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Separable extensions of noncommutative rings
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1. Introduction. Separable extensions of noncommutative rings were
introduced in 1966 by K. Hirata and K. Sugano [4]. In [1] Hirata isolated
a special class of separable extensions, now known as H-separable extensions.
These have been studied extensively in a series of papers over the last
fifteen years, notably by Hirata and Sugano, themselves.

A ring A is an H-separable extension of a subring R if A\otimes_{R}A is
isomorphic as A, A-bimodule to a direct summand of A^{n} , for some positive
integer n . An H-separable extension is separable; i . e . the multiplication
map A\otimes_{R}Aarrow A splits. In the case of algebras over commutative rings, H-
separable extensions are closely related to Azumaya algebras. In this case,
A is an H-separable extension of R if A is an Azumaya algebra over a (com-
mutative) epimorphic extension of R.

If A is a ring with subring R we denote by C the center of A and
\Delta=A^{R}, the centralizer of R in A. Then A is an H-separable extension of
R if and only if \Delta is finitely generated and projective as C-module, and the
map \phi:A\otimes_{R}Aarrow Hom_{C}(\Delta, A) defined by \phi(a\otimes b)(d)=adb, for a, b\in A , d\in\Delta ,
is an isomorphism. There are similarly defined maps \Delta\otimes_{C}Aarrow Hom (RA, RA)f
A\otimes_{C}\Deltaarrow Hom(AR, A_{R}) , and \Delta\otimes_{C}\Deltaarrow Hom (RARf RAR), all of which are isomor-
phisms when A is H-separable over R. (See [12].)

In Sections 3 and 4 of this paper we generalize H separability in two
directions. We call A a strongly separable extension of R if A\otimes_{R}A\cong K\oplus L,
where Hom_{A,A}(K, A)=(0) and L is a direct summand of A^{n} , for some posi-
tive integer n . H-separability is the case where K=(0) . Strong separability
is equivalent to separability for algebras over a commutative ring, but not
in general. We show that A is strongly separable over R if and only if \Delta_{C}

is finitely generated and projective and the map \phi defined above is a split
epimorphism. The three maps above which are isomorphisms in the H-
separable case are split monomorphisms when strong separability is assumed.

If \sigma is an automorphism of A, denote by A_{\sigma} the A, A-bimodule which
as left A-module is just A but whose right A-module structure is “twisted”
by \sigma. Then A is a psuedO-Galois extension of R if there is a finite set S
of R-automorphisms of A such that A\otimes_{R}A is a direct summand of \sum_{\sigma\epsilon s}\oplus A_{\sigma}^{n} ,
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some positive integer n . H-separability is the case S=\{1\} . When A is a
Galois extension of R, it is pseud0-Galois, and this is the motivation for the
name.

Assume A is a pseud0-Galois extension of R and that for all \sigma, \tau\epsilon Aut_{R}(A)

any nonzero A, A-bimodule map from A_{\sigma} to A_{\tau} is an isomorphism. Then
there is a positive integer n and a finite subset S of Aut_{R}(A) containing
exactly one element from each coset of the subgroup I of inner automorphisms
such that A \otimes_{R}A\cong\sum_{\sigma\in S}\oplus Hom_{C}(\Delta, A_{\sigma}) , and Hom_{C}(\Delta, A_{\sigma}) is isomorphic to a
direct summand of A_{\sigma}^{n} , each \sigma\in S. Under these assumptions, A is strongly
separable over R .

In Section 2 we show that if A is an H-separable extension of R which
is generated over R by the centralizer \Delta of R, and if R contains the center
C of A, then \Delta is an Azumaya algebra over C and A\cong\Delta\otimes_{C}R . This con-
clusion has been obtained for H-separable extensions under other hypotheses
by Hirata [2].

2. Assume A is a separable extension of R and let M be a left or
right A-module. Sugano [12] has shown that if M is projective (injective)
as R-module then it is also projective (injective) as A-module. An immediate
consequence of this is that a separable extension of a semisimple artinian
ring is also semisimple artinian. Sugano has shown further that if A is flat
as left or right R-module, then A is quasi-Frobenius if R is. A related
result is the following.

PROPOSITION 2. 1. Let A be a separable extension of R such that A is
flat as left (resp. right) R-module. Then A is left (resp. right) perfect if
R is.

PROOF. Recall that a ring is left perfect if every flat left module is
projective. Assume R is left perfect and M is a flat left A-module. We
show that RM is flat. Let (O)arrow N-N’ be an exact sequence of right R-
module Then (0)arrow N\otimes_{R}Aarrow N’\otimes_{R}A is exact because RA is flat. Thus
(0)arrow N\otimes_{R}A\otimes_{A}Marrow N’\otimes_{R}A\otimes_{A}M is exact, by the flatness of AM. So (0)arrow

N\otimes_{R}Marrow N’\otimes_{R}M is exact, and RM is flat. Then RM is projective because
R is perfect, and AM is projective by the result mentioned above. Therefore
A is left perfect.

If \Delta is an Azumaya algebra over its center C and R is a central C-
algebra, then it is easy to see that A=\Delta\otimes_{C}R is an H-separable extension
of R. Furthermore, the centralizer of R in A is \Delta . The following Theorem
is a converse to this observation.

THEOREM 2. 2. Let A be an H-separable extension of a subring R such
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that A is generated over R by its centralizer \Delta in A. Assume that the
center C of A is contained in R. Then \Delta is an Azumaya algebra over C,
and A\cong\Delta\otimes_{C}R .

PROOF. First, define \phi:\Delta\otimes_{C}Aarrow A\otimes_{R}A by \phi(d\otimes a)=d\otimes a\in A\otimes_{R}A .
This map is well-defined because C\subseteq R .

Since A=\Delta R , each element of A\otimes_{R}A can be written in the form
\sum_{i}d_{i}\otimes b_{i} , with d_{i}\in\Delta, b_{i}\in A .

