Separable extensions of noncommutative rings

By Elizabeth McMAHON and A. C. MEWBORN (Received June 14, 1983; Revised August 24, 1983)

1. Introduction. Separable extensions of noncommutative rings were introduced in 1966 by K. Hirata and K. Sugano [4]. In [1] Hirata isolated a special class of separable extensions, now known as H-separable extensions. These have been studied extensively in a series of papers over the last fifteen years, notably by Hirata and Sugano, themselves.

A ring A is an *H*-separable extension of a subring R if $A \otimes_R A$ is isomorphic as A, A-bimodule to a direct summand of A^n , for some positive integer n. An *H*-separable extension is separable; i.e. the multiplication map $A \otimes_R A \rightarrow A$ splits. In the case of algebras over commutative rings, *H*separable extensions are closely related to Azumaya algebras. In this case, A is an *H*-separable extension of R if A is an Azumaya algebra over a (commutative) epimorphic extension of R.

If A is a ring with subring R we denote by C the center of A and $\Delta = A^R$, the centralizer of R in A. Then A is an H-separable extension of R if and only if Δ is finitely generated and projective as C-module, and the map $\phi: A \otimes_R A \to \operatorname{Hom}_C(\Delta, A)$ defined by $\phi(a \otimes b)(d) = adb$, for $a, b \in A, d \in \Delta$, is an isomorphism. There are similarly defined maps $\Delta \otimes_C A \to \operatorname{Hom}(_RA,_RA)$, $A \otimes_C \Delta \to \operatorname{Hom}(A_R, A_R)$, and $\Delta \otimes_C \Delta \to \operatorname{Hom}(_RA_R,_RA_R)$, all of which are isomorphisms when A is H-separable over R. (See [12].)

In Sections 3 and 4 of this paper we generalize *H*-separability in two directions. We call *A* a *strongly separable* extension of *R* if $A \otimes_R A \cong K \oplus L$, where $\operatorname{Hom}_{A,A}(K, A) = (0)$ and *L* is a direct summand of A^n , for some positive integer *n*. *H*-separability is the case where K=(0). Strong separability is equivalent to separability for algebras over a commutative ring, but not in general. We show that *A* is strongly separable over *R* if and only if \mathcal{L}_C is finitely generated and projective and the map ϕ defined above is a split epimorphism. The three maps above which are isomorphisms in the *H*separable case are split monomorphisms when strong separability is assumed.

If σ is an automorphism of A, denote by A_{σ} the A, A-bimodule which as left A-module is just A but whose right A-module structure is "twisted" by σ . Then A is a *psuedo-Galois* extension of R if there is a finite set Sof R-automorphisms of A such that $A \otimes_R A$ is a direct summand of $\sum_{\sigma \in S} \bigoplus A_{\sigma}^{n}$, some positive integer *n*. *H*-separability is the case $S = \{1\}$. When *A* is a Galois extension of *R*, it is pseudo-Galois, and this is the motivation for the name.

Assume A is a pseudo-Galois extension of R and that for all σ , $\tau \in \operatorname{Aut}_R(A)$ any nonzero A, A-bimodule map from A_{σ} to A_{τ} is an isomorphism. Then there is a positive integer n and a finite subset S of $\operatorname{Aut}_R(A)$ containing exactly one element from each coset of the subgroup I of inner automorphisms such that $A \otimes_R A \cong \sum_{\sigma \in S} \bigoplus \operatorname{Hom}_C(\varDelta, A_{\sigma})$, and $\operatorname{Hom}_C(\varDelta, A_{\sigma})$ is isomorphic to a direct summand of A_{σ}^n , each $\sigma \in S$. Under these assumptions, A is strongly separable over R.

In Section 2 we show that if A is an H-separable extension of R which is generated over R by the centralizer \varDelta of R, and if R contains the center C of A, then \varDelta is an Azumaya algebra over C and $A \cong \varDelta \otimes_{C} R$. This conclusion has been obtained for H-separable extensions under other hypotheses by Hirata [2].

2. Assume A is a separable extension of R and let M be a left or right A-module. Sugano [12] has shown that if M is projective (injective) as R-module then it is also projective (injective) as A-module. An immediate consequence of this is that a separable extension of a semisimple artinian ring is also semisimple artinian. Sugano has shown further that if A is flat as left or right R-module, then A is quasi-Frobenius if R is. A related result is the following.

PROPOSITION 2.1. Let A be a separable extension of R such that A is flat as left (resp. right) R-module. Then A is left (resp. right) perfect if R is.

PROOF. Recall that a ring is left perfect if every flat left module is projective. Assume R is left perfect and M is a flat left A-module. We show that $_{R}M$ is flat. Let $(0) \rightarrow N \rightarrow N'$ be an exact sequence of right Rmodules. Then $(0) \rightarrow N \otimes_{R}A \rightarrow N' \otimes_{R}A$ is exact because $_{R}A$ is flat. Thus $(0) \rightarrow N \otimes_{R}A \otimes_{A}M \rightarrow N' \otimes_{R}A \otimes_{A}M$ is exact, by the flatness of $_{A}M$. So $(0) \rightarrow$ $N \otimes_{R}M \rightarrow N' \otimes_{R}M$ is exact, and $_{R}M$ is flat. Then $_{R}M$ is projective because R is perfect, and $_{A}M$ is projective by the result mentioned above. Therefore A is left perfect.

If Δ is an Azumaya algebra over its center C and R is a central Calgebra, then it is easy to see that $A = \Delta \bigotimes_{c} R$ is an H-separable extension of R. Furthermore, the centralizer of R in A is Δ . The following Theorem is a converse to this observation.

THEOREM 2.2. Let A be an H-separable extension of a subring R such

that A is generated over R by its centralizer Δ in A. Assume that the center C of A is contained in R. Then Δ is an Azumaya algebra over C, and $A \cong \Delta \otimes_c R$.

PROOF. First, define $\phi: \Delta \otimes_{c} A \rightarrow A \otimes_{R} A$ by $\phi(d \otimes a) = d \otimes a \in A \otimes_{R} A$. This map is well-defined because $C \subseteq R$.

Since $A = \Delta R$, each element of $A \otimes_R A$ can be written in the form $\sum d_i \otimes b_i$, with $d_i \in \Delta$, $b_i \in A$.

Define $\psi: A \otimes_R A \to A \otimes_C A$ by $\psi(\sum_i d_i \otimes b_i) = \sum_i d_i \otimes b_i \in A \otimes_C A$. We need to show that ψ is well-defined. Assume $\sum_i d_i \otimes b_i = 0$ in $A \otimes_R A$. Since Ais H-separable over R, $A \otimes_R A \cong \operatorname{Hom}_C(A, A)$ under the map $a \otimes b \mapsto [d \mapsto adb]$, and $A \otimes_C A \cong \operatorname{Hom}(_R A, _R A)$ under the map $d \otimes b \mapsto [x \mapsto dxb]$. From $\sum_i d_i \otimes b_i$ = 0 in $A \otimes_R A$ we have $\sum_i d_i db_i = 0$, for all $d \in A$. Let $x \in A$, and write x = $\sum_j r_j e_j, r_j \in R, e_j \in A$. Then $\sum_i d_i x b_i = \sum_{i,j} d_i r_j e_j b_i = \sum_j r_j \sum_i d_i e_j b_i = 0$. Thus $\sum d_i \otimes b_i$ determines the zero element of $\operatorname{Hom}(_R A, _R A)$, and so $\sum d_i \otimes b_i = 0$ in $A \otimes_C A$. It follows that ψ is a well-defined map. Clearly, ϕ and ψ are inverse isomorphisms, $A \otimes_R A \cong A \otimes_C A$.

