not change the 
polynomial. We can also see that D1 and D2 disprove the conjecture in [4], 
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FIGURE 4 

as every edge is in some feasible set and the digraphs are not isomorphic, 
yet they have the same polynomial. 

The digraphs in Figure 5 both have rank 3 and seven edges. 0 4  has four 
cycles of length 3, all of which have one edge in common; D5 has one 
directed cycle of length 2 and a greedoid loop. Here, 

f(D4) = f(D5) = (z + 1)2[(z + 0 3 t 3  + (z + 1)’(t2 + t + 1) 
+ (z + l ) ( t2  + t + 2) + 2(t + l)]. 

There are several differences between these two, for example: for the 
first, the maximum number of disjoint directed cycles is one, yet z + 1 has 
multiplicity two, whereas the second has a greedoid loop, and there is only 
one directed cycle. 

Figure 6 provides a nice contrast to Figure 5. In Dg, there are four directed 
cycles of length 2, two of which have one edge in common. There are also 
two directed cycles of length 4, which have three edges in common. When 
counting numbers of disjoint directed cycles, one can either count three (all 
2-cycles), or one (a 4-cycle). In this case, 

f ( ~ ~ )  = (z + + 1)4t4 + (z + 1)3t3 + (z + 112(t3 + 2t2 + 1) 

+ (z + 1)(2t2 + 2t + 4) + 4(t + l)]. 

FIGURE 5 
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FIGURE 6 

ACKNOWLEDGMENT 

I would like to thank Gary Gordon for useful discussions during the 
preparation of this paper, Lorenzo Traldi for his comments on the manuscript, 
and Thomas Zazlavsky for valuable suggestions on the exposition. 

References 

[ 11 A. Bjorner, B. Korte, and L. Lovasz, Homotopy properties of greedoids. 
Adv. Appl. Math. 6 (1985) 447-494. 

[2] A. Bjorner and G. Ziegler, Introduction to greedoids, Matroid Applica- 
tions. Cambridge University Press, Cambridge (1992) 284-357. 

[3] T. Brylawski, The Tutte polynomial, part I: General theory. Revised 
from Matroid Theory and its Applications, Proceedings of the Third In- 
ternational Mathematical Summer Centre, Liguori, Naples, Italy (1980) 

[4] G. Gordon and E. McMahon, A greedoid polynomial which distin- 
guishes rooted arborescences. Proceed. Am. Math. SOC. 107 (1989) 

[5] B. Korte and L. Lovasz, Mathematical structures underlying greedy 
algorithms. Fundamentals of Computation Theory, Lecture Notes in 
Computer Science 117 (1981) 205-209. 

[6] J. Oxley, Graphs and series-parallel networks. Theory of Matroids 
Cambridge University Press, Cambridge (1986) 97- 126. 

[7] W. T. Tutte, Graph Theory. Cambridge University Press, Cambridge 
(1984). 

125 -276. 

287 - 298. 