Define \psi:A\otimes_{R}Aarrow\Delta\otimes_{C}A by \psi(\sum_{i}d_{i}\otimes b_{i})=\sum_{i}d_{i}\otimes b_{i}\in\Delta\otimes_{C}A . We need

to show that \psi is well-defined. Assume \sum_{i}d_{i}\otimes b_{i}=0 in A\otimes_{R}A . Since A

is H-separable over R, A\otimes_{R}A\cong Hom_{C}(\Delta, A) under the map a\otimes b\mapsto[d\mapsto adb] ,
and \Delta\otimes_{C}A\cong Hom(_{R}A_{ R},A) under the map d\otimes b\mapsto[x-dxb] . From \sum_{i}d_{i}\otimes b_{i}

=0 in A\otimes_{R}A we have \sum_{i}d_{i}db_{i}=0 , for all d\in\Delta . Let x\in A , and write x=

\sum_{j}r_{j}e_{j} , r_{j}\in R, e_{j}\in\Delta . Then \sum_{i}d_{i}xb_{i}=\sum_{i,j}d_{i}r_{j}e_{j}b_{i}=\sum_{j}r_{j}\sum_{i}d_{i}e_{j}b_{i}=0 . Thus
\sum d_{t}\otimes b_{i} determines the zero element of Hom (_{RR}A,A) , and so \sum d_{i}\otimes b_{i}=0

in \Delta\otimes_{C}A . It follows that \psi is a well-defined map. Clearly, \phi and \psi are
inverse isomorphisms, A\otimes_{R}A\cong\Delta\otimes_{C}A .

Since A is H-separable over R, \Delta_{C} is finitely generated and projective,
hence flat. Thus,

(O)arrow Rarrow A exact yields (0)arrow\Delta\otimes_{C}Rarrow\Delta\otimes_{C}A\cong A\otimes_{R}A exact. So the natu-
ral map \Delta\otimes_{C}Rarrow A\otimes_{R}A is injective. The multiplication map f:\Delta\otimes_{C}Rarrow A ,
d\otimes r\mapsto dr, is surjective by hypothesis. We show f is also injective. Assume
\sum_{i}d_{i}r_{i}=0 , d_{i}\in\Delta, r_{i}\in R . Then under the injective map \Delta\otimes_{C}Rarrow A\otimes_{R}A ,

\sum_{t}d_{i}\otimes r_{i}\mapsto\sum_{i}d_{i}r_{i}\otimes 1=0 . Hence, \sum_{i}d_{i}\otimes r_{i}=0 in \Delta\otimes_{C}R, and f is injective.

This proves A\cong\Delta\otimes_{C}R .
From A\cong\Delta\otimes_{C}R it follows easily that C is the center of \Delta . Also, C

is a direct summand of \Delta_{C} (see, for example, Hirata [1], p. 112), which implies
that RRR is a direct summand of R(\Delta\otimes_{c}R)_{R}=_{R}A_{R} .

So we can apply Prop. 4. 7 of [2] to conclude that \Delta is an Azumaya
algebra over C.

3. Strongly separable extensions. Many results which hold for H-
separable extensions can be extended in weakened form to a much larger
class of separable extnsions, which we call strongly separable.

DEFINITION 3. 1. A is said to be strongly separable over R provided \Delta

is finitely generated and projective as C-module, and the map \phi:A\otimes_{R}Aarrow

Hom_{O}(\Delta, A) is surjective and splits.
An H-separable extension is strongly separable, and we show now that
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a strongly separable extension is separable. We will also see that for an
algebra over a commutative ring, strong separability and separability are
equivalent. We will present an example to show that this equivalence does
not hold in general.

PROPOSITION 3. 2. If A is strongly separable over R than A is separable
over R.

PROOF. Since \Delta_{C} is finitely generated and projective, C is a direct
summand of \Delta_{C} (see, for example, Hirata [1], p. 112). Thus the map \psi :
Hom_{C}(\Delta, A)arrow A , f\mapsto f(1) , splits as A, A-bimodule map. Let \ell/ be the splitt-
ing map. Also, let \phi’ be the splitting map for \phi . We have the commutative
diagram

and it is seen that the map \mu is split by \phi’\circ\psi’ . Hence A is separable over R.
PROPOSITION 3. 3. If A is a separable algebra over a commutative ring

R then A is strongly separable over R.
PROOF. We have R\subseteq C\subseteq A ; Hence \Delta=A . Since A is separable over

R it is an Azumaya algebra over C. Hence A_{c} is faithfully projective and
finitely generated, and A\otimes_{C}A is isomorphic to Hom_{C}(A, A)=Hom_{C}(\Delta, A) .
Also, C is separable over R ; so the sequence C\otimes_{R}Carrow Carrow(0) is split exact.
Tensoring on the left and right with A over C, we obtain the split exact
sequence A\otimes_{R}Aarrow A\otimes_{C}Aarrow(0) . The diagram

A \otimes_{R}Aarrow A\bigotimes_{\swarrow\searrow}c^{A}

Hom_{C}(A, A)

is commutative. So the sequence A\otimes_{R}Aarrow Hom_{C}(A, A) splits, and A is
strongly separable over R. This completes the proof.

The following lemma is well-known and is stated here without proof.

Lemma 3. 4. Let S and T be rings; let U be a right S-module, V
an S, T-bimodule, and W a left T-module. There are canonical maps:

U\otimes {}_{S}Hom_{T}(V, W)arrow Hom_{T}(Hom_{S}(U, V), W) , u\otimes f\mapsto[g\mapsto g(u)f]r
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and

Hom_{S}(V, U)\otimes_{T}Warrow Hom_{S}(Hom_{T}(W, V), U) , f\otimes w\mapsto[g\mapsto f(wg)]

If U_{S} is fifinitely generated and projective, the fifirst map is an isomorphism;
if TW is fifinitely generated and projective, the second map is an isomorphism.

A is H-separable over R if and only if A\otimes_{R}A is a bimodule direct
summand of A^{n} , for some positive integer n. The following result gives an
analogous characterization of strong separability.