Since A is H-separable over R, Δ_c is finitely generated and projective, hence flat. Thus,

 $(0) \rightarrow R \rightarrow A$ exact yields $(0) \rightarrow \mathcal{A} \otimes_{c} R \rightarrow \mathcal{A} \otimes_{c} A \cong A \otimes_{R} A$ exact. So the natural map $\mathcal{A} \otimes_{c} R \rightarrow A \otimes_{R} A$ is injective. The multiplication map $f: \mathcal{A} \otimes_{c} R \rightarrow A$, $d \otimes r \mapsto dr$, is surjective by hypothesis. We show f is also injective. Assume $\sum_{i} d_{i}r_{i} = 0, \ d_{i} \in \mathcal{A}, \ r_{i} \in R$. Then under the injective map $\mathcal{A} \otimes_{c} R \rightarrow A \otimes_{R} A$, $\sum_{i} d_{i} \otimes r_{i} \mapsto \sum_{i} d_{i}r_{i} \otimes 1 = 0$. Hence, $\sum_{i} d_{i} \otimes r_{i} = 0$ in $\mathcal{A} \otimes_{c} R$, and f is injective. This proves $A \cong \mathcal{A} \otimes_{c} R$.

From $A \cong \Delta \otimes_C R$ it follows easily that C is the center of Δ . Also, C is a direct summand of Δ_C (see, for example, Hirata [1], p. 112), which implies that ${}_{R}R_{R}$ is a direct summand of ${}_{R}(\Delta \otimes_C R)_{R} = {}_{R}A_{R}$.

So we can apply Prop. 4.7 of [2] to conclude that Δ is an Azumaya algebra over C.

3. Strongly separable extensions. Many results which hold for Hseparable extensions can be extended in weakened form to a much larger class of separable extnsions, which we call strongly separable.

DEFINITION 3.1. A is said to be strongly separable over R provided Δ is finitely generated and projective as C-module, and the map $\phi: A \otimes_R A \rightarrow$ Hom_C(Δ , A) is surjective and splits.

An H-separable extension is strongly separable, and we show now that

a strongly separable extension is separable. We will also see that for an algebra over a commutative ring, strong separability and separability are equivalent. We will present an example to show that this equivalence does not hold in general.

PROPOSITION 3.2. If A is strongly separable over R than A is separable over R.

PROOF. Since Δ_C is finitely generated and projective, C is a direct summand of Δ_C (see, for example, Hirata [1], p. 112). Thus the map ϕ : Hom_C $(\Delta, A) \rightarrow A$, $f \rightarrow f(1)$, splits as A, A-bimodule map. Let ϕ' be the splitting map. Also, let ϕ' be the splitting map for ϕ . We have the commutative diagram

and it is seen that the map μ is split by $\phi' \circ \phi'$. Hence A is separable over R.

PROPOSITION 3.3. If A is a separable algebra over a commutative ring R then A is strongly separable over R.

PROOF. We have $R \subseteq C \subseteq A$; hence $\Delta = A$. Since A is separable over R it is an Azumaya algebra over C. Hence A_c is faithfully projective and finitely generated, and $A \otimes_c A$ is isomorphic to $\operatorname{Hom}_{\mathcal{C}}(A, A) = \operatorname{Hom}_{\mathcal{C}}(\Delta, A)$. Also, C is separable over R; so the sequence $C \otimes_R C \to C \to (0)$ is split exact. Tensoring on the left and right with A over C, we obtain the split exact sequence $A \otimes_R A \to A \otimes_C A \to (0)$. The diagram

$$A \otimes_{\mathbb{R}} A \longrightarrow A \otimes_{\mathbb{C}} A$$
$$\bigvee_{Hom_{\mathcal{C}}} (A, A)$$

is commutative. So the sequence $A \otimes_{\mathbb{R}} A \rightarrow \operatorname{Hom}_{\mathbb{C}}(A, A)$ splits, and A is strongly separable over R. This completes the proof.

The following lemma is well-known and is stated here without proof.

LEMMA 3.4. Let S and T be rings; let U be a right S-module, V an S, T-bimodule, and W a left T-module. There are canonical maps:

 $U \otimes_{\mathcal{S}} \operatorname{Hom}_{T}(V, W) \longrightarrow \operatorname{Hom}_{T}(\operatorname{Hom}_{\mathcal{S}}(U, V), W), \ u \otimes f \mapsto [g \mapsto g(u) f],$

and

$$\operatorname{Hom}_{\mathcal{S}}(V, U) \otimes_{T} W \longrightarrow \operatorname{Hom}_{\mathcal{S}} \left(\operatorname{Hom}_{T}(W, V), U \right), f \otimes w \mapsto \left[g \mapsto f(wg) \right].$$

If U_s is finitely generated and projective, the first map is an isomorphism; if $_TW$ is finitely generated and projective, the second map is an isomorphism.

A is H-separable over R if and only if $A \otimes_R A$ is a bimodule direct summand of A^n , for some positive integer n. The following result gives an analogous characterization of strong separability.

THEOREM 3.5. Let R be a subring of a ring A. Then the following conditions are equivalent:

(1) A is strongly separable over R.

(2) There exist $d_i \in \Delta$, $\sum_j a_{ij} \otimes b_{ij} \in (A \otimes_R A)^A$, $1 \leq i \leq n$, such that $d = \sum_{i=1}^{n} d_i a_{ij} db_{ij}$ for any $d \in \Delta$.

(3) $A \otimes_{\mathbb{R}} A = K \oplus M$, where $\operatorname{Hom}_{A,A}(K, A) = (0)$ and M is isomorphic to an A, A-direct summand of A^n .

PROOF. $((1) \Rightarrow (3))$ Assume A is strongly separable over R. Then there is a split exact sequence $C^n \rightarrow \Delta \rightarrow (0)$ of C-modules, because Δ_C is finitely generated and projective. This yields a split exact sequence $(0) \rightarrow \operatorname{Hom}_C(\Delta, A)$ $\rightarrow \operatorname{Hom}_C(C^n, A) \cong A^n$ of A, A-bimodules. Let $K = \ker(\phi)$. Since

$$(0) \longrightarrow K \longrightarrow A \otimes_{R} A \xrightarrow{\phi} \operatorname{Hom}_{C} (\varDelta, A) \longrightarrow (0)$$

splits, K is a direct summand of $A \otimes_{\mathbb{R}} A$ such that $A \otimes_{\mathbb{R}} A/K \cong \operatorname{Hom}_{C}(\mathcal{A}, A)$. We need to show that $\operatorname{Hom}_{\mathcal{A},\mathcal{A}}(K, A) = (0)$.

We apply Lemma 3.4 with S=C, $T=A\otimes_{c}A$, U=A, V=A, W=A, noting that Δ_{c} is finitely generated and projective as required. Then

$$\varDelta \otimes_{\mathcal{C}} \operatorname{Hom}_{{}^{\mathcal{A}} \otimes_{\mathcal{C}} {}^{\mathcal{A}}}(A, A) \cong \operatorname{Hom}_{{}^{\mathcal{A}} \otimes_{\mathcal{C}} {}^{\mathcal{A}}}\left(\operatorname{Hom}_{\mathcal{C}}(\mathcal{A}, A), A\right).$$

But $\Delta \otimes_{c} \operatorname{Hom}_{A \otimes_{C} A}(A, A) \cong \Delta \otimes_{c} C \cong \Delta$. By hypothesis, $A \otimes_{R} A \cong \operatorname{Hom}_{C}(\Delta, A) \oplus K$. Thus we have the following sequence of isomorphisms:

$$\mathcal{\Delta} \cong \operatorname{Hom}_{\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}}(A \otimes_{\mathcal{R}} A, A) \cong \operatorname{Hom}_{\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}}(\operatorname{Hom}_{\mathcal{C}}(\mathcal{\Delta}, A), A) \oplus \operatorname{Hom}_{\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}}(K, A)$$
$$\cong \mathcal{\Delta} \oplus \operatorname{Hom}_{\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}}(K, A) .$$

By tracing these isomorphisms through, one checks that the composite is the identity map on Δ . Hence

$$\operatorname{Hom}_{A\otimes_{C^{A}}}(K, A) = \operatorname{Hom}_{A,A}(K, A) = (0).$$

 $((3) \Rightarrow (2))$ Writing $A \otimes_R A = K \oplus M$, $M \oplus B \cong A^n$, we get an A, A-map

from $A \otimes_R A$ into A^n by projecting $A \otimes_R A$ onto M and injecting M into A^n . Let $1 \otimes 1 \mapsto u \in M$, $u \mapsto (d_i) \in A^n$. Note that $1 \otimes r = r \otimes 1$, all $r \in R$, implies $d_i \in \mathcal{A}$, each i. Let $e_i \in A^n$ be the element whose ith coordinate is $1 \in A$ and whose other coordinates are zero. Let $m_i + b_i \mapsto e_i$ under the isomorphism $M \oplus B \to A^n$. Then $\sum d_i m_i + d_i b_i \mapsto (d_i)$. Thus $u - \sum d_i m_i - \sum d_i b_i \mapsto 0$ in A^n . It follows that $u - \sum d_i m_i = 0$ in M, and $\sum d_i b_i = 0$ in B.

Under the projection $A^n \to M$, $e_i \mapsto m_i$; so $ae_i = e_i a \mapsto am_i = m_i a$, all $a \in A$. Thus $m_i \in (A \otimes_R A)^A$, all *i*. Write $m_i = \sum_j a_{ij} \otimes b_{ij} \in A \otimes_R A$. Then $1 \otimes 1 - u \in K$, and $1 \otimes 1 - u = 1 \otimes 1 - \sum_i d_i m_i = 1 \otimes 1 - \sum_{i,j} d_i a_{ij} \otimes b_{ij}$.

Now $K \to A \bigotimes_R A \xrightarrow{\phi} \operatorname{Hom}_C(\varDelta, A) \to A^n$, and the first and third maps are injective. Since $\operatorname{Hom}_{A,A}(K, A) = (0)$, we must have $K \subseteq \ker(\phi)$. Therefore $0 = \phi(1 \otimes 1 - u) = \phi(1 \otimes 1) - \phi(\sum_{i,j} d_i a_{ij} \otimes b_{ij})$. This says $d = \sum_{i,j} d_i a_{ij} db_{ij}$, all $d \in \varDelta$. $((2) \Rightarrow (1))$ Note that $\sum_j a_{ij} \otimes b_{ij} \in (A \otimes_R A)^A$ implies $\sum_j a_{ij} db_{ij} \in C$, for all i and all $d \in \varDelta$. Let $f_i \in \operatorname{Hom}_C(\varDelta, C)$ be defined by $f_i(d) = \sum_j a_{ij} db_{ij}$, $d \in \varDelta$, for each i. Then $d = \sum_i d_i f_i(d)$, all $d \in \varDelta$. It is well-known that this implies \varDelta_C is finitely generated and projective.

Define ψ : Hom_C(\mathcal{A} , A) $\rightarrow A \bigotimes_{\mathbb{R}} A$ by $f \mapsto \sum_{i,j} f(d_i) a_{ij} \bigotimes b_{ij}$. For all $a \in A$,

$$\begin{split} \psi(af) &= \sum_{i,j} af(d_i) \ a_{ij} \otimes b_{ij} = a\psi(f) \ , \quad \text{and} \\ \psi(fa) &= \sum_{i,j} (fa) \ (d_i) \ a_{ij} \otimes b_{ij} = \sum_{i,j} f(d_i) \ aa_{ij} \otimes b_{ij} \\ &= \sum_{i,j} f(d_i) \ a_{ij} \otimes b_{ij} \ a = \psi(f) \ a \ . \end{split}$$

Hence ϕ is an A, A-map. Furthermore,

$$\phi \psi(f)(d) = \sum_{i,j} f(d_i) a_{ij} db_{ij} = f(\sum_{i,j} d_i a_{ij} db_{ij}) = f(d),$$

since $\sum_{j} a_{ij} db_{ij} \in C$, all *i*. Hence $\phi \circ \psi$ is the identity map on $\operatorname{Hom}_{\mathcal{C}}(\mathcal{A}, A)$; i. e. ψ splits the exact sequence $A \bigotimes_{\mathbb{R}} A \xrightarrow{\phi} \operatorname{Hom}_{\mathcal{C}}(\mathcal{A}, A) \rightarrow (0)$. It follows that A is strongly separable over \mathbb{R} , and the Theorem is proved.

We are indebted to K. Sugano for an example of a separable ring extension that is not strongly separable. The following example is a variant of the one which he provided.

EXAMPLE 3.6. Let $G = \{e, h, h^2\}$, a three element group, and let K be the Galois field with three elements. Let S = KG, the group algebra of G over K. For $s = ae + bh + ch^2 \in S$, define $\bar{s} = ae + bh^2 + ch$. The map $s \mapsto \bar{s}$ is an automorphism of S.

Let A be the 2×2 matrix ring over S, $R = \left\{ \begin{bmatrix} s & 0 \\ 0 & \bar{s} \end{bmatrix} | s \in S \right\} \subseteq A$, and $T = \left\{ a(e+\mu+\mu^2) | a \in K \right\} \subseteq S$. Since S is commutative, the center C of A is $C = \left\{ \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} | s \in S \right\}$. It is straightforward to verify that the centralizer \varDelta of R in A is $\varDelta = \left\{ \begin{bmatrix} s_1 & t_1 \\ t_2 & s_2 \end{bmatrix} | s_1, s_2 \in S, t_1, t_2 \in T \right\}$. Let $\sigma = e + \mu + \mu^2 \in S$. As C-module, $C \begin{bmatrix} 0 & \sigma \\ 0 & 0 \end{bmatrix}$ is a direct summand of \varDelta . Thus if \varDelta_C were projective, $C \begin{bmatrix} 0 & \sigma \\ 0 & 0 \end{bmatrix}$ would be also, and $S\sigma$ would be projective as S-module. That this is not the case is seen as follows.

Let $\varepsilon: S \to S\sigma$, $s \mapsto s\sigma$, a surjective map of S-modules. If $S\sigma$ is projective, there is a splitting map τ . If $\tau(\sigma) = u$, $S = \ker(\varepsilon) \oplus Su$. Then $\varepsilon(\sigma u) = \sigma\varepsilon(u) = \sigma\varepsilon\tau(\sigma) = \sigma^2$. But $\sigma^2 = 0$. So $\sigma u \in \ker(\varepsilon) \cap Su = (0)$; $\sigma u = 0$. Then $u \in \ker(\varepsilon) \cap Su$; i.e. u = 0, a contradiction.

Since Δ_c is not projective, A is not strongly separable over R. However A is separable over R. The element $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is in the A-center of $A \otimes_R A$ and is mapped to the unity element of A by $\mu: A \otimes_R A \to A$.

We now return to our general setting where R is a subring of A, Δ is the centralizer of R in A and $\phi: A \otimes_R A \rightarrow \operatorname{Hom}_C(\Delta, A)$. The proof of the following Lemma is straightforward and is omitted.

LEMMA 3.7. Let $K = \ker(\phi)$ and $S = \{s \in A \mid s \otimes 1 - 1 \otimes s \in K\}$. Then S and Δ are centralizers of each other in A.

With S as defined in the Lemma we have

PROPOSITION 3.8. If A is strongly separable over R then A is strongly separable over S. If S is separable over R then S is strongly separable over R.

PROOF. Since $A^s = \Delta$, and Δ_c is finitely generated and projective by hypothesis, to prove the first statement we need only show that the map ϕ : $A \bigotimes_{S} A \rightarrow \text{Hom}_{c}(\Delta, A)$ splits. Let ϕ' be the spliting map of ϕ : $A \bigotimes_{R} A \rightarrow$ $\text{Hom}_{c}(\Delta, A)$, and let $f: A \bigotimes_{R} A \rightarrow A \bigotimes_{S} A$ be the natural map defined because $R \subseteq S$. Then $f \circ \phi'$ is a splitting map for ϕ .

Assume S is separable over R and let C' denote the center of S. Then $C' = \Delta \cap S$, since $A^s = \Delta$. Furthermore, $\Delta' = S^R = C'$. So $\Delta'_{c'}$ is trivially finitely generated and projective. Also $\operatorname{Hom}_{C'}(\Delta', S) \cong S$; so the splitting of $S \bigotimes_R S \to \operatorname{Hom}_{C'}(\Delta', S)$ is equivalent to the splitting of $S \bigotimes_R S \to S \to (0)$.

The following proposition is the analogue for strong separability of 1.5 of [12].

PROPOSITION 3.9. If A is strongly separable over R, then each of the following maps is a split monomorphism:

- (i) $\varDelta \otimes_{c} A \rightarrow \operatorname{Hom}(_{R}A, _{R}A), \ d \otimes a \mapsto [x \mapsto dxa],$
- (ii) $A \otimes_{C} \mathcal{A} \rightarrow \text{Hom}(A_{R}, A_{R}), a \otimes d \rightarrow [x \mapsto axd],$
- (iii) $\varDelta \otimes_{c} \varDelta \rightarrow \operatorname{Hom}_{R,R}(A, A), \ d_{i} \otimes d_{2} \mapsto [x \mapsto d_{i} x d_{2}].$

PROOF. (i) Using Lemma 3.4 we obtain $\Delta \otimes_{c} A \cong \operatorname{Hom}_{c}(A A)$, _AA). Since A is strongly separable, $A \otimes_{R} A \cong K \oplus \operatorname{Hom}_{c}(A, A)$. Applying these isomorphisms and the Adjoint Functor Theorem, we have

$$\operatorname{Hom}\left({}_{R}A, {}_{R}A\right) \cong \operatorname{Hom}\left({}_{R}A, {}_{R}\operatorname{Hom}\left({}_{A}A, {}_{A}A\right)\right) \cong \operatorname{Hom}\left({}_{A}(A \otimes_{R}A), {}_{A}A\right) \cong \operatorname{Hom}\left({}_{A}K, {}_{A}A\right) \oplus \operatorname{Hom}\left({}_{A}\operatorname{Hom}_{C}(\mathcal{A}, A), {}_{A}A\right) \cong$$

Hom $(_{A}K, _{A}A) \oplus \varDelta \otimes_{C} A \xrightarrow{\pi} \varDelta \otimes_{C} A$,

where the last map π is the projection map arising from the direct sum decomposition. Tracing through these maps one checks that the composite is a splitting map for the map in (i).

(ii) The proof is similar to the proof of (i).

(iii) In the proof of part (i) above the isomorphism of Hom $(_{R}A, _{R}A)$ onto Hom $(_{A}(A \otimes_{R}A), _{A}A)$ maps Hom $(_{R}A_{R}, _{R}A_{R})$ onto Hom $(_{A}(A \otimes_{R}A)_{R}, _{A}A_{R})$. So we have

$$\operatorname{Hom}_{R,R}(A, A) \cong \operatorname{Hom}\left(_{A}K_{R}, _{A}A_{R}\right) \oplus \operatorname{Hom}\left(_{A}\operatorname{Hom}_{C}(\varDelta, A)_{R}, _{A}A_{R}\right).$$

Since $\Delta \cong \text{Hom}(_{A}A_{R}, _{A}A_{R})$, we can apply Lemma 3.4 to obtain

$$\varDelta \otimes_{C} \varDelta \cong \operatorname{Hom}_{A,R}(A, A) \otimes_{C} \varDelta \cong \operatorname{Hom}_{A,R}(\operatorname{Hom}_{C}(\varDelta, A), A) .$$

This proves (iii).

PROPOSITION 3.10. Assume A is strongly separable over R, $A \otimes_{\mathbb{R}} A \cong$ Hom_C(Δ , A) $\oplus K$. Then for every A, A-bimodule M, $M^{\mathbb{R}} \cong \Delta \otimes_{\mathbb{C}} M^{\mathbb{A}} \oplus$ Hom_{A,A} (K, M). In particular, $(A \otimes_{\mathbb{R}} A)^{\mathbb{R}} \cong \Delta \otimes_{\mathbb{C}} (A \otimes_{\mathbb{R}} A)^{\mathbb{A}} \oplus$ Hom_{A,A}(K, $A \otimes_{\mathbb{R}} A$).

PROOF. From Lemma 3.4 we have

$$\begin{split} & \varDelta \otimes_{\mathcal{C}} M^{\mathcal{A}} \cong \varDelta \otimes_{\mathcal{C}} \operatorname{Hom}_{\mathcal{A},\mathcal{A}} (A, M) \cong \operatorname{Hom}_{\mathcal{A},\mathcal{A}} \left(\operatorname{Hom}_{\mathcal{C}} (\varDelta, A), M \right). \quad \text{Then} \\ & M^{\mathcal{R}} \cong \operatorname{Hom}_{\mathcal{A},\mathcal{A}} (A \otimes_{\mathcal{R}} A, M) \cong \operatorname{Hom}_{\mathcal{A},\mathcal{A}} \left(\operatorname{Hom}_{\mathcal{C}} (\varDelta, A), M \right) \oplus \operatorname{Hom}_{\mathcal{A},\mathcal{A}} (K, M) \\ & \cong \varDelta \otimes_{\mathcal{C}} M^{\mathcal{A}} \oplus \operatorname{Hom}_{\mathcal{A},\mathcal{A}} (K, M). \end{split}$$

4. Automorphisms. If σ is an automorphism of a ring A we let A_{σ} denote the A, A-bimodule such that as left A-module A_{σ} is just A, but where the right module structure is "twisted" by σ , $x \cdot a = x\sigma(a)$ for $x \in A_{\sigma}$, $a \in A$.

