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ABSTRACT. This paper deals with a strengthening of the Bishop-Phelps property for op-
erators that in the literature is called the Bishop-Phelps-Bollobás property. Let X be a Ba-
nach space and L a locally compact Hausdorff space. We prove that if T : X → C0(L)
is an Asplund operator and ‖T (x0)‖ u ‖T‖ for some ‖x0‖ = 1, then there is a norm at-
taining Asplund operator S : X → C0(L) and ‖u0‖ = 1 with ‖S(u0)‖ = ‖S‖ = ‖T‖
such that u0 u x0 and S u T . As particular cases we obtain: (A) if T is weakly com-
pact, then S can also be taken being weakly compact; (B) if X is Asplund (for instance,
X = c0), the pair (X,C0(L)) has the Bishop-Phelps-Bollobás property for all L; (C) if L
is scattered, the pair (X,C0(L)) has the Bishop-Phelps-Bollobás property for all Banach
spaces X .

1. Introduction

In this paper we are concerned with the study of simultaneously approximating both
operators and the points at which they almost attain their norms by norm attaining operators
and the points at which they attain their norms. Namely, we study what in recent literature
has been called the Bishop-Phelps-Bollobás property. Using standard notation that we fix
at the end of this introduction, this property is defined as:

DEFINITION 1.1 (Acosta, Aron, Garcı́a and Maestre, [1]). A pair of Banach spaces
(X,Y ) is said to have the Bishop-Phelps-Bollobás property (BPBP) if for any ε > 0 there
are η(ε) > 0 and β(ε) > 0 with lim

t→0
β(t) = 0, such that for all T ∈ SL(X,Y ), if x0 ∈ SX

is such that ‖T (x0)‖ > 1− η(ε), then there are u0 ∈ SX and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε) and ‖T − S‖ < ε.

The above BPBP was motivated by the following result of Bollobás:

THEOREM 1.2 (Bollobás, [5]). Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX∗ are such

that

|1− x∗(x0)| < ε2

2
,
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then there are u0 ∈ SX and y∗ ∈ SX∗ such that

y∗(u0) = 1, ‖x0 − u0‖ < ε+ ε2 and ‖x∗ − y∗‖ < ε.

Bollobás’ result is indeed an observation about the classical Bishop-Phelps’ theo-
rem, [4], that in the words of its author “sharpen Bishop-Phelps’ theorem and is applied to
some problems about the numerical range of operators.” Using definition 1.1, Bollobás’
theorem 1.2 can be rephrased by saying that for every Banach space X the pair (X,R) has
BPBP.

In [1], the authors described a number of cases of pairs (X,Y ) with BPBP. For in-
stance, they proved that if Y has property (β), see [18, Definition 1.2], then (X,Y ) has
BPBP for every Banach space X . Also, (`1, Y ) has BPBP for Y in a large class of Ba-
nach spaces that includes the finite dimensional Banach spaces, uniformly convex Banach
spaces, spaces L1(µ) for a σ-finite measure µ and spaces C(K). Although some partic-
ular results can be found in [1, Section 5] for pairs of the form (`∞n , Y ) (for instance, Y
uniformly convex), the authors of [1] comment that their methods do not work for pairs of
the form (c0, Y ). Our aim here is to devise a method to study the Bishop-Phelps-Bollobás
property that in particular addresses this question when Y = C0(L), L a locally compact
Hausdorff space.

The following describes the contents of this paper. After fixing some standard nota-
tion, we recall in section 2 the notions of Asplund space and Asplund operator. In this
section, we also prove a central technical result (lemma 2.3) that will be used to prove our
main result theorem 2.4. Theorem 2.4 establishes that if T : X → C0(L) is an Asplund
operator and ‖T (x0)‖ u ‖T‖ for some ‖x0‖ = 1, then there is a norm attaining Asplund
operator S : X → C0(L) and ‖u0‖ = 1 with ‖S(u0)‖ = ‖S‖ = ‖T‖ such that u0 u x0
and S u T .