THEOREM 3. 5. Let R be a subring of a ring A. Then the following
conditions are equivalent :

(1) A is strongly separable over R.
(2) There exist d_{i}\in\Delta, \sum_{j}a_{if}\otimes b_{ij}\in(A\otimes_{R}A)^{A}, 1\leq i\leq n, such that d=

\sum_{i,j}d_{i}a_{i\oint}db_{if} for any d\in\Delta .
(3) A\otimes_{R}A=K\oplus M, where Hom_{A,A}(K, A)=(0) and M is isomorphic

to an A, A direct summand of A^{n} .
PROOF. ((1)\Rightarrow(3)) Assume A is strongly separable over R. Then there

is a split exact sequence C^{n}arrow\Deltaarrow(0) of C-modules, because \Delta_{C} is finitely
generated and projective. This yields a split exact sequence (0)arrow Hom_{C}(\Delta, A)

arrow Hom_{C}(C^{n}, A)\cong A^{n} of A, A-bimodules. Let K=ker(\phi) . Since

(0)arrow Karrow A\otimes_{R}Aarrow Hom_{C}(\Delta, A)arrow(0)\phi

splits, K is a direct summand of A\otimes_{R}A such that A\otimes_{R}A/K\cong Hom_{C}(\Delta, A) .
We need to show that Hom_{A,A}(K, A)=(0) .

We apply Lemma 3. 4 with S=C, T=A\otimes_{C}A, U=\Delta , V=A, W=A,
noting that \Delta_{C} is finitely generated and projective as required. Then

\Delta\otimes {}_{C}Hom_{A\otimes_{C}A}(A, A)\cong Hom_{A\otimes_{C^{A}}}.(Hom_{C}(\Delta, A), A)1

But \Delta\otimes {}_{C}Hom_{A\otimes_{C}A}(A, A)\cong\Delta\otimes {}_{C}C\cong\Delta . By hypothesis, A\otimes_{R}A\cong Hom_{C}(\Delta, A)\oplus

K. Thus we have the following sequence of isomorphisms:

\Delta\cong Hom_{A\otimes_{C^{A}}}(A\otimes_{R}A, A)\cong Hom_{A\otimes_{C^{A}}}(Hom_{C}(\Delta, A), A)\oplus Hom_{A\otimes_{C}A}(K, A)

\cong\Delta\oplus Hom_{A\otimes_{C^{A}}}(K, A) .
By tracing these isomorphisms through, one checks that the composite is the
identity map on \Delta . Hence

Hom_{A\otimes_{C^{A}}}(K, A)=Hom_{A,A}(K, A)=(0) .
((3)\Rightarrow(2)) Writing A\otimes_{R}A=K\oplus M, M\oplus B\cong A^{n} , we get an A, A-map
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from A\otimes_{R}A into A^{n} by projecting A\otimes_{R}A onto M and injecting M into
A^{n} . Let 1\otimes 1\mapsto u\in M, u\mapsto(d_{i})\in A^{n} . Note that 1\otimes r=r\otimes 1 , all r\in R , implies
d_{i}\in\Delta , each i. Let e_{i}\in A^{n} be the element whose ith coordinate is 1\in A

and whose other coordinates are zero. Let m_{i}+b_{i}\mapsto e_{i} under the isomorphism
M\oplus Barrow A^{n} . Then \sum d_{i}m_{i}+d_{i}b_{i}\mapsto(d_{i}) . Thus u- \sum d_{i}m_{i}-\sum d_{i}b_{i}\mapsto 0 in A^{n} .
It follows that u- \sum d_{i}m_{i}=0 in M, and \sum d_{i}b_{i}=0 in B.

Under the projection A^{n}arrow M, e_{i}\mapsto m_{i} ; so ae_{i}=e_{i}a\vdash\succ am_{i}=m_{i}a, all a\in A .
Thus m_{i}\in(A\otimes_{R}A)^{A} , all i. Write m_{i}= \sum_{j}a_{ij}\otimes b_{ij}\in A\otimes_{R}A . Then 1\otimes 1-u

\in K, and 1 \otimes 1-u=1\otimes 1-\sum_{i}d_{i}m_{i}=1\otimes 1-\sum_{i,j}d_{i}a_{ij}\otimes b_{ij} .

NowKarrow A\otimes_{R}Aarrow Hom_{C}\phi(\Delta, A)arrow A^{n} , and the first and third maps are
injective. Since Hom_{A,A}(K, A)=(0) , we must have K\underline{\subset}ker(\phi) . Therefore
0= \phi(1\otimes 1-u)=\phi(1\otimes 1)-\phi(\sum_{i,j}d_{i}a_{ij}\otimes b_{ij}) . This says d= \sum d_{i}a_{ij}db_{ij}, all d\in\Delta .

((2)\Rightarrow(1)) Note that \sum_{j}a_{ij}\otimes b_{ij}\in(A\otimes_{R}A)^{A} implies \sum_{j}^{i,j}a_{ij}db_{ij}\in C, for all
i and all d\in\Delta . Let f_{i}\in Hom_{C}(\Delta, C) be defined by f_{i}(d)= \sum_{j}a_{ij}db_{ij}, d\in\Delta ,

for each i. Then d= \sum_{i}d_{i}f_{i}(d) , all d\in\Delta . It is well-known that this implies
\Delta_{C} is finitely generated and projective.

Define \psi : Hom_{C}(\Delta, A)arrow A\otimes_{R}A by f \mapsto\sum_{i,j}f(d_{i})a_{ij}\otimes b_{ij} . For all a\in A ,

\psi(af)=\sum_{i,j}af(d_{i)}^{\backslash }a_{ij}\otimes b_{ij}=a\psi(f) , and

\psi(fa)=\sum_{i,j}(fa)(d_{i})a_{ij}\otimes b_{ij}=\sum_{i,j}f(d_{i})aa_{ij}\otimes b_{ij}

= \sum_{i,j}f(d_{i})a_{ij}\otimes b_{ij}a=\psi(f)a

Hence \psi is an A, A-map. Furthermore,

\phi\psi(f)(d)=\sum_{i,j}f(d_{i})a_{ij}db_{ij}=f(\sum_{i,j}d_{i}a_{ij}db_{ij})=f(d)j

since \sum_{j}a_{ij}db_{ij}\in C, all i. Hence \phi\circ\psi is the identity map on Hom_{C}(\Delta, A) ;

i . e . \psi splits the exact sequence A\otimes_{R}Aarrow Hom_{C}\phi(\Delta, A)arrow(0) . It follows that
A is strongly separable over R, and the Theorem is proved.

We are indebted to K. Sugano for an example of a separable ring
extension that is not strongly separable. The following example is a variant
of the one which he provided.