If R is a subring of A then A is a Galois extension of R if there is a finite group G of automorphisms of A such that $R = A^{G}$, and such that there exists x_{i} , y_{i} , $1 \le i \le n$, for which

$$\sum_{i} x_i \sigma(y_i) = \begin{cases} 0 & \text{if } \sigma \neq 1 \\ 1 & \text{if } \sigma = 1 \end{cases}.$$

If G is a finite group of R-automorphisms of A there is an A, A-bimodule map $h: A \otimes_R A \to AG$, defined by $a \otimes b \to \sum_{\sigma \in G} a\sigma b = \sum_{\sigma \in G} a\sigma(b)\sigma$. Here, AG is the twisted group algebra of G over A. It can be shown that if $R = A^G$ then A is a Galois extension of R if and only if h is an isomorphism.

The twisted group algebra AG is a direct sum $\sum_{\sigma \in G} \bigoplus A\sigma$, and, for each σ , $A\sigma$ is A, A-bimodule isomorphic to A_{σ} . Thus when A is a Galois extension of R with Galois group G, $A \bigotimes_R A \cong \sum_{\sigma \in G} \bigoplus A_{\sigma}$. This motivates the following definition.

DEFINITION 4.1. A is a pseudo-Galois extension of R if there is a finite set S of R-automorphisms of A and a positive integer n such that $A \otimes_{\mathbb{R}} A$ is isomorphic to a direct summand of $\sum_{x \in S} A_{\sigma}^{n}$.

If in Definition 4.1 $S = \{1\}$, then the condition is that $A \otimes_{\mathbb{R}} A$ is isomorphic to a direct summand of A^n , for some positive integer n. This is just the condition that A be H-separable over R. Thus H-separable extensions and Galois extensions are pseudo-Galois.

In Definition 4.1 we will assume that $A_{\sigma} \not\cong A_{\tau}$ if $\sigma \neq \tau$, σ , $\tau \in S$.

Assume that σ and τ are automorphisms of a ring A and let $\mu: A_{\sigma} \to A_{\tau}$ be an A, A-bimodule map. Let $\mu(1) = x$. Then, for each $a \in A$,

$$\sigma(a) \ x = \sigma(a) \ \mu(1) = \mu \sigma(a) = \mu(1 \cdot a) = \mu(1) \cdot a = x\tau(a) \ .$$

Conversely, if $x \in A$ such that $\sigma(a) \ x = x\tau(a)$ for all $a \in A$, there is a unique bimodule map $\mu: A_{\sigma} \to A_{\tau}$ such that $\mu(1) = x$. The map μ is an isomorphism if and only if x is a unit in A, and in this case $\tau \sigma^{-1}$ is an inner automorphism of A. Conversely, if $\tau \sigma^{-1}(a) = x^{-1}ax$, for some unit x in A then $\sigma(a) \ x = x\tau(a)$ and there is a unique isomorphism $\mu: A_{\sigma} \to A_{\tau}$ such that $\mu(1) = x$. Let

$$J_{\sigma,\tau} = \left\{ x \in A | \sigma(a) \ x = x\tau(a), \text{ all } a \in A \right\}.$$

Then $J_{\sigma,\tau}$ is a C-module and $J_{\sigma,\tau} \cong \operatorname{Hom}_{A,A}(A_{\sigma}, A_{\tau})$; $A_{\sigma} \cong A_{\tau}$ if and only if

 $\sigma \tau^{-1}$ is an inner automorphism of A. We will denote $J_{1,\sigma}$ by J_{σ} . Then $J_{\sigma,\tau} = J_{\sigma\tau-1}$.

In part of what follows we will assume that any nonzero A, A-bimodule map from A_{σ} to A_{τ} is an automorphism. This condition holds, for example, if A is a simple ring.

PROPOSITION 4.2. Let A be a pseudo-Galois extension of R, and assume that if σ , $\tau \in \operatorname{Aut}_R(A)$ that any nonzero bimodule map from A_{σ} to A_{τ} is an isomorphism. Then

(i) Hom_c(\mathcal{A}, A_{σ}) is isomorphic to a direct summand of A_{σ}^{n} , each $\sigma \in S$.

(ii) If I is the group of inner R-automorphisms of A then S contains exactly one element from each coset of I in $\operatorname{Aut}_{R}(A)$.

(iii) $A \bigotimes_{\mathbf{R}} A \cong \sum_{\mathbf{r} \in S} \bigoplus \operatorname{Hom}_{C}(\mathcal{A}, A_{\sigma}).$

PROOF. Let $\sum_{\sigma \in S} \bigoplus A_{\sigma}^{n} \cong A \otimes_{R} A \bigoplus B$. Then

$$\operatorname{Hom}_{A,A}(A \otimes_{\mathbb{R}} A, A) \oplus \operatorname{Hom}_{A,A}(B, A) \cong \operatorname{Hom}_{A,A}(\sum_{\sigma \in S} \oplus A_{\sigma}^{n}, A);$$

i. e. $\Delta \bigoplus B' \cong \sum_{\sigma \in S} \bigoplus \operatorname{Hom}_{A,A}(A_{\sigma}^{n}, A)$. There must exist $\sigma_{0} \in S$ such that $\operatorname{Hom}_{A,A}(A_{\sigma_{0}}^{n}, A) \neq (0)$. Hence $A_{\sigma_{0}} \cong A$, and $\operatorname{Hom}_{A,A}(A_{\sigma_{0}}^{n}, A) \cong C^{n}$. For $\sigma \neq \sigma_{0}$, $\operatorname{Hom}_{A,A}(A_{\sigma}, A) = (0)$; hence $\Delta \bigoplus B' \cong C^{n}$.

Let $\tau \in \operatorname{Aut}_R(A)$. Then $A_r^n \cong \operatorname{Hom}_C(C^n, A_r) \cong \operatorname{Hom}_C(\mathcal{A}, A_r) \oplus \operatorname{Hom}_C(\mathcal{B}', A_r)$. Define $\phi_r : A \otimes_R A \to \operatorname{Hom}_C(\mathcal{A}, A_r)$ by $\phi_r(a \otimes b) = [d \mapsto a d\tau(b)]$. Then ϕ_r is an A, A-map, where $\operatorname{Hom}_C(\mathcal{A}, A_r)$ is an A, A-bimodule via the action on A_r . We then have a sequence of bimodule maps

$$\sum_{\sigma \in S} \bigoplus A_{\sigma}^{n} \longrightarrow A \otimes_{R} A \xrightarrow{\phi_{\tau}} \operatorname{Hom}_{C}(\varDelta, A_{\tau}) \longrightarrow A_{\tau}^{n},$$

whose composition is nonzero. Hence there exists $\sigma' \in S$ such that $A_{\sigma'} \cong A_r$. Then S contains exactly one element from each coset of I in $\operatorname{Aut}_R(A)$.