Three consequences follow:
(A) If T is weakly compact, then S can also be taken being weakly compact (see

corollary 2.5).
(B) If X is Asplund, then the pair (X,C0(L)) has the BPBP for all L (see corol-

lary 2.6).
(C) If L is scattered, then the pair (X,C0(L)) has the BPBP for all X (see corol-

lary 2.7).
We note that in corollary 2.5 even the part of the density of norm attaining weakly com-

pact operators from X to C0(L) in the family of weakly compact operatorsW(X,C0(L))
seems to be new. Corollary 2.6 strengthens a result in [11] and corollary 2.7 can be alter-
natively proved using a result in [1].

Notation and terminology: All vector spaces in this paper are assumed to be real. By X
and Y we always denote Banach spaces. BX and SX are the closed unit ball and the unit
sphere of X , respectively. X∗ (resp. X∗∗) stands for the topological dual (resp. bidual)
of X . The weak topology is denoted w and w∗ is the weak∗ topology in the dual. L(X,Y )
denotes the spaces of bounded linear operators from X to Y endowed with its usual norm.

The letters K and L are reserved to denote compact and locally compact Hausdorff
spaces respectively. C(K) (resp. C0(L)) denotes the space of real valued continuous
functions (resp. continuous functions vanishing at infinity) on K (resp. on L) endowed
with the standard sup norm, that is simply denoted by ‖f‖ := sup{|f(s)| : s ∈ K}.
As usual, given s ∈ L we denote by δs : C0(L) → R the Dirac measure at s given by
δs(f) = f(s), f ∈ C0(L).
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2. Asplund spaces and Bishop-Phelps-Bollobás theorem

The Banach spaceX is called an Asplund space if, whenever f is a convex continuous
function defined on an open convex subset U of X , the set of all points of U where f is
Fréchet differentiable is a denseGδ-subset ofU . This definition is due to Asplund [3] under
the name strong differentiability space. Asplund spaces have been used profusely since
they were introduced. The versatility of this concept is in part explained by its multiple
characterizations via topology or measure theory, as for instance in the following:

THEOREM 2.1. Let X be a Banach space. Then the following conditions are equiva-
lent:

(i) X is an Asplund space;
(ii) every w∗-compact subset of (X∗, w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;
(iv) X∗ has the Radon-Nikodým property.

For the notion of Radon-Nikodým property we refer to [6, 8]. The equivalence (iii)
⇔ (iv) is due to Stegall [20], (i)⇔ (ii)⇒ (iii) can be found in the paper by Namioka and
Phelps [14] and, (iii)⇒ (ii) is due again to Stegall [21]. Recall that a subset C of (X∗, w∗)
is said to be fragmented by the norm if for each non-empty subset A of C and for each
ε > 0 there exists a non-empty w∗-open subset U of X∗ such that U ∩ A 6= ∅ and ‖·‖-
diam(U ∩ A) ≤ ε, [13]. We note that if C is w∗-compact convex, then C is fragmented
by the norm if, and only if, C has the Radon-Nikodým property, see [6, Theorem 4.2.13].

An operator T ∈ L(X,Y ) is said to be an Asplund operator if it factors through an
Asplund space, i.e., there are an Asplund space Z and operators T1 ∈ L(X,Z), T2 ∈
L(Z, Y ) such that T = T2 ◦ T1, see [10, 22]. Note that every weakly compact operator
T ∈ W(X,Y ) factors through a reflexive Banach space, see [7], and hence T is an Asplund
operator.

Lemma 2.3 isolates the technicalities that we need to prove our main result, theo-
rem 2.4. In the proof of the lemma, we use that Theorem 1.2 easily yields the following
result.

REMARK 2.2. Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX∗ are such that

|x∗(x0)| > 1− ε2

4
,

then there are u0 ∈ SX and y∗ ∈ SX∗ such that

|y∗(u0)| = 1, ‖x0 − u0‖ < ε and ‖x∗ − y∗‖ < ε.

Recall that a subset B ⊂ B∗Y is said to be 1-norming if

‖y‖ = sup
b∗∈B

|b∗(y)|,

for every y ∈ Y . Recall that if T ∈ L(X,Y ), then its adjoint T ∗ ∈ L(Y ∗, X∗) is also
w∗-to-w∗ continuous.