EXAMPLE 3. 6. Let G=\{e_{ },,h, \mu^{2}\} , a three element group, and let K
be the Galois field with three elements. Let S=KG, the group algebra of
G over K. For s=ae+b\nearrow\nu+c\nearrow\acute{\iota}^{2}\in S, define \overline{s}=ae+b,k^{2}+c\int b . The map s\mapsto\overline{s}

is an automorphism of S.
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Let A be the 2\cross 2 matrix ring over S, R=\{ \{\begin{array}{ll}s 00 \overline{s}\end{array}\} |s\in S\}\subseteq A , and T=

\{a(e+k+fi^{2})|a\in K\}\subseteq S. Since S is commutative, the center C of A is C=

\{ \{\begin{array}{ll}s 00 s\end{array}\} |s\in S\} . It is straightforward to verify that the centralizer \Delta of R

in A is \Delta=\{ \{\begin{array}{ll}s_{1} t_{1}t_{2} s_{2}\end{array}\} |s_{1} , s_{2}\in S, t_{1} , t_{2}\in T\} . Let \sigma=e+\beta+fi^{2}\in S. As C-module,

C \{\begin{array}{ll}0 \sigma 0 0\end{array}\} is a direct summand of \Delta . Thus if \Delta_{C} were projective, C \{\begin{array}{ll}0 \sigma 0 0\end{array}\}

would be also, and S\sigma would be projective as S-module. That this is not
the case is seen as follows.

Let \epsilon:Sarrow S\sigma, s\mapsto s\sigma, a surjective map of S-modules. If Sa is projective,
there is a splitting map \tau . If \tau(\sigma)=u , S=ker(\epsilon)\oplus Su . Then \epsilon(\sigma u)=\sigma\epsilon(u)=

\sigma\epsilon\tau(\sigma)=\sigma^{2} . But \sigma^{2}=0 . So \sigma u\in ker(\epsilon)\cap Su=(0) ; \sigma u=0 . Then u\in ker(\epsilon)\cap Su ;
i . e . u=0, a contradiction.

Since \Delta_{C} is not projective, A is not strongly separable over R. How-

over A is separable over R. The element \{\begin{array}{ll}1 00 0\end{array}\}\otimes\{\begin{array}{ll}1 00 0\end{array}\} +\{\begin{array}{ll}0 01 0\end{array}\} \otimes\{\begin{array}{ll}0 10 0\end{array}\}

is in the A center of A\otimes_{R}A and is mapped to the unity element of A by
\mu:A\otimes_{R}Aarrow A .

We now return to our general setting where R is a subring of A, \Delta

is the centralizer of R in A and \phi:A\otimes_{R}Aarrow Hom_{C}(\Delta, A) . The proof of
the following Lemma is straightforward and is omitted.

LEMMA 3. 7. Let K=ker(\phi) and S=\{s\in A|s\otimes 1-1\otimes s\in K\} . Then S
and \Delta are centralizers of each other in A.

With S as defined in the Lemma we have
PROPOSITION 3. 8. If A is strongly separable over R then A is strongly

separable over S. If S is separable over R then S is strongly separable
over R.

PROOF. Since A^{s}=\Delta , and \Delta_{C} is finitely generated and projective by
hypothesis, to prove the first statement we need only show that the map \psi :
A\otimes_{S}Aarrow Hom_{C}(\Delta, A) splits. Let \phi’ be the spliting map of \phi:A\otimes_{R}Aarrow

Hom_{e}(\Delta, A) , and let f:A\otimes_{R}Aarrow A\otimes_{S}A be the natural map defined because
R\subseteq S. Then f\circ\phi’ is a splitting map for \psi .

Assume S is separable over R and let C’ denote the center of S. Then
C’=\Delta\cap S, since A^{S}=\Delta . Furthermore, \Delta’=S^{R}=C’ . So \Delta_{c’}’ is trivially finitely
generated and projective. Also Hom_{C’}(\Delta’, S)\cong S ; so the splitting of S\otimes_{R}Sarrow

Hom_{C’}(\Delta’, S) is equivalent to the splitting of S\otimes_{R}Sarrow Sarrow(0) .
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The following proposition is the analogue for strong separability of 1. 5
of [12].

PROPOSITION 3. 9. If A is strongly separable over R, then each of the
following maps is a split monomorphism:

(i) \Delta C\cross_{C}Aarrow Hom(RA, RA) , dC\cross a\mapsto[x\mapsto dxa] ,
(ii) A\otimes_{C}\Deltaarrow Hom(A_{R}, A_{R}) , aQ\cross d\mapsto[x-axd] ,

(iii) \Delta\otimes_{C}\Deltaarrow Hom_{R,R}(A, A) , d_{i}\otimes d_{2}\mapsto[x-\mapsto d_{i}xd_{2}] .

PROOF. ( i) Using Lemma 3. 4 we obtain \Delta\otimes_{C}A\equiv Hom(_{AHom}_{C}(\Delta A) ,
AA) . Since A is strongly separable, A\otimes_{R}A\equiv K\oplus Hom_{C}(\Delta, A) . Applying
these isomorphisms and the Adjoint Functor Theorem, we have

Hom (_{RR}A,A)\equiv Hom(_{R}A,{}_{R}Hom(_{AA}A,A))\equiv Hom(_{A}(A\otimes_{R}A), AA)\equiv

Hom (_{AA}K,A)\oplus Hom({}_{AHom}_{C}(\Delta, A), AA)\cong

Hom (_{A}K_{ A},A)\oplus\Delta\otimes_{C}A^{\pi}arrow\Delta C\cross cA .
where the last map \pi is the projection map arising from the direct sum
decomposition. Tracing through these maps one checks that the composite
is a splitting map for the map in (i).

(ii) The proof is similar to the proof of (i).
(iii) In the proof of part (i) above the isomorphism of Hom(_{RR}A,A)

onto Hom (_{A}(A\otimes_{R}A), AA) maps Hom (_{R}A_{R,R}A_{R}) onto Hom (_{A}(A\otimes_{R}A)_{R,A}A_{R}) .
So we have

Hom_{R,R}(A, A)\cong Hom(_{A}K_{R,A}A_{R})\oplus Hom(_{A}Hom_{C}(\Delta, A)_{R,A}A_{R})1

Since \Delta\cong Hom (AR, AAR)y we can apply Lemma 3. 4 to obtain

\Delta\otimes_{C}\Delta\cong Hom_{A,R}(A, A)\otimes_{C}\Delta\cong Hom_{A,R}(Hom_{C}(\Delta, A), A) .

This proves (iii).

PROPOSITION 3. 10. Assume A is strongly separable over R, A\otimes_{R}A\cong

Hom_{C}(\Delta, A)\oplus K. Then for every A, A-bimodule M, M^{R}\cong\Delta\otimes_{C}M^{A}\oplus Hom_{A,A}

(K, M) . In particular, (A\otimes_{R}A)^{R}\cong\Delta\otimes_{C}(A\otimes_{R}A)^{A}\oplus Hom_{A,A}(K, A\otimes_{R}A) .

PROOF. From Lemma 3. 4 we have

\Delta\otimes_{C}M^{A}\cong\Delta\otimes {}_{C}Hom_{A,A}(A, M)\cong Hom_{A,A}(Hom_{C}(\Delta, A), M) . Then

M^{R}\cong Hom_{A,A}( RA, M)\cong Hom_{A,A}(Hom_{C}(\Delta, A) , M)\oplus Hom_{A,A}(K, M)

\cong\Delta\otimes_{C}M^{A}\oplus Hom_{A,A}(K, M) .
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4. Automorphisms. If \sigma is an automorphism of a ring A we let A_{\sigma}

denote the A, A -bimodule such that as left A-module A_{\sigma} is just A , but where
the right module structure is “twisted” by \sigma, x\cdot a=x\sigma(a) for x\in A_{\sigma} , a\in A .

If R is a subring of A then A is a Galois extension of R if there is
a finite group G of automorphisms of A such that R=A^{G} , and such that
there exists x_{i} , y_{i} , 1\leq i\leq n , for which

\sum_{i}x_{i}\sigma(y_{i})=\{

0 if \sigma\neq 1

1 if \sigma=1

If G is a finite group of R-automorphisms of A there is an A, A-bimodule
map h:AC\cross RAarrow AG , defined by a \otimes barrow\sum_{\sigma CC;}.a\sigma b=\sum_{\sigma\in G}a\sigma(b)\sigma . Here, AG is the
tWl\dot{s}t.ee\Gamma group algebra of G over A. It can be shown that if R=A^{G} then
A is a Galois extension of R if and only if h is an isomorphism.

The twisted group algebra AG is a direct sum \sum_{\sigma\in G}\oplus A\sigma , and, for each
\sigma, A\sigma is A, A-bimodule isomorphic to A_{\sigma} . Thus when A is a Galois
extension of R with Galois group G, A \otimes_{R}A\equiv\sum_{\sigma\epsilon G}\oplus A_{\sigma} . This motivates the
following definition.

DEFINITION 4. 1. A is a pseudO-Galois extension of R if there is a finite
set S of R-automorphisms of A and a positive integer n such that A\otimes_{R}A

is isomorphic to a direct summand of \sum_{\sigma\in S}A_{\sigma}^{n} .
If in Definition 4. 1 S=\{1\} , then the condition is that A\otimes_{R}A is is0-

morphic to a direct summand of A^{n} , for some positive integer n . This is
just the condition that A be H-separable over R. Thus H-separable ex-
tensions and Galois extensions are pseud0-Galois.

In Definition 4. 1 we will assume that A_{\sigma}\not\cong A_{\tau} if \sigma\neq\tau , \sigma, \tau\in S.
Assume that \sigma and \tau are automorphisms of a ring A and let \mu:A_{\sigma}arrow A_{\tau}

be an A, A-bimodule map. Let \mu(1)=x. Then, for each a\in A ,

\sigma(a)x=\sigma(a)\mu(1)=\mu\sigma(a)=\mu(1\cdot a)=\mu(1)\cdot a=x\tau(a)1

Conversely, if x\in A such that \sigma(a)x=x\tau(a) for all a\in A , there is a unique
bimodule map \mu:A_{\sigma}arrow A_{\tau} such that \mu(1)=x . The map \mu is an isomorphism
if and only if x is a unit in A, and in this case \tau\sigma^{-1} is an inner automor-
phism of A. Conversely, if \tau\sigma^{-1}(a)=x^{-1}ax, for some unit x in A then
\sigma(a)x=x\tau(a) and there is a unique isomorphism \mu:A_{\sigma}arrow A_{\tau} such that \mu(1)=x.
Let

J_{\sigma,\tau}=\{x\in A|\sigma(a)x=x\tau(a) , all a\in A\}

Then J_{\sigma,\tau} is a C-module and J_{\sigma,\tau}\equiv Hom_{A,A}(A_{\sigma}, A_{\tau}) ; A_{\sigma}\cong A_{\tau} if and only if
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\sigma\tau^{-1} is an inner automorphism of A. We will denote J_{1,\sigma} by J_{\sigma} . Then
J_{\sigma,\tau}=J_{\sigma\tau-1} .

In part of what follows we will assume that any nonzero A, A-bimodule
map from A_{\sigma} to A_{\tau} is an automorphism. This condition holds, for example,
if A is a simple ring.

PROPOSITION 4. 2. Let A be a pseudO-Galois extension of R, and assume
that if \sigma, \tau\in Aut_{R}(A) that any nonzero bimodule map from A_{\sigma} to A_{\tau} is an
isomorphism. Then

(i) Hom_{C}(\Delta, A_{\sigma}) is isomorphic to a direct summand of A_{\sigma}^{n} , each \sigma\in S.
(ii) If I is the group of inner R-automorphisms of A then S contains

exactly one element from each coset of I in Aut_{R}(A) .
(iii) A \otimes_{R}A\equiv\sum_{\sigma\in S}\oplus Hom_{C}(\Delta, A_{\sigma}) .

PROOF. Let \sum_{\sigma\in S}\oplus A_{\sigma}^{n}\cong A\otimes_{R}A\oplus B. Then

Hom_{A,A}(A\otimes_{R}A, A)\oplus Hom_{A,A}(B, A)\cong Hom_{A,A}(\sum_{\sigma\epsilon_{\vee}S}\oplus A_{\sigma}^{n}, A) ;

i . e . \Delta\oplus B’\cong\sum_{\sigma\in S}\oplus Hom_{A,A}(A_{\sigma}^{n}, A) . There must exist \sigma_{0}\in S such that Hom_{A,A}

(A_{\sigma_{0}}, A)\neq(0) . Hence A_{\sigma_{0}}\cong A , and Hom_{A,A}(A_{\sigma_{0}}^{n}, A)\cong C^{n} . For \sigma\neq\sigma_{0} , Hom_{A,A}

(A_{\sigma}, A)=(0) ; Hence \Delta\oplus B’\cong C^{n} .
Let \tau\epsilon Aut_{R}(A) . Then A_{\tau}^{n}\cong Hom_{C}(C^{n}, A_{\tau})\cong Hom_{C}(\Delta, A_{\tau})\oplus Hom_{C}(B’, A_{\tau}) .

Define \phi_{\tau} : A\otimes_{R}Aarrow Hom_{C}(\Delta, A_{\tau}) by \phi_{\tau}(a\otimes b)=[d\mapsto ad\tau(b)] . Then \phi_{\tau} is an
A, A-map, where Hom_{C}(\Delta, A_{\tau}) is an A, A-bimodule via the action on A_{\tau} .
We then have a sequence of bimodule maps

\sum_{\sigma CS}.\oplus A_{\sigma}^{n}arrow A\otimes_{R}Aarrow Hom_{C}\phi_{\tau}(\Delta, A_{\tau})arrow A_{\tau}^{n} ,

whose composition is nonzero. Hence there exists \sigma’\in S such that A_{\sigma’}\cong A_{\tau} .
Then S contains exactly one element from each coset of I in Aut_{R}(A) .

Let p denote the split injective mapping of A\otimes_{R}A to \sum_{\sigma\epsilon s}\oplus A_{\sigma}^{n} assumed

to exist because A is a psued0-Galois extension of R, and let \int b’ denote the
splitting map. Foe each \tau\in S let u_{\tau}, v_{\tau}\in A\otimes_{R}A be chosen so that fi(1\otimes 1)

=u_{\tau}’+v’ , where u_{\tau}’\in A_{\tau}^{n} and v_{\tau}’ \in\sum_{\sigma\neq\tau}\oplus A_{\sigma}^{n} and such that u_{\tau}=J_{b}’(u_{\tau}’) and
v_{\tau}=\beta’(v_{\tau}’) . Since Hom_{C}(\Delta, A_{\tau}) is isomorphic to a sub-bimodule of A_{\tau}^{n} we
must have \phi_{\tau}(v_{\tau})=0 . Thus \phi_{\tau}(1\otimes 1)=\phi_{\tau}(u_{\tau}) .

For 1\leq i\leq n let e_{i} denote the element of A_{\tau}^{n} whose i^{th} coordinate is 1

and whose j^{th} coordinate is 0, j\neq i, 1\leq j\leq n . Then u_{\tau}’= \sum_{i=1}^{n}d_{i}e_{i}, d_{i}\in A . For

each r\in R, r\otimes 1=1\otimes r ; so \sum_{i=1}^{n}rd_{i}e_{i}=\sum_{i=1}^{n}d_{i}re_{i} . Thus rd_{i}=d_{i}r, 1\leq i\leq n . It
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follows that d_{i}\in\Delta , each i.
Let\nearrow z’,(e_{i})=\sum_{j}a_{ij}\otimes b_{ij}\in A\otimes_{R}A , 1\leq i\leq n . Note that \tau(a)e_{i}=e_{i} . a implies

that \tau(a)\sum_{j}a_{ij}\otimes b_{ij}=\sum_{j}a_{ij}\otimes b_{ij}a, all a\in A . Mapping with \phi_{\tau} we obtain

\tau(a)\sum_{j}a_{ij}d\tau(b_{ij})=\sum a_{ij}d\tau(b_{ij})\tau(a) , all a\in A, d\in\Delta l

Thus \sum_{j}a_{ij}d\tau(b_{ij})\in C, all d\in\Delta . Now \phi_{\tau}(1\otimes 1)=\phi_{\tau}(u_{\tau})=\phi_{\tau}(\sum_{i,j}d_{i}a_{ij}\otimes b_{ij}) .
Hence d= \sum_{i,j}d_{i}a_{ij}d\tau(b_{ij}) , all d\in\Delta .

Let us now define \psi_{\tau} : Hom_{C}(\Delta, A_{\tau})arrow A\otimes_{R}A by \psi_{\tau}(f)=\sum_{i,j}f(d_{i})a_{ij}\otimes b_{ij} .
\psi_{\tau} is clearly a left A-module map. If a\in A , then

\psi_{\tau}(fa)=\sum_{i,j}(fa)(d_{i})a_{ij}\otimes b_{ij}=\sum_{i,j}f(d_{i})\tau(a)a_{ij}\otimes b_{ij}

= \sum_{i,j}f(d_{i})a_{ij}\otimes b_{ij}a=\psi_{\tau}(f)a

Hence \psi_{\tau} is a bimodule map.
We now show that \psi_{\tau} splits \phi_{\tau} . Since \sum_{j}a_{ij}d\tau(b_{ij})\in C, 1\leq i\leq n ; for

each f\in Hom_{C}(\Delta, A_{\tau}) we have

\sum_{i,j}f(d_{i})a_{ij}d\tau(b_{ij})=f(\sum_{i,j}d_{i}a_{ij}d\tau(b_{ij}))=f(d) ‘

Then \phi_{\tau}\circ\psi_{\tau} is the identity map on Hom_{C}(\Delta, A_{\tau}) . Also, it is straightforward
that \psi_{\tau}\circ\phi_{\tau}(u_{\tau})=u_{\tau} . Since fi(1 \otimes 1)=\sum_{\tau\in S}u_{\tau}’ , we have 1 \otimes 1=\sum u_{\tau}=\sum\psi_{\tau}\circ\phi_{\tau}(u_{\tau})

= \sum\psi_{\tau}\circ\phi_{\tau}(1\otimes 1) ; and thus \sum\psi_{\tau}\circ\phi_{\tau} is the identity map on A\otimes_{R}A . There
fore A \otimes_{R}A\cong\sum_{\sigma 6S}\oplus Hom_{C}(\Delta, A_{\sigma}) .

COROLLARY 4. 3. Let A be a pseudO-Galois extension of R, and assume
for each \sigma, \tau\in Aut_{R}(A) that any nonzero bimodule map from A_{\sigma} to A_{\tau} is
an isomorphism. Then A is strongly separable over R.

PROOF. Assume A \otimes_{R}A\cong\sum_{\sigma\in S}\oplus Hom_{C}(\Delta, A_{\sigma}) . Let K= \sum_{\sigma\neq 1}\oplus Hom_{C}(\Delta, A_{\sigma}) ,

and apply Theorem 3. 5.
We have seen that H-separable extensions are pseud0-Galois. There

appears to be no general relationship between strongly separable extensions
and pseud0-Glaois extensions. The following proposition for strongly sepa-
rable extensions has a conclusion similar to, but weaker than, that of Proposi-
tion 4. 2.

Recall that for each R-automorphism \sigma of A, \phi_{\sigma} : A\otimes_{R}Aarrow Hom_{C}(\Delta, A_{\sigma})

is define by \phi_{\sigma}(a\otimes b)=[d\mapsto ad\sigma(b)] . Also, let I denote the subgroup of inner
automorphisms in Aut_{R}(A) .
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PROPOSITION 4. 4. Let A be a strongly separable extension of R. Then
for each R-automorphism \sigma of A the map \phi_{\sigma} is a split epimorphism. Assume
further that I is of fifinite index in Aut_{R}(A) and that if \sigma and \tau are R-
automorphisms of A then any nonzero bimodule map from A_{\sigma} to A_{\tau} is an
isomorphism. Then there exists a set S of R-automorphisms of A containing
exactly one element from each coset of I in Aut_{R}(A) such that \sum_{\sigma\in S}\oplus Hom_{C}

(\Delta, A_{\sigma}) is isomorphic to a direct summand of A\otimes_{R}A .

PROOF. As in the proof of Theorem 3. 5, we can find elements d_{i}\in\Delta,
a_{ij} , b_{ij}\in A such that for each d\in\Delta, d= \sum_{i,j}d_{i}a_{ij}db_{ij} , and such that \sum_{j}a_{ij}\otimes b_{ij}

\in(A\otimes_{R}A)^{A} and \sum_{j}a_{ij}db_{ij}\in C, each i. We define \psi_{\sigma} : Hom_{C}(\Delta, A_{\sigma})arrow A\otimes_{R}A

by \psi_{\sigma}(f)=\sum_{i,j}f(d_{i})a_{ij}\otimes\sigma^{-1}(b_{ij}) . \psi_{\sigma} is clearly a map of left A-modules.
We note that 1\otimes\sigma^{-1} is a well-defined map of abelian groups from

A\otimes_{R}A to A\otimes_{R}A . Since, for each a\in A ,

\sum_{j}\sigma(a)a_{ij}\otimes b_{ij}=\sum_{j}a_{ij}\otimes b_{ij}\sigma(a) , we can apply 1\otimes\sigma^{-1} to obtain

\sum_{j}\sigma(a)a_{ij}\otimes\sigma^{-1}(b_{ij})=\sum_{j}a_{ij}\otimes\sigma^{-1}(b_{ij})a , each i

We now show that \psi_{\sigma} is a right A-module map. For each a\in A, f\in
Hom_{C}(\Delta, A_{\sigma}) ,

\psi_{\sigma}(fa)=\sum_{i,j}(fa)(d_{i})a_{ij}\otimes\sigma^{-1}(b_{ij})=\sum_{i,j}f(d_{i})\sigma(a)a_{ij}\otimes\sigma^{-1}(b_{ij})

= \sum_{i,j}f(d_{i})a_{ij}\otimes\sigma^{-1}(b_{ij})a=\psi_{\sigma}(f)a .

Next we show that \psi_{\sigma} splits \phi_{\sigma} . For each f\in Hom_{C}(\Delta, A_{\sigma}) ,

\phi_{\sigma}\circ\psi_{\sigma}(f)(d)=\sum_{i,j}f(d_{i})a_{ij}d\sigma(\sigma^{-1}(b_{ij}))=\sum_{i,j}f(d_{l})a_{ij}db_{ij}

=f( \sum_{i,j}d_{i}a_{ij}db_{ij})=f(d)

Now, assume that if \sigma and \tau are R-automorphisms of A then any
nonzero bimodule map from A\sigma to A\tau is an isomorphism.

For each \sigma\in Aut_{R}(A) we write A\otimes_{R}A=K_{\sigma}\oplus L_{\sigma} where L_{\sigma}\cong Hom_{C}(\Delta, A_{\sigma}) .
Since \Delta_{C} is finitely generated and projective, L_{\sigma} is isomorphic to a direct
summand of A_{\sigma}^{n} , some positive integer n . If \sigma, \tau\in Aut_{R}(A) and A_{\sigma}\not\cong A_{\tau} ,
then there is no nonzero bimodule map from A_{\tau} to A_{\sigma} ; hence L_{\tau}\subseteq K_{\sigma} .

Let S be a subset of Aut_{R}(A) containing exactly one element from each
coset of I, and let K’= \bigcap_{\sigma\in S}K_{\sigma} . Then A \otimes_{R}A=\sum_{\sigma\in S}\oplus L_{\sigma}\oplus K’ This completes

the proof of the Proposition.
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We now drop the hypothesis that for \sigma, \tau\in Aut_{R}(A) , any nonzero
bimodule map from A_{\sigma} to A_{\tau} is an isomorphism. Recall that for \sigma\in Aut_{R}(A) ,
J_{\sigma}= {x\in A|ax=x\sigma(a) , for all a\in A}. J_{\sigma} is a C-module and Hom_{A,A}(A, A_{\sigma})\cong

J_{\sigma} under the map f\mapsto f(1) .
Hirata [3] has shown that if A is an H-separable extension of R then

J_{\sigma} is finitely generated and projective of rank 1, and is free if and only if \sigma

is an inner automorphism. In the following we generalize to strongly sepa-
rable extensions.

We assume throughout the rest of this section that A has no nontrivial
central idempotents.

PROPOSITION 4. 5. Assume A is strongly separable over R;i. e . (0)arrow

Karrow A\otimes_{R}Aarrow Hom_{C}(\Delta, A)arrow(0) is a split exact sequence. Then J_{\sigma}\neq(0) if and
only if Hom_{A,A}(K, A_{\sigma})=(0) . In this case J_{\sigma} is fifinitely generated and projec-
tive of rank 1.

PROOF. From Lemma 3. 4,
Hom_{A,A} (Hom_{C}(\Delta, A) , A_{\sigma})\cong\Delta\otimes_{C}Hom_{A,A}(A, A_{\sigma})\cong\Delta\otimes_{C}J_{\sigma} . Hence

\Delta\cong Hom_{A,A}(A\otimes_{R}A, A_{\sigma})\cong Hom_{A,A}(Hom_{C}(\Delta, A), A_{\sigma})\oplus Hom_{A,A}(K, A_{\sigma})

\cong\Delta\otimes_{C}J_{\sigma}\oplus Hom_{A,A}(K, A_{\sigma})

From this we see first that J_{\sigma}=(0) implies Hom_{A,A}(K, A_{\sigma})\neq(0) . Next since
C is a direct summand of \Delta , we conclude from the above that J_{\sigma} is a direct
summand of \Delta . So J_{\sigma} is finitely generated and projective. Finally let t=rank
(J_{\sigma}) , n=rank(\Delta) . Then, from the above, we have n=n\cdot t+rank(Hom_{A,A}

(K, A_{\sigma})) . If J_{\sigma}\neq(0) , we must have t=1 and Hom_{A,A}(K, A_{\sigma})=(0) . This com-
pletes the proof.

Let \sigma\in Aut_{R}(A) . Then \sigma=1\otimes\sigma:A\otimes_{R}Aarrow A\otimes_{R}A is an automorphism
of A as left A-module, but is not a bimodule map in general. However, if
M is a sub-bimodule of A\otimes_{R}A then \overline{\sigma}(M) is again a sub-bimodule.

Now assume A is a strongly separable extension of R. For each \sigma\in

Aut_{R}(A) , A\otimes_{R}A=K_{\sigma}\oplus L_{\sigma} , where L_{\sigma}\cong Hom_{C}(\Delta, A_{\sigma}) and K_{\sigma}=ker(\phi_{\sigma}) . Let
L=L_{1} .

Lemma 4. 6. Assume A is a strongly separable extension of R, and let
\sigma\in Aut_{R}(A) . If Hom_{A,A}(A, A_{\sigma})\neq(0) , then Hom_{A,A}(A_{\sigma}, A)\neq(0) ; so J_{\sigma}\neq(0)

implies J_{\sigma}-1\neq(0) . Further, Hom_{A,A}(A_{\sigma}, A)\neq(0) implies K=K_{\sigma}, L\cong L_{\sigma} .

PROOF. If Hom_{A,A}(A, A_{\sigma})\neq(0) then Hom_{A,A}(K, A_{\sigma})=(0) , by Proposition
4. 5. Hence the projection of K to L_{\sigma} arising from the direct sum decomp0-
section A\otimes_{R}A=K_{\sigma}\oplus L_{\sigma} must be the zero map, since L_{\sigma} is isomorphic to a
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direct summand of A_{\sigma}^{n} , for some positive integer n. Thus K\underline{\subset}K_{\sigma} . The
projection of L_{\sigma} to L arising from the direct sum decomposition A\otimes_{R}A=

K\oplus L must be nonzero. Since L is isomorphic to a direct summand of A^{m},
for some positive integer m, this gives rise to a nonzero bimodule map from
A_{\sigma} to A. Thus J_{\sigma^{-1}}\cong Hom_{A,A}(A_{\sigma}, A)\neq(0) . The argument showing K\underline{\subset}K_{\sigma}

can now be used to show K_{\sigma}\underline{\subset}K, giving K=K_{\sigma} . Thus A\otimes_{R}A\cong K\oplus L\cong K_{\sigma}

\oplus L_{\sigma}=K\oplus L_{\sigma} , from which it follows that L\cong L_{\sigma} .
PROPOSITION 4. 7. Let A be a strongly separable extension of R and

let \sigma\in Aut_{R}(A) such that J_{\sigma}\neq(0) . Then J_{\sigma}-1\neq(0) and J_{\sigma}-1\cong J_{\sigma}^{*}=Hom_{C}(J_{\sigma}, C) .
PROOF. Let \beta:Larrow L_{\sigma} be an isomorphism, guaranteed by the Lemma,

and let \alpha=\beta^{-1} . Since C is isomorphic to a direct summand of \Delta , A is
isomorphic to a direct summand of Hom_{C}(\Delta, A)\cong L . Hence there exist maps
\gamma:Aarrow L and \delta : Larrow A such that \delta\circ\gamma=1_{A} . L_{\sigma} is isomorphic to a direct
summand of A_{\sigma}^{n} , some positive integer n ; so there exist maps f_{i} : L_{\sigma}arrow A_{\sigma} ,
g_{i} : A_{\sigma}arrow L_{\sigma} , 1\leq i\leq n , such that \sum_{i}g_{i}\circ f_{i}=1_{L_{\sigma}} .

Let \overline{f_{i}}=f_{i}\beta\gamma:Aarrow A_{\sigma},\overline{g}_{i}=\delta\sigma g_{i} : A_{\sigma}arrow A . Then \sum_{i}\overline{g}_{i}\circ\overline{f_{i}}=1_{A} . Thus the
map

J_{\sigma}-1\otimes_{C}J_{\sigma}\cong Hom_{A,A}(A_{\sigma}, A)\otimes {}_{C}Hom_{A,A}(A, A_{\sigma})arrow Hom_{A,A}(A, A)\cong C ,

defined by g\otimes f\mapsto g\circ f, for g\in Hom_{A,A}(A_{\sigma}, A) and f\in Hom_{A,A}(A, A_{\sigma}) , is surjec-
tive. It follows that J_{\sigma}-1\cong J_{\sigma}^{*} . This completes the proof.

We summarize the above as follows. Let

G=\{\sigma\in Aut_{R}(A)|J_{\sigma}\neq(0)\}=\{\sigma\in Aut_{R}(A)|K_{\sigma}=K\}

Then G is a subgroup of Aut_{R}(A) . If \sigma, \tau\in Aut_{R}(A) then Hom_{A,A}(A_{\sigma}, A_{\tau})\cong

Hom_{A,A}(A, A_{\tau\sigma}-1)\neq(0) if and only if \sigma and \tau are in the same right coset
modulo G.
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