Let \not{h} denote the split injective mapping of $A \bigotimes_R A$ to $\sum_{\sigma \in S} \bigoplus A_{\sigma}^n$ assumed to exist because A is a psuedo-Galois extension of R, and let \not{h}' denote the splitting map. Foe each $\tau \in S$ let u_{τ} , $v_{\tau} \in A \bigotimes_R A$ be chosen so that $\not{h}(1 \otimes 1)$ $= u'_{\tau} + v'_{\tau}$ where $u'_{\tau} \in A_{\tau}^n$ and $v'_{\tau} \in \sum_{\sigma \neq \tau} \bigoplus A_{\sigma}^n$ and such that $u_{\tau} = \not{h}'(u_{\tau}')$ and $v_{\tau} = \not{h}'(v_{\tau}')$. Since $\operatorname{Hom}_C(\mathcal{A}, A_{\tau})$ is isomorphic to a sub-bimodule of A_{τ}^n we must have $\phi_{\tau}(v_{\tau}) = 0$. Thus $\phi_{\tau}(1 \otimes 1) = \phi_{\tau}(u_{\tau})$.

For $1 \le i \le n$ let e_i denote the element of A_r^n whose i^{th} coordinate is 1 and whose j^{th} coordinate is 0, $j \ne i$, $1 \le j \le n$. Then $u'_r = \sum_{i=1}^n d_i e_i$, $d_i \in A$. For each $r \in R$, $r \otimes 1 = 1 \otimes r$; so $\sum_{i=1}^n r d_i e_i = \sum_{i=1}^n d_i r e_i$. Thus $r d_i = d_i r$, $1 \le i \le n$. It follows that $d_i \in \Delta$, each *i*.

Let $p_i'(e_i) = \sum_j a_{ij} \otimes b_{ij} \in A \otimes_R A$, $1 \le i \le n$. Note that $\tau(a) e_i = e_i \cdot a$ implies that $\tau(a) \sum_j a_{ij} \otimes b_{ij} = \sum_j a_{ij} \otimes b_{ij} a$, all $a \in A$. Mapping with ϕ_τ we obtain

$$au(a)\sum_{j}a_{ij}d au(b_{ij})=\sum_{j}a_{ij}d au(b_{ij}) au(a), ext{ all } a \in A, \ d \in A.$$

Thus $\sum_{j} a_{ij} d\tau(b_{ij}) \in C$, all $d \in \Delta$. Now $\phi_{\tau}(1 \otimes 1) = \phi_{\tau}(\sum_{i,j} d_{i} a_{ij} \otimes b_{ij})$. Hence $d = \sum_{i,j} d_{i} a_{ij} d\tau(b_{ij})$, all $d \in \Delta$.

Let us now define ψ_{τ} : Hom_C(\mathcal{A}, A_{τ}) $\rightarrow A \otimes_{\mathbb{R}} A$ by $\psi_{\tau}(f) = \sum_{i,j} f(d_i) a_{ij} \otimes b_{ij}$. ψ_{τ} is clearly a left A-module map. If $a \in A$, then

$$\begin{split} \psi_{\tau}(fa) &= \sum_{i,j} (fa) (d_i) \ a_{ij} \otimes b_{ij} = \sum_{i,j} f(d_i) \ \tau(a) \ a_{ij} \otimes b_{ij} \\ &= \sum_{i,j} f(d_i) \ a_{ij} \otimes b_{ij} \ a = \psi_{\tau}(f) \ a \ . \end{split}$$

Hence ϕ_{τ} is a bimodule map.

We now show that ψ_{τ} splits ϕ_{τ} . Since $\sum_{j} a_{ij} d\tau(b_{ij}) \in C$, $1 \leq i \leq n$; for each $f \in \operatorname{Hom}_{C}(\varDelta, A_{\tau})$ we have

$$\sum_{i,j} f(d_i) a_{ij} d\tau(b_{ij}) = f\left(\sum_{i,j} d_i a_{ij} d\tau(b_{ij})\right) = f(d) .$$

Then $\phi_{\tau} \circ \phi_{\tau}$ is the identity map on $\operatorname{Hom}_{\mathcal{C}}(\varDelta, A_{\tau})$. Also, it is straightforward that $\psi_{\tau} \circ \phi_{\tau}(u_{\tau}) = u_{\tau}$. Since $\not(1 \otimes 1) = \sum_{\tau \in S} u'_{\tau}$, we have $1 \otimes 1 = \sum u_{\tau} = \sum \psi_{\tau} \circ \phi_{\tau}(u_{\tau})$ $= \sum \psi_{\tau} \circ \phi_{\tau}(1 \otimes 1)$; and thus $\sum \psi_{\tau} \circ \phi_{\tau}$ is the identity map on $A \otimes_{R} A$. Therefore $A \otimes_{R} A \cong \sum_{\sigma \in S} \bigoplus \operatorname{Hom}_{\mathcal{C}}(\varDelta, A_{\sigma})$.

COROLLARY 4.3. Let A be a pseudo-Galois extension of R, and assume for each σ , $\tau \in \operatorname{Aut}_R(A)$ that any nonzero bimodule map from A_{σ} to A_{τ} is an isomorphism. Then A is strongly separable over R.

PROOF. Assume $A \otimes_{\mathbb{R}} A \cong \sum_{\sigma \in S} \bigoplus \operatorname{Hom}_{\mathbb{C}}(\mathcal{A}, A_{\sigma})$. Let $K = \sum_{\sigma \neq 1} \bigoplus \operatorname{Hom}_{\mathbb{C}}(\mathcal{A}, A_{\sigma})$, and apply Theorem 3.5.

We have seen that H-separable extensions are pseudo-Galois. There appears to be no general relationship between strongly separable extensions and pseudo-Glaois extensions. The following proposition for strongly separable extensions has a conclusion similar to, but weaker than, that of Proposition 4.2.

Recall that for each *R*-automorphism σ of A, $\phi_{\sigma}: A \otimes_{R} A \rightarrow \operatorname{Hom}_{C}(\mathcal{A}, A_{\sigma})$ is defined by $\phi_{\sigma}(a \otimes b) = [d \mapsto ad\sigma(b)]$. Also, let *I* denote the subgroup of inner automorphisms in Aut_R(A).

PROPOSITION 4.4. Let A be a strongly separable extension of R. Then for each R-automorphism σ of A the map ϕ_{σ} is a split epimorphism. Assume further that I is of finite index in $\operatorname{Aut}_{R}(A)$ and that if σ and τ are Rautomorphisms of A then any nonzero bimodule map from A_{σ} to A_{τ} is an isomorphism. Then there exists a set S of R-automorphisms of A containing exactly one element from each coset of I in $\operatorname{Aut}_{R}(A)$ such that $\sum_{\sigma \in S} \bigoplus \operatorname{Hom}_{C}$ (\varDelta, A_{σ}) is isomorphic to a direct summand of $A \otimes_{R} A$.

PROOF. As in the proof of Theorem 3.5, we can find elements $d_i \in \mathcal{A}$, $a_{ij}, b_{ij} \in A$ such that for each $d \in \mathcal{A}$, $d = \sum_{i,j} d_i a_{ij} db_{ij}$, and such that $\sum_j a_{ij} \otimes b_{ij} \in (A \otimes_R A)^A$ and $\sum_j a_{ij} db_{ij} \in C$, each *i*. We define ψ_{σ} : Hom_C $(\mathcal{A}, \mathcal{A}_{\sigma}) \to A \otimes_R A$ by $\psi_{\sigma}(f) = \sum_{i,j} f(d_i) a_{ij} \otimes \sigma^{-1}(b_{ij})$. ψ_{σ} is clearly a map of left A-modules.

We note that $1 \otimes \sigma^{-1}$ is a well-defined map of abelian groups from $A \otimes_R A$ to $A \otimes_R A$. Since, for each $a \in A$,

$$\sum_{j} \sigma(a) \ a_{ij} \otimes b_{ij} = \sum_{j} a_{ij} \otimes b_{ij} \sigma(a), \text{ we can apply } 1 \otimes \sigma^{-1} \text{ to obtain}$$
$$\sum_{j} \sigma(a) \ a_{ij} \otimes \sigma^{-1}(b_{ij}) = \sum_{j} a_{ij} \otimes \sigma^{-1}(b_{ij}) a, \text{ each } i.$$

We now show that ϕ_{σ} is a right A-module map. For each $a \in A$, $f \in Hom_{C}(\mathcal{A}, A_{\sigma})$,

$$\begin{split} \psi_{\mathfrak{o}}(fa) &= \sum_{i,j} (fa) (d_i) \ a_{ij} \otimes \overline{\sigma^{-1}}(b_{ij}) = \sum_{i,j} f(d_i) \ \sigma(a) \ a_{ij} \otimes \overline{\sigma^{-1}}(b_{ij}) \\ &= \sum_{i,j} f(d_i) \ a_{ij} \otimes \overline{\sigma^{-1}}(b_{ij}) \ a = \psi_{\mathfrak{o}}(f) \ a \ . \end{split}$$

Next we show that ϕ_{σ} splits ϕ_{σ} . For each $f \in \operatorname{Hom}_{C}(\mathcal{A}, \mathcal{A}_{\sigma})$,

$$\phi_{\sigma} \circ \phi_{\sigma}(f)(d) = \sum_{i,j} f(d_i) a_{ij} d\sigma \left(\sigma^{-1}(b_{ij}) \right) = \sum_{i,j} f(d_i) a_{ij} db_{ij}$$
$$= f(\sum_{i,j} d_i a_{ij} db_{ij}) = f(d) .$$

Now, assume that if σ and τ are *R*-automorphisms of *A* then any nonzero bimodule map from $A\sigma$ to $A\tau$ is an isomorphism.

For each $\sigma \in \operatorname{Aut}_R(A)$ we write $A \otimes_R A = K_{\sigma} \oplus L_{\sigma}$ where $L_{\sigma} \cong \operatorname{Hom}_C(\varDelta, A_{\sigma})$. Since \varDelta_C is finitely generated and projective, L_{σ} is isomorphic to a direct summand of A_{σ}^n , some positive integer *n*. If σ , $\tau \in \operatorname{Aut}_R(A)$ and $A_{\sigma} \not\cong A_{\tau}$, then there is no nonzero bimodule map from A_{τ} to A_{σ} ; hence $L_{\tau} \subseteq K_{\sigma}$.

Let S be a subset of $\operatorname{Aut}_R(A)$ containing exactly one element from each coset of I, and let $K' = \bigcap_{\sigma \in S} K_{\sigma}$. Then $A \otimes_R A = \sum_{\sigma \in S} \bigoplus L_{\sigma} \bigoplus K'$. This completes the proof of the Proposition.

We now drop the hypothesis that for σ , $\tau \in \operatorname{Aut}_R(A)$, any nonzero bimodule map from A_{σ} to A_{τ} is an isomorphism. Recall that for $\sigma \in \operatorname{Aut}_R(A)$, $J_{\sigma} = \{x \in A \mid ax = x\sigma(a), \text{ for all } a \in A\}$. J_{σ} is a C-module and $\operatorname{Hom}_{A,A}(A, A_{\sigma}) \cong J_{\sigma}$ under the map $f \mapsto f(1)$.

Hirata [3] has shown that if A is an H-separable extension of R then J_{σ} is finitely generated and projective of rank 1, and is free if and only if σ is an inner automorphism. In the following we generalize to strongly separable extensions.

We assume throughout the rest of this section that A has no nontrivial central idempotents.

PROPOSITION 4.5. Assume A is strongly separable over R; i.e. $(0) \rightarrow K \rightarrow A \bigotimes_R A \rightarrow \operatorname{Hom}_C(\varDelta, A) \rightarrow (0)$ is a split exact sequence. Then $J_{\sigma} \neq (0)$ if and only if $\operatorname{Hom}_{A,A}(K, A_{\sigma}) = (0)$. In this case J_{σ} is finitely generated and projective of rank 1.

PROOF. From Lemma 3.4, $\operatorname{Hom}_{A,A}(\operatorname{Hom}_{C}(\varDelta, A), A_{\sigma}) \cong \varDelta \otimes_{C} \operatorname{Hom}_{A,A}(A, A_{\sigma}) \cong \varDelta \otimes_{C} J_{\sigma}.$ Hence $\varDelta \cong \operatorname{Hom}_{A,A}(A \otimes_{R} A, A_{\sigma}) \cong \operatorname{Hom}_{A,A}(\operatorname{Hom}_{C}(\varDelta, A), A_{\sigma}) \oplus \operatorname{Hom}_{A,A}(K, A_{\sigma})$ $\cong \varDelta \otimes_{C} J_{\sigma} \oplus \operatorname{Hom}_{A,A}(K, A_{\sigma}).$

From this we see first that $J_{\sigma}=(0)$ implies $\operatorname{Hom}_{A,A}(K, A_{\sigma}) \neq (0)$. Next since *C* is a direct summand of Δ , we conclude from the above that J_{σ} is a direct summand of Δ . So J_{σ} is finitely generated and projective. Finally let $t=\operatorname{rank}(J_{\sigma})$, $n=\operatorname{rank}(\Delta)$. Then, from the above, we have $n=n \cdot t + \operatorname{rank}(\operatorname{Hom}_{A,A}(K, A_{\sigma}))$. If $J_{\sigma} \neq (0)$, we must have t=1 and $\operatorname{Hom}_{A,A}(K, A_{\sigma})=(0)$. This completes the proof.

Let $\sigma \in \operatorname{Aut}_R(A)$. Then $\overline{\sigma} = 1 \otimes \sigma \colon A \otimes_R A \to A \otimes_R A$ is an automorphism of A as left A-module, but is not a bimodule map in general. However, if M is a sub-bimodule of $A \otimes_R A$ then $\overline{\sigma}(M)$ is again a sub-bimodule.

Now assume A is a strongly separable extension of R. For each $\sigma \in \operatorname{Aut}_R(A)$, $A \otimes_R A = K_{\sigma} \oplus L_{\sigma}$, where $L_{\sigma} \cong \operatorname{Hom}_C(\varDelta, A_{\sigma})$ and $K_{\sigma} = \ker(\phi_{\sigma})$. Let $L = L_1$.

LEMMA 4.6. Assume A is a strongly separable extension of R, and let $\sigma \in \operatorname{Aut}_{R}(A)$. If $\operatorname{Hom}_{A,A}(A, A_{\sigma}) \neq (0)$, then $\operatorname{Hom}_{A,A}(A_{\sigma}, A) \neq (0)$; so $J_{\sigma} \neq (0)$ implies $J_{\sigma^{-1}} \neq (0)$. Further, $\operatorname{Hom}_{A,A}(A_{\sigma}, A) \neq (0)$ implies $K = K_{\sigma}$, $L \cong L_{\sigma}$.

PROOF. If $\operatorname{Hom}_{A,A}(A, A_{\sigma}) \neq (0)$ then $\operatorname{Hom}_{A,A}(K, A_{\sigma}) = (0)$, by Proposition 4.5. Hence the projection of K to L_{σ} arising from the direct sum decomposition $A \bigotimes_{R} A = K_{\sigma} \bigoplus L_{\sigma}$ must be the zero map, since L_{σ} is isomorphic to a

direct summand of A_{σ}^{n} , for some positive integer *n*. Thus $K \subseteq K_{\sigma}$. The projection of L_{σ} to *L* arising from the direct sum decomposition $A \bigotimes_{R} A = K \oplus L$ must be nonzero. Since *L* is isomorphic to a direct summand of A^{m} , for some positive integer *m*, this gives rise to a nonzero bimodule map from A_{σ} to *A*. Thus $J_{\sigma^{-1}} \cong \operatorname{Hom}_{A,A}(A_{\sigma}, A) \neq (0)$. The argument showing $K \subseteq K_{\sigma}$ can now be used to show $K_{\sigma} \subseteq K$, giving $K = K_{\sigma}$. Thus $A \bigotimes_{R} A \cong K \oplus L \cong K_{\sigma}$ $\oplus L_{\sigma} = K \oplus L_{\sigma}$, from which it follows that $L \cong L_{\sigma}$.

PROPOSITION 4.7. Let A be a strongly separable extension of R and let $\sigma \in \operatorname{Aut}_R(A)$ such that $J_{\sigma} \neq (0)$. Then $J_{\sigma^{-1}} \neq (0)$ and $J_{\sigma^{-1}} \cong J_{\sigma}^* = \operatorname{Hom}_C(J_{\sigma}, C)$.

PROOF. Let $\beta: L \to L_{\sigma}$ be an isomorphism, guaranteed by the Lemma, and let $\alpha = \beta^{-1}$. Since C is isomorphic to a direct summand of Δ , A is isomorphic to a direct summand of $\operatorname{Hom}_{C}(\Delta, A) \cong L$. Hence there exist maps $\gamma: A \to L$ and $\delta: L \to A$ such that $\delta \circ \gamma = 1_{A}$. L_{σ} is isomorphic to a direct summand of A_{σ}^{n} , some positive integer n; so there exist maps $f_{i}: L_{\sigma} \to A_{\sigma}$, $g_{i}: A_{\sigma} \to L_{\sigma}, 1 \leq i \leq n$, such that $\sum_{i} g_{i} \circ f_{i} = 1_{L_{\sigma}}$.

Let $\bar{f}_i = f_i \beta \gamma : A \to A_\sigma$, $\bar{g}_i = \delta \sigma g_i : A_\sigma \to A$. Then $\sum_i \bar{g}_i \circ \bar{f}_i = 1_A$. Thus the map

$$J_{\sigma^{-1}} \otimes_{C} J_{\sigma} \cong \operatorname{Hom}_{A,A}(A_{\sigma}, A) \otimes_{C} \operatorname{Hom}_{A,A}(A, A_{\sigma}) \longrightarrow \operatorname{Hom}_{A,A}(A, A) \cong C,$$

defined by $g \otimes f \mapsto g \circ f$, for $g \in \operatorname{Hom}_{A,A}(A_{\sigma}, A)$ and $f \in \operatorname{Hom}_{A,A}(A, A_{\sigma})$, is surjective. It follows that $J_{\sigma^{-1}} \cong J_{\sigma}^*$. This completes the proof.

We summarize the above as follows. Let

$$G = \left\{ \sigma \in \operatorname{Aut}_{R}(A) \middle| J_{\sigma} \neq (0) \right\} = \left\{ \sigma \in \operatorname{Aut}_{R}(A) \middle| K_{\sigma} = K \right\}.$$

Then G is a subgroup of $\operatorname{Aut}_R(A)$. If σ , $\tau \in \operatorname{Aut}_R(A)$ then $\operatorname{Hom}_{A,A}(A_{\sigma}, A_{\tau}) \cong \operatorname{Hom}_{A,A}(A, A_{\tau\sigma^{-1}}) \neq (0)$ if and only if σ and τ are in the same right coset modulo G.

References

- [1] K. HIRATA: Some types of separable extensions of rings. Nagoya Math. Jour. 33 (1968), pp. 107-115.
- [2] K. HIRATA: Separable extensions and centralizers of rings. Nagoya Math. Jour. 35 (1969), pp. 31-45.
- [3] K. HIRATA: Some remarks on separable extensions. (to appear).
- [4] K. HIRATA and K. SUGANO: On semisimple extensions and separable extensions over non commutative rings. Jour. of Math. Soc. of Japan 18 (1966), pp. 360-373.
- [5] T. NAKAMOTO and K. SUGANO: Note on H-separable extensions. Hokkaido Math. Jour. 4 (1975), pp. 295-299.

- [6] K. SUGANO: Note on semisimple extensions and separable extensions. Osaka Jour. Math. 4 (1967), pp. 265-270.
- [7] K. SUGANO: On centralizers in separable extensions. Osaka Jour. Math. 7 (1970), pp. 29-40.
- [8] K. SUGANO: Separable extensions and Frobenius extensions. Osaka Jour. Math. 7 (1970), pp. 291–299.
- [9] K. SUGANO: Note on separability of endomorphism rings. Jour. of Faculty of Sci., Hokkaido Univ. 21 (1971), pp. 196-208.
- [10] K. SUGANO: On centralizers in separable extensions II. Osaka Jour. Math. 8 (1971), pp. 465-469.
- [11] K. SUGANO: On some commutor theorems of rings. Hokkaido Math. Jour. 1 (1972), pp. 242-249.
- [12] K. SUGANO: Separable extensions of quasi-Frobenius rings. Munich Algebra-Berichte No. 28 (1975), pp. 1-10.
- [13] K. SUGANO: On projective H-separable extensions, Hokkaido Math. Jour. 5 (1976), pp. 44-54.
- [14] K. SUGANO: On a special type of Galois extension. Hokkaido Math. Jour. 9 (1980), pp. 123-128.
- [15] K. SUGANO: Note on automorphisms in separable extensions of non-computative ring. Hokkaido Math. Jour. 9 (1980), pp. 268-274.
- [16] K. SUGANO: Note on cyclic Galois extensions. Proc. Japan Acad. 57 (1981), pp. 60-63.
- [17] K. SUGANO: On some exact sequences concerning with H-separable extensions. Hokkaido Math. Jour. 11 (1982), pp. 39-43.
- [18] K. SUGANO: On H-separable extensions of two sided simple rings. Hokkaido Math. Jour. 11 (1982), pp. 246-252.
- [19] H. TOMINAGA: A note on H-separable extensions. Proc. Japan Acad. 50 (1974), pp. 446-447.

Elizabeth McMahon Williams College Williamstown, Mass. 01267, U.S.A.

A. C. Mewborn The University of North Carolina at Chapel Hill Mathematics Department Chapel Hill, N. C. 27514, U. S. A.