LEMMA 2.3. Let T : X → Y be an Asplund operator with ‖T‖ = 1, let 1
2 > ε > 0

and choose x0 ∈ SX such that

‖T (x0)‖ > 1− ε2

4
.

For any given 1-norming set B ⊂ BY ∗ if we write M := T ∗(B) then there are:
(a) a w∗-open set U ⊂ X∗ with U ∩M 6= ∅ and
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(b) points y∗ ∈ SX∗ and u0 ∈ SX with |y∗(u0)| = 1 such that

‖x0 − u0‖ < ε and ‖z∗ − y∗‖ < 3ε for every z∗ ∈ U ∩M.

PROOF. Observe first that if T is an Asplund operator, then its adjoint T ∗ sends the
unit ball of Y ∗ into a w∗-compact subset of (X∗, w∗) that is norm fragmented. Indeed,
if T = T2 ◦ T1 is a factorization through the Asplund space Z for T , then its adjoint T ∗

factors through Z∗

Y ∗
T∗

//

T∗
2 !!CCCCCCCCC X∗

Z∗

T∗
1

=={{{{{{{{{{

Since T ∗2 is w∗-w∗ continuous, T ∗2 (BY ∗) is a w∗-compact subset of Z∗, and we can
now appeal to Theorem 2.1 to conclude that T ∗2 (BY ∗) ⊂ (Z∗, w∗) is fragmented by the
norm of Z∗. On the other hand, T ∗1 : Z∗ → X∗ is norm-to-norm and w∗-w∗ continuous
and, therefore it sends the fragmented w∗-compact set T ∗2 (BY ∗) ⊂ (Z∗, w∗) onto the
w∗-compact set T ∗(BY ∗) ⊂ (X∗, w∗) that is fragmented by the norm of X∗, see [13,
Lemma 2.1], and our observation is proved. (Alternatively, the observation can be proved
using [22, Theorem 2.11] and [6, Theorem 4.2.13].)

Now we really start the proof of the lemma. Use that B ⊂ BY ∗ is 1-norming and pick
b∗0 ∈ B such that

|T ∗(b∗0)(x0)| = |b∗0(T (x0))| > 1− ε2

4
.

Defining U1 = {x∗ ∈ X∗ : |x∗(x0)| > 1− ε2

4 }, we have that

T ∗(b∗0) ∈ U1 ∩M ⊂ T ∗(BY ∗) ⊂ BX∗ .

Since T ∗(BY ∗) is fragmented and U1 ∩M is non-empty, there exists a w∗-open set U2 ⊂
X∗ such that (U1 ∩M) ∩ U2 6= ∅ and

(2.1) ‖·‖- diam
(
(U1 ∩M) ∩ U2

)
≤ ε.

Let U := U1 ∩ U2 and fix x∗0 ∈ U ∩M . We have

1 ≥ ‖x∗0‖ ≥ |x∗0(x0)| > 1− ε2

4
.

If we normalize we still have

(2.2) 1 ≥ |x
∗
0(x0)|
‖x∗0‖

≥ |x∗0(x0)| ≥ 1− ε2

4
.

Then by applying the Remark 2.2, we obtain y∗ ∈ SX∗ and u0 ∈ SX with |y∗(u0)| = 1
such that

(2.3) ‖x0 − u0‖ < ε and ‖ x∗0
‖x∗0‖

− y∗‖ < ε.
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Let z∗ ∈ U ∩M be an arbitrary element. Then,

‖z∗ − y∗‖ ≤ ‖z∗ − x∗0‖+ ‖x∗0 −
x∗0
‖x∗0‖

‖+ ‖ x∗0
‖x∗0‖

− y∗‖

(2.1),(2.3)
≤ ε+ ‖x∗0‖

∣∣∣∣1− 1

‖x∗0‖

∣∣∣∣ + ε
(2.2)
≤ 3ε,

and the proof is over. �

THEOREM 2.4. Let T : X → C0(L) be an Asplund operator with ‖T‖ = 1. Suppose
that 1

2 > ε > 0 and x0 ∈ SX are such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C0(L)) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖T − S‖ ≤ 3ε.

