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Microbial biofilms

Attachment Growth Detachment |

EPS: The house of cells

EPS are metabolic products, resulting from active
bacterial secretion, shedding of cell surface material.

EPS determine the immediate environment and life conditions
of biofilm cells:

* Filling and forming the space between the cells
affecting porosity, density, water content, charge,
hydrophobicity, sorption properties, and mechanical
stability

* Influencing mass transport and serving as carbon and
energy reserves during starvation

* Retarding penetration and sequester antimicrobial
agents




What are the forces which keep
the matrix together?
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Ashkelon Desalination Plant

Ashkelon
108,000,000 m3/year
Largest RO plant
in the world




Our research on seawater desalination
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Fouling in membrane processes

Microfiltration,
ultrafiltration

Reverse osmosis,
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« Adsorption of foulants to the membrane
surface and pore blockage
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Structural, viscoelastic properties and mass
changes in real-time using quartz crystal
microbalance with
dissipation technology (QCM-D)
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In the QCM-D, adsorbed mass
(ng/cm? sensitivity) is measured as
changes in oscillating frequency of
the quartz crystal (F), and the energy
dissipation (D), provides insights

Rigid Soft

Rigid
Soft/Viscoelastic

regarding viscoelastic and structural Dissipation energy loss

properties of adsorbed layers.

Case study I: The effect of alginate on
EPS adherence and viscoelasticity

e EPS extraction and characterization from a Pseudomonas aeruginosa
e Model strains for EPS “production”: Pseudomonas aeruginosa PAO1

and its isogenic mucoid mutant PAOmucA22, PDO300*

® EPS extracted from model strains
biofilms (grown in 100mL batch LB
culture for 36 hrs at 30°C on 10g of 0.5
mm glass beads)
® EPS concentration was 0.9 mg/l as
dissolved organic carbon
® EpS adherence characterization with
quartz crystal microbalance with dissipation
monitoring technology (QCM-D)
® Bacterial adhesion with parallel plate
flow chamber

1) Mathee K., et al. Microbiology 1999, 145, 1349-1357.
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EPS Characterization
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Polysaccharides?! and proteins? content in 0.9 mg/L EPS34 (as DOC) of
the wt and mucA P. aeruginosa strains

Polysaccharides/proteins ratios in wt and mucA strains were 3.1 +0.22
and 4.9 +0.48, respectively.

1) Dubois, M. et al.Anal. Chem. 1956, 28, 350-356; 2) Bradford, MAnal. Biochem. 1977, 72, 248-254; 3) Herzberg, M. et al.
Environ. Sci. Technol. 2009, 43, 4393-4398; 4) Herzberg , M. etEviron. Sci. Technol. 2009, 43, 7376-7383

EPS adherence in QCM-D — lonic strength effect
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Higher adsorption of EPS in 200mM NaCl compared to 70mM results in greater
decrease in the sensor frequency and higher increase in dissipation factor

A more efficient charge shielding of the EPS in a higher ionic strength

increases EPS adhere

nce.

Alginate in the EPS (mucA) induces EPS adherence




EPS adherence in QCM-D — Calcium effect
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e Higher adsorption of EPS in the presence of calcium than in NaCl only

e EPS adsorption results in almost no change in dissipation factor — probably no
change in viscoelasticity (dissipation due to adsorption not affected by

calcium)

Modeling the effect of ionic strength on thickness,

shear and viscosity

values of the adsorbed EPS layers with Voigt based model - NaCl
Elasticity Viscosity
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e lonic strength as well as presence of alginate are shown to increase the

adsorbed layer thickness

e Mutant strain with more alginate has lower EPS elasticity (shear modulus)

e Wild type has a higher protein fraction in EPS layer and EPS layer is more
elastic (may be due to additional positive charged amine functional groups

e lonic strength shows no effect on the EPS layer viscosity




10

Modeling the effect of calcium on thickness, shear and viscosity values

of the adsorbed EPS layers with Voigt based model — CaCl,
Elasticity Viscosity
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“0.5mM Ca” refers to system with 0.5mM Ca supplemented with NaCl to
final IS of 70 mM; “no Ca” refers to 70mM NaCl

Calcium is increasing only the thickness of the alginate rich EPS layer

Calcium has almost no effect on the elasticity of the EPS layers but
increase slightly EPS viscosity in both cases.

Alginate is slightly increasing the EPS layer viscosity regardless the
presence of calcium at this IS

Proposed Mechanism

Increased IS — greater layer thickness
Increased alginate presence — greater layer thickness
Presence of calcium — greater EPS adsorption

- Due to calcium complexation with carboxylic groups in alginate and
available surfaces

- Cross-linked “egg box” gel formation
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Characteristic section of a monomer sequence in bacterial alginate
(M: mannuronate residues, G: guluronate residues)

®— Calcium' .

1) Grant et al. FEBS letters (32) 1973, 195-198 ; 2) Lattner et al. Int. J. Biol. Macromolecules (33) 2003, 81-88

Parallel Plate Flow Cell

Flow cell: 47.5 long x12.7 wide x1.6 high
(Biosurface technologies — Bozeman,
Montana)

Flow rate: 2 ml/min, Pe=0.001
Shear stress on the surface: 6 sec?

Solution chemistry: 15, 150 mM NaCl
solution

Strains: Pseudomonas aeruginosa PAO1
and its isogenic mucoid mutant
PAOmucA22, PDO300
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EPS effect on bacterial deposition

777) wit

Transfer Rate Coefficient,

elncreased cell attachment with greater IS

eOver production of alginate reduced cell adherence — opposite of EPS
trends in QCM

o\Why?

