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Plankton impact ocean biogeochemistry 
primarily by accumulating elementsaccumulating elements during 

growth and releasing them during degradation 
(often in different chemical forms).

Therefore, measurements of plankton plankton 
elemental compositionelemental composition are needed to 
understand ocean biogeochemistry.
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Metal Compound Function
Mn O2 -evolving enzyme Oxidize H2 O to O2 during photosyn.

Superoxide dismutase Convert O2 ·- to H2 O2
Fe Cytochromes Electron transport in photosyn./respiration

Ferredoxin Electron transport in photosyn./N-fixation
Fe-S proteins Electron transport in photosyn./respiration
Nitrate reductase NO3

- assimilation
Chelatase Porphyrin and phycobiliprotein synthesis
Nitrogenase N fixation

Cu Plastocyanin Photosynthesis electron transport
Cytochrome c oxidase Mitochondrial electron transport

Zn Carbonic anhydrase Hydration and dehydration of CO2
Alkaline phosphatase Hydrolysis of phosphate esters
DNA/RNA polymerase   Nucleic acid replication/transcription

Co Vitamin B12 Carbon and H transfer reactions
Ni Urease Hydrolysis of urea
Mo Nitrogenase Nitrogen fixation

Nitrate reductase Nitrate reduction to ammonia

Metalloproteins in phytoplankton



Role of trace metals in C, N and P biogeochemistry

(Morel & Price 2003)



Iron limitation in the ocean

(Moore et al. 2002)
Equatorial Pacific:
Largest oceanic source of CO2 to the atmosphere

Southern Ocean:
Region of upwelling and bottom water formation
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The Iron Hypothesis

(Martin 1990)



CO2

Depends on Depends on 
Fe content of Fe content of 

cellscells

Chisholm (2000)

Fe in dust

Iron may prime the 
biological pump
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How much Fe do phytoplankton need?



Phytoplankton capable of ‘luxury’ 
iron uptake and storage

(Sunda and Huntsman 1995)

• E. huxleyii
• T. weissflogii
• T. pseudonana
• P. minimum

• Fe quotas 
span 2 orders 
of magnitude

3 mol:mol

300 mol:mol
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(Cullen & Sherrell 1999)

Bulk measurements of metal quotas
• Cells concentrated on filter membranes for 

analysis by AAS/ICP-MS

• Radiotracer incubations of natural samples or 
lab cultures followed by filtration and 
counting

however….
• Delicate cells may burst during filtration

• Cannot distinguish between similarly-sized 
cells and abiotic particles

• Cannot distinguish between cells of different 
taxonomy or trophic function



(Twining et al. 2008)

Limitations of bulk size-fractionation
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Synchrotron x-ray fluorescence microscopy

1.  Collection: trace 
metal ‘clean’ water 
collection with 
Teflon-lined bottles 2.  Mounting: samples preserved and 

centrifuged onto gold TEM grids.  
Grids rinsed with Milli-Q and dried in 
laminar flow hood

3.  Targeting: grids examined with 
light and epifluorescence microscopy.  
Kinematic stage used to map locations 
of cellular targets

4.  SXRF: target raster scanned with 
incident X rays.  Excited x-ray 
fluorescence spectra recorded at each 
pixel



Advanced Photon Source
Argonne National Laboratory

Synchrotron x-ray fluorescence microscopy
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Silicoflagellate (~20 m)

Element maps generated using pixel-by-pixel fitting

light P

S Fe

Ni Zn
Autotrophic picoplankton
(~1 m)

C calculated from P, S, or 
cell volume.



How can this approach be used to understand ocean 
biogeochemistry?

(Boyd et al. 2007)
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Southern Ocean Iron Experiment



Southern Ocean Iron Experiment (SOFeX)

Guiding questions:
What are the metal quotas of plankton in the 
Southern Ocean?

How do metal quotas respond to inputs of Fe?

Are there significant differences between taxa?

What do these data suggest about the 
biogeochemical fate of the bloom?



• Austral summer: Jan-Feb

• Fertilized two patches of water:
•North: high N, P; low Si
•South: high N, P, Si

• Plankton samples collected 
inside and outside each patch for 
x-ray fluorescence analysis

SOFeX cruise plan



Response of phytoplankton community

North South





Cellular response to iron fertilization
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Other elements also increased after fertilization

fertilized/unfertilized

P Mn Fe Ni Zn
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Element quotas varied between taxonomic groups

• P and Fe enriched in flagellated cells

• Ni and Zn enriched in diatoms

diatom/flagellates

P Mn Fe Ni Zn
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Out

In

Iron appeared to accumulate internally

(Twining et al., 2004)
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• Collected samples from surface mixed 
layer (20 m)