PROOF. The natural embedding ξ : L → C0(L)∗ given by ξ(s) := δs, for s ∈ L, is
continuous for the topology of L and the w∗-topology in C0(L)∗. Hence the composition
φ := T ∗ ◦ ξ : L→ X∗ is continuous for the w∗ topology in X∗.

Apply now Lemma 2.3 for Y := C0(L), B := {δs : s ∈ L} ⊂ BC0(L)∗ , our given
operator T, and ε. We produce the w∗-open set U and the functional y∗ ∈ SX∗ satisfying
properties (a) and (b) in the aforesaid lemma. Note that with our new notation we have
φ(L) = M . Since U∩M 6= ∅we can pick s0 ∈ L such that φ(s0) ∈ U . Thew∗-continuity
of φ ensures that the set W = {s ∈ L : φ(s) ∈ U} is an open neighborhood of s0. By
Urysohn’s lemma, [17, Lemma 2.12], we can find a continuous function f : L → [0, 1]
with compact support, satisfying:

(2.4) f(s0) = 1 and supp(f) ⊂W.

Define now the linear operator S : X → C0(L) by the formula

(2.5) S(x)(s) = f(s) · y∗(x) + (1− f(s)) · T (x)(s).

It is easily checked that S is well-defined and that ‖S‖ ≤ 1. On the other hand, 1 =
|y∗(u0)| = |S(u0)(s0)| ≤ ‖S(u0)‖ ≤ 1 and therefore S attains the norm at the point
u0 ∈ SX for which we had ‖u0 − x0‖ < ε.

Now, bearing in mind (2.4), (2.5), Lemma 2.3 and the definition of W we conclude
that

‖T − S‖ = sup
x∈BX

‖Tx− Sx‖ = sup
x∈BX

sup
s∈L

f(s)|T (x)(s)− y∗(x)|

= sup
x∈BX

sup
s∈W

f(s)|φ(s)(x)− y∗(x)| ≤ sup
s∈W

sup
x∈BX

|φ(s)(x)− y∗(x)|

= sup
s∈W
‖φ(s)− y∗‖ ≤ 3ε.

To finish we prove that S is also an Asplund operator. This is based on the fact that the
family of Asplund operators between Banach spaces is an operator ideal, see [22, Theorem
2.12]. Observe that S appears as the sum of a rank one operator and the operator x 7→
(1 − f)T (x); the latter is the composition of a bounded operator from C0(L) into itself
with T . Therefore S is an Asplund operator and the proof is over. �

Recall that an operator ideal I is a way of assigning to each pair of Banach spaces
(X,Y ) a linear subspace I(X,Y ) ⊂ L(X,Y ) that contains all finite rank operators from
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X to Y and satisfies the following property: T2◦T ◦T1 ∈ I(Z, V ) whenever T ∈ I(X,Y ),
T1 ∈ L(Z,X), and T2 ∈ L(Y, V ), see [9, 16].

If we denote by A the ideal of Asplund operators between Banach spaces, the above
theorem applies as well to any sub-ideal I ⊂ A.

COROLLARY 2.5. Let I ⊂ A be an operator ideal. Let T ∈ I(X,C0(L)) with
‖T‖ = 1, 1

2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ I(X,C0(L)) with ‖S‖ = 1 satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖T − S‖ ≤ 3ε.

We should stress that becauseW ⊂ A, see [7], the above corollary applies in particular
to the ideals of finite rank operators F , compact operatorsK, p-summing operators Πp and
of course to the weakly compact operatorsW themselves. Results in this vein can be found
in the literature for weakly compact operators but, with spaces of continuous functions as
domain spaces and only for the so-called Bishop-Phelps property: Schachermayer proved,
see [19, Theorem B], that any T ∈ W(C(K), X) can be approximated by norm attaining
operators. This result was generalized later for operators T ∈ W(C0(L), X), see [2]).
With spaces of continuous functions in the range, Johnson and Wolfe, see [11, