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Polymerization of conventional

monomers, whether initiated

thermally, photochemically or

by some other means, results in a

significant reduction in volume that

causes difficulties in many polymer

applications. The stress that arises

during polymerization generates either

internal or interfacial defects as well as

substrate deformation. This brief review

seeks to outline some of the shrinkage
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and filled polymers intended for

applications as diverse as protective

coatings, microelectronic encapsulants,

holographic data storage materials,

microlithography, and dental adhesive/

restorative materials. The shrinkage

stress is expressed through internal

defect and void formation as well as

substrate debonding or warpage.

Residual stress can accelerate polymer

deterioration and the degradation of

substrate adhesion as well as enhance

moisture uptake as a mechanism for

stress relief.1, 2 Features of polymeriza-

tion shrinkage and shrinkage stress will

be reviewed in this paper. Similarities

and differences of these respective

properties and their methods for

measurement will be compared for

unfilled thin film coatings and

particulate filled, bulk polymers

obtained by photopolymerization.

Polymerization Shrinkage
Addition polymerization of conven-

tional monomers, such as methacry-

lates, vinyl ethers and epoxides results

in volume contraction because the

intermolecular separation between the

monomer units is reduced to covalent

bond distances in the polymer. In

addition, diminished mobility of the

polymer segments with respect to the

separate monomers contributes to the

increase in density or loss of free

volume. Different monomers have

different characteristic shrinkage

values. The percent change in volume

The stress that arises during polymerization generates
either internal or interfacial defects as well as
substrate deformation. This brief review seeks to
outline some of the shrinkage and stress related
issues that are relevant to the photopolymerization
of unfilled resins and composites.

and stress related issues that are

relevant to the photopolymerization of

unfilled resins and composites. Methods

used to measure shrinkage and stress

are described as are some of the

materials approaches that have been

developed to minimize these factors.

Introduction
Problems associated with polymer-

ization shrinkage and the accompany-

ing stress that develops as monomer

converts to polymer are experienced in

many photopolymerization applica-

tions. The volumetric shrinkage strain

induces both internal and, via bonded

surfaces, external stresses in unfilled
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 Figure 1

Monomer molar volume, cm3/mol
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Volumetric polymerization shrinkage decreases for the
monomethacrylate series in the order of the methyl, ethyl,
propyl, butyl, hexyl, octyl, dodecyl esters, while shrinkage on a
molar basis remains relatively constant (from Patel et al.4).

(volumetric shrinkage) as a monomer

converts to polymer is directly

dependent on the reactive group

concentration in the monomer and the

degree of conversion in the polymer.

Methacrylate monomers have been

widely studied, and several investiga-

tions have shown the reduction in

shrinkage that can be correlated with

increasing molecular weight or molar

volume of the monomer.3-5 The more

informative method to evaluate

shrinkage among various monomers is

to compare volume change per mole of

reactive group consumed (Figure 1).

In this manner, the molar volume

change of most methacrylates is fairly

constant at 23 ± 1.8 cm3/mol C=C.4 The

direct proportionality between

conversion and shrinkage in amor-

phous polymeric monomethacrylates

has been used as a method to

determine degree of cure. In spite

of the more heterogeneous nature of

cross-linking polymerizations, when

the incomplete conversion typically

encountered in di- and multi-

methacrylate polymerizations is

accounted for, the same molar

shrinkage values apply.4, 6

Other vinyl addition polymers, such

as acrylates and vinyl ethers display

similar molar volume shrinkage

compared with methacrylates. For

example, methyl acrylate and ethyl

vinyl ether produce polymers with

molar shrinkage values of 22.6 and

21.3 cm3/mol, respectively. Epoxy

monomers, which rely on a distinctly

different ring-opening polymerization

mechanism, have substantially lower

shrinkage as evidenced by ethylene

oxide with a molar shrinkage value of

approximately 11 cm3/mol. The

combination of bond breaking that

accompanies epoxide monomer

addition as well as the conversion of a

rigid oxirane ring to a more flexible

open-chain segment in the polymer

accounts for the reduced levels of

shrinkage. Polymerization shrinkage in

composites is reduced as filler is added

and reactive monomer is displaced.

The reduction in shrinkage is directly

proportional to the volume fraction of

the filler added.

Measurement of Shrinkage
The methods used to determine

polymerization shrinkage range from

simple static techniques to elaborate

dynamic procedures. Static shrinkage

measurement methods include

monomer/polymer densities obtained

by measured dimensions, gas or liquid

displacement pycnometry, 7 and

buoyant mass determinations

(Archimedes principle). These tech-

niques are most conveniently applied to

bulk monomer and polymer specimens

rather than thin coatings. A relatively

minor error often encountered in

the literature concerned with

polymerization shrinkage involves the

simple calculation used to obtain

volumetric shrinkage. The change in

density should be related to polymer

density rather than the density of the

monomer (see Equation 1).

Dynamic methods appropriate for

real-time measurement of volumetric

or 3-D photopolymerization shrinkage

include dilatometry,8-11 which measures

specimen volume changes during

polymerization via the position of a

water or mercury meniscus in a

 Equation 1

shrinkage (%) = (ρp—ρM) x 100 where ρp and ρM are polymer
ρp       and monomer densities

A calculation used to obtain volumetric shrinkage.
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capillary (Figure 2). A variety of

specimen geometries and sizes (down

to ~10 mg) can be managed by

dilatometry. The use of mercury in the

dilatometer has the advantage of being

non-interacting with monomers and

polymers so no uptake occurs as is

possible with water. This makes the

volume results quite reliable. However,

because of the opaque nature of

mercury, the options for introduction

of the curing light are limited and

control of the irradiation intensity is

complicated by the reflective surface

of mercury. There are also obvious

health concerns associated with the

use of mercury. A linometer uses a

drop of resin or composite “sandwiched”

between two disks. Polymerization is

initiated by irradiation through the

fixed disk while the displacement of

the free disk is monitored. Care must

be taken that an adequate specimen

diameter to thickness ratio is main-

tained to assure reliable shrinkage

results. By use of a greased surface on

the disks, free isotropic contraction

can be assumed, which allows the

linear results to be converted to

volumetric shrinkage.12 Linometer

measurements are less sensitive to

thermal effects than are dilatometer-

based results, particularly with

mercury dilatometers, which essen-

tially require thermal feedback control

to compensate for the large coefficient

of thermal expansion associated with

mercury. Among other methods used,

dynamic image analysis based on laser

scanning or optical monitoring13,14

provide direct measurement of either

linear shrinkage in films or volumetric

shrinkage in droplets. A deflecting

disk method (Figure 3) involves

measurement of the linear displace-

ment of a bonded compliant sub-

strate.15, 16 The directionality of

shrinkage, which can be particularly

important in non-isotropically bonded

specimens or photopolymerizations of

thick specimens, can be probed by the

use of embedded strain gauges that

provide spatially controlled linear

shrinkage data.17, 18

The shrinkage of thin film coatings

results in the one-dimensional

decrease in film thickness. This is

readily followed and analyzed by laser

 Figure 2

After calibration with known volumes, the change in height of
the column of water or mercury in a capillary is used to provide
volumetric polymerization shrinkage results by dilatometer.
Computer-controlled devices allow collection of time-resolved
shrinkage data as well as real-time compensation for
thermal effects.

H2O or Hg

light
guide

monomer/polymer
specimen

to LVDT

volume shrinkage

thermistor

 Figure 3

The deflecting disk method uses a highly compliant glass
substrate, which can bond to the polymerizing resin/composite,
but act as a near freely shrinking surface.

light
source

slide

flexible coverslip

LVDT

linear
shrinkage

spacer

specimen
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interferometry (Figure 4), which can

be applied to either thin film or thick

specimen configurations.19, 20 The

photopolymerization contraction

results in a pathlength reduction,

which is followed by the constructive/

destructive intensity oscillations from

the interferometer. The technique is

highly sensitive, if suitable vibrational

isolation of the instrument is achieved,

and it allows extremely rapid data

collection rates. External calibration is

unnecessary since the fixed wavelength

of the laser provides an internal

dimensional calibration.

Polymerization Stress
As photopolymerization proceeds,

modulus and other polymer properties

evolve in varying relationships with

conversion. Several studies have

focused on this evolution of structure

and properties.21-26 Stress development

during polymerization is a function of

the instantaneous modulus and the

shrinkage strain. Thus, rubbery

polymers generate minimal stress due

to compliance within the polymer,

whereas in glassy systems, especially

as modulus rapidly increases near

vitrification, dramatic stresses

can be developed. Stress levels can

be temporarily reduced by

thermal effects associated with

photopolymerization. The polymeriza-

tion exotherm as well as any heating

effects associated with the curing light,

can increase mobility in the polymeriz-

ing system. This can increase the final

conversion achieved but at the same

time, an additional degree of stress is

introduced for a given conversion level

as the cured polymer returns to ambient

temperature. In typical composites with

high modulus fillers, effective coupling

between resin and filler is required to

achieve mechanical reinforcement.

Compared with the filler, the higher

coefficient of thermal expansion of the

polymer, combined with the shrinkage

isolated in the resin phase, leads to

tensile stresses in the polymer matrix

around the filler particles.27, 28

Measurement of
Polymerization Stress

Just as with shrinkage determina-

tions, several diverse techniques have

been developed to measure stress

during polymerization. In the bonded

disk technique, a relatively thick layer

of resin or composite is photocured

between two parallel surfaces, one of

which is attached to a load cell that

monitors the force necessary to restrict

the development of shrinkage.29-31

A surface treatment is necessary to

assure good bonding between the

substrates and the polymer. The

specimen diameter to thickness ratio

can be altered with the result that

thinner specimens produce significantly

greater stresses due to their higher

proportion of bonded to non-bonded

surface configuration. As expected, the

measured stress that evolves during the

polymerization is inversely proportional

to the compliance of the test system.32, 33

Photoelastic analysis using polarized

microscopy can provide normal and

shear stresses in complex bonded

geometries involving surfaces of resins

and composites.34

Beam bending is commonly used to

determine polymerization-induced

stress development in coatings. In this

approach, a known thickness of resin

(typically unfilled) is photocured on a

thicker, stiffer substrate of known

elastic modulus and Poisson’s ratio with

the in-plane stress causing a radius of

curvature.35 The beam dimensions and

material is selected to allow 2-D

bending, rather than 3-D cupping, and

to limit the magnitude of bending such

that excessive stress relaxation through

deformation is avoided. The active

beam deflection can be monitored by

scanning laser techniques, profilometery

or interferometry. Instead of free beam

deflection, a clamped cantilever with

calibrated beam constants can also be

used to monitor the stress generated

during coating photopolymerization

 Figure 4

Interferometric measurements of shrinkage strain rely on the
change in pathlength due to the shrinkage-induced displacement
of the free mirror with respect to the constant pathlength of
the fixed mirror.

specimen
fixed
mirror

to pathlength
detector

from
laser

free glass
and mirror

light
source

fixed glass

linear shrinkage
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(Figure 5). When polymerized, the in-

plane stresses induce substrate curl,

which can be monitored by laser

deflection. Displacement of the beam

and the clamped beam length allow the

radius of curvature to be approximated

and thus, the dynamic stresses can be

calculated.36-39 Of particular interest in

this deflecting cantilever beam approach

is the direct coupling (on same

specimen) of spectroscopic data or the

indirect use (from separate specimens)

of calorimetric methods to determine

the coating conversion profile simulta-

neously with the stress evolution

data.40,41 These combined analytical

techniques allow stress to be plotted

dynamically against conversion. The

results demonstrate that stress builds

slowly as conversion rises beyond the

gel point but increases rapidly as

vitrification is reached.42 The cantilever

beam technique has also been modified

to evaluate stress development in a

bonded configuration of thick resins

and composites (Figure 6).43

Modification of Materials to
Reduce Shrinkage and/or Stress

Prior to polymerization, microscopic

porosity in the resin or composite

results in reduced shrinkage and stress

development due to the formation of

significantly enlarged voids in the

polymer.44, 45 The introduction of non-

bonded micro-filler or nano-filler has

been used to controllably achieve

controlled pore structure and reduced

shrinkage in composites.31, 46, 47 The use

of a reactive filler designed to release

volatile components during polymer-

ization has also been evaluated as a

means of minimizing shrinkage.48

Polymerization induced phase separa-

tion, either through selection of

comonomer composition or by the use

of specialized additives, can result in

appreciably lower shrinkage and stress

than similar systems that remain

homogeneous.49-52 The addition of

plasticizers or comonomers that

contribute toward lower modulus

coatings and bulk polymers can also

significantly reduce the final stress

level of the cured material. Little work

has been done to determine the

influence of filler on stress conveyed

by bonded composites. Preliminary

studies in this area point to an increase

in stress as a function of filler con-

tent.53 Therefore, even though filler

reduces polymerization shrinkage, the

corresponding increase in modulus

that the filler imparts to the resin

during polymerization appears to be the

controlling factor in stress evolution.

Beyond the previously mentioned

effects of filler to minimize shrinkage

and/or stress in composite materials,

there are many approaches involving

monomer design that are directed

toward this same goal. As mentioned,

 Figure 5

The coating applied to the cantilever beam undergoes free
shrinkage toward the bonded surface during photopolymerization,
but the restricted in-plane shrinkage produces linear bending of
the beam, from which stress can be measured.

from IR
source

coating

light
source

cantilever
deflection

laser

to IR
detector

 Figure 6

Filled or unfilled resin placed in a retaining sleeve is photocured
along a quartz rod used as one of the fixed substrates. Silane
surface treatment on the rod ends promotes polymer adhesion
for effective transfer of stress to yield displacement of the
cantilever beam.

rigid baseplate
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decreased reactive group concentration

leads directly to reduced shrinkage for a

given conversion. Thus, bulky monomers

and prepolymers have been evaluated

as routes to lower shrinkage and

potentially, lower stress polymers.54-57

Ordered liquid crystalline monomers

that ideally yield amorphous polymers is

another approach to produce minimal

shrinkage.58,59 Within conventional

monomer compositions, increased

monomer functionality, which results in

increased reactive group density,

provides higher levels of stress develop-

ment, even at lower values of final

conversion.40 Related work establishes

that cross-linking photopolymerization

of methacrylate monomers reaches

much higher stress levels for a given

conversion compared with acrylate

monomers of similar structures.42

Epoxy-based resin systems have

demonstrated significantly lower stress

compared with acrylate resins of similar

cross-link density.22

The University of Colorado Depart-

ment of Chemical and Biological

Engineering lab is currently engaged in

a variety of materials approaches to

achieve low shrinkage/low stress

photocurable resins and composites

while also developing a near-infrared-

based analytical technique60 for

simultaneous monitoring of conversion

and stress evolution under a wide range

of photocuring protocols. These results

will be the topic of a future report. ◗
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