• Cells analyzed with SXRF for Si, P, S, 
Mn, Fe, Co, Ni, and Zn

• Quotas compared in different plankton 
taxa

• Fe and Si added to deckboard grow-out 
experiments

Equatorial Biocomplexity Cruise

110° W

140° W



Significant differences in metal 
stoichiometries of 4 taxa
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Pairwise group comparisons
Diatom/A Flag

Mn Fe Co Ni Zn
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• Diatoms enriched in Mn, Fe, Ni and Zn compared to non- 
diatoms

• Autotrophs enriched in Mn and Co, depleted in Ni, compared to 
heterotrophs

• Picoplankton enriched in Ni and depleted in Zn compared to 
autotrophic flagellates



EqPac diatoms are lightly silicified compared 
to Southern Ocean diatoms
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Metal quotas across the equator at 110ºW
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Nutrients across the equator at 110ºW

(Kaupp et al. 2010)

(Strutton et al. 2010)



Metal quotas along the equator between 
140ºW and 110ºW
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Nutrients along the equator: 140ºW to 110ºW

(Kaupp et al. 2010)

(Strutton et al. 2010)



Plankton may be responding to the passage of a 
tropical instability wave

(P. Strutton, unpublished)




Response of diatoms to Fe and Si additions 
in carboys

100 m

• 20-L shipboard carboy 
experiments

• Unamended control, 
+Fe, +Si treatments

• 96-hr grow out

• Small pennate diatoms 
analyzed with SXRF



Phytoplankton growth response to added Fe
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Response of cellular Fe quotas

•Fe quotas in controls 
constant over course 
of experiment

•22-fold increase in Fe 
quotas 48 h after Fe 
addition
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Localization of accumulated iron

Accumulated Fe 
was highly 
localized in 
storage bodies 
adjacent to the 
chloroplasts

light Si P FeChl

10 m

48 h

72 h

96 h

Max g/cm2

0.474

0.101

0.030

a
Ferritin in diatoms                 (Marchetti et al., 2009)
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Mesoscale eddies in the Sargasso Sea

(Twining et al. 2010)
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Synechococcus cells were isolated from each eddy

• Cells collected from surface mixed layer and deep 
chlorophyll maximum layer

• >20 cells from each eddy and depth analyzed with SXRF

Light                 P                       S                 Mn

Epi Fe                     Ni                   Zn

1 m

(Twining et al. 2010)
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(Twining et al. 2010)



Overall Conclusions
1. Single-cell analytical approaches can reveal important 

information about the biological status of resident cells and 
biogeochemical functioning of marine communities.

2. Element quotas respond to environmental gradients

3. Element quotas can vary between co-occurring taxonomic 
groups:

-Diatoms have low P, high Ni and Zn
-Autotrophs enriched in Mn
-Picoplankton/cyanobacteria enriched in Ni,  
depleted in Zn

4. There may be characteristic element stoichiometries for certain 
types of plankton communities.



AcknowledgementsAcknowledgements
•• Stephen Baines Stephen Baines –– Stony Brook UniversityStony Brook University
•• Mike Landry Mike Landry –– Scripps Institution of OceanographyScripps Institution of Oceanography
•• Stefan Vogt Stefan Vogt –– Advanced Photon SourceAdvanced Photon Source
•• Dave Nelson Dave Nelson –– Oregon State UniversityOregon State University
•• Pete Pete SedwickSedwick –– Old Dominion UniversityOld Dominion University

•• Department of Energy Department of Energy 
•• National Science FoundationNational Science Foundation

•• Yale Institute for Yale Institute for BiosphericBiospheric StudiesStudies


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Plankton impact ocean biogeochemistry primarily by accumulating elements during growth and releasing them during degradation (often in different chemical forms). 
	Slide Number 5
	Slide Number 6
	Metalloproteins in phytoplankton
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Minimum Fe quotas in cultured protists
	Phytoplankton capable of ‘luxury’ iron uptake and storage
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Southern Ocean Iron Experiment
	Southern Ocean Iron Experiment (SOFeX)
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Significant differences in metal stoichiometries of 4 taxa
	Pairwise group comparisons
	EqPac diatoms are lightly silicified compared to Southern Ocean diatoms
	Metal quotas across the equator at 110ºW
	Nutrients across the equator at 110ºW
	Metal quotas along the equator between 140ºW and 110ºW
	Nutrients along the equator: 140ºW to 110ºW
	Slide Number 41
	Slide Number 42
	Phytoplankton growth response to added Fe
	Response of cellular Fe quotas
	Localization of accumulated iron
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Cellular element quotas varied between eddies
	Overall Conclusions
	Acknowledgements