EPS effect on bacterial deposition

e TEM scans of wt and mucA cells show a clear presence of
EPS. Suggests shielding of the mucA strain cells surface
features (ie membrane bound features and pili) with the EPS
matrix

e |t seems that the exposed free appendages (Flagella) of the
wt strain, enable better cell attachment to surfaces




Case Il: Operation of membrane bioreactor, EPS
viscol-elastic properties and membrane fouling
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Operational conditions of the HG-MBR

Parameter SRT=30 days SRT=10 days SRT=5 days SRT=3 days

Temperature 15.5~29.4C (mean| 22.2~28.9C 20.0~30.6C 25.5~29.4C
22.3C) (mean 26.3C) (mean 28.5C) (mean 28.0C)

Initial membrane permeability 631.1 465.5 449.8 527.7

(L/(m2.hr.bar)) at 20C

Initial membrane resistance fin 0.56x10%2 0.76x10'2 0.79x10'2 0.6710'2

Filtrate flux (L/(n?.hr)) 44.5 to 38.9 44.8 to 40.6 45.2 to 38.58 45.2t0 37.7

Aeration rate (i#ihr) 2.3 2.3 2.3 2.3

Hydraulic retention time (hours) 5.1~5.8 5.0~5.5 5.0~5.9 5.0~6.0

pH in the reactor 6.6~7.8 6.2~6.9 6.6~6.9 6.7~7.1

Dissolved oxygen, mg £ 0.31~6.5 0.7~5.6 0.25~3.66 2.4~6.2
(mean 2.6) (mean 2.8) (mean 0.89) (mean 4.3)

MLSS range (mg/L) 2440 to 4580 1000 to 3520 1225 to 2110 1170 to 1575
(mean 4055) (mean 2686) (mean 1678) (mean 1392)

AgWise carriers in the reactor 13.64 kg carriers in the reactor with a bulk fiimatio of 50%

Operating time (days) 34 26 16 9
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Trans-membrane pressure and permeability

600

0.8¢
0.7

0.5
0.4}
0.3}
0.2}
0.1}

0.6 4

T T T T T T T
—O— TMP, SRT30
—A— TMP, SRT10
—O— TMP, SRT5
—O—TMP, SRT3

AALEAR, '
® ««-t‘-ééé“««,‘. 1100 =

T T T T T T
—O— Perm. SRT30
—/A— Perm. SRT10
—O— Perm. SRT5
—0O— Perm, SRT3

d

1500 2

Transmembrane Pressure, Bar

Time, Days

EPS adherence analysis

10 mM 10 mM
EPS

NaCl

DDW

o

1
N

Frequency Shift, Hz
& A

!
0]

NaCl DDW

Dissipation Factor

10 mM 10 mM

pow NaCl gps NaCl ppyy
15
10}
05
0.0




15

EPS viscoelasticity
AD vs AF: 16- o
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Voigt Model:

Frequency Shift, Hz

SRT= 30 Days 10 Days "5 Days

Thickness, nm 2.8 2.4 3.5 2.6 2.2

Viscosity, kg-rit- s* 0.0018  0.0018C 0.0015 0.0 0.0011 0.

Shear modulus, Pa 2.1-°1045-16 |15-16 15-10|6.4-16 45-106

2.
1 0.00100012
26-10 3.2-16
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Case llI: Analysis, mechanisms, and applications of
graft copolymerization with (+) and (—) monomers.

Generation of free radical in solution by the redox
couple:

KoS0s + KyS05 —= 4K* + SO,

Potassium Potassium *
persulfate metabisulfite + 5042_ + 5,05

Bamford and K. Al-Lamee, Polymer (1994)

*Grafting occurs on the surface as well as in soluti on

Our approach:

[e]
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Objectives

1. Anti-fouling of PVDF UF membranes having increased wettability
with net zero surface-charge

2. Surface characterization, swelling, reduced adsorp tion of
extracellular polymeric substances (EPS) to the modifi ed surface
and eventually reduced membrane fouling
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Achieve high grafting yields of sulfo and ammonium_ !
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Hydrophilicity — by water drop
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concentrations used!!
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Graft Copolymerization On PVDF-coated surface
using SPM + MOETMA

Polyvinylidene fluoride - PVDFE
CH,—CF,
n

v’ Ultrafiltration membranes
v’ Hydrophobic polymer

1) Surface characterization of the grafted PVDF surface

2) Antibiofouling properties and involved mechanisms
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Characterizing swelling with QCM-D
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Characterizing swelling with
atomic force microscopy
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How swelling affects force interactions
with model foulant?
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Effect of surface modification on adhesion of EPS

Time, Minutes
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EPS fouling magnitude is much lower after modification !

ATR-FTIR spectrum of
fouled QCM-D sensors
with EPS
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Concluding Remarks

* We define how aquatic conditions as well as
polysaccharides content affect EPS visocoelastic and
adherence properties.

* We correlate between the operational conditions
of membrane bioreactors (MBRs), EPS produced
and their propensity to foul the UF membrane.

* We study the interactions between MBR EPS and
zwitterionic grafted polymer brushes, where we
elucidate the mechanisms involved in a drastic
reduced EPS adhesion.
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Background - Viscoelasticity of Biopolymer Layers

AX —»

T Ax :
y G=— = =tanf = y = measured sirain
v ¥
; J

® Viscoelastic materials possess complex shear modulus: G'= G' + iG",
which measures the viscous (G", loss modulus) and elastic (G', storage
modulus) moduli when exposed to an oscillatory shear strain of frequency
w

® Purely elastic materials (like a crystalline solid) G" =0
® Purely viscous fluid G'=0

® In more complex fluids such as polymers (and biofilms) G', G"#£0, due to
their viscoelastic properties

® Biofilms mechanical behavior has the characteristics of a viscoelastic
solid with a high storage modulus G' and a relatively small loss modulus G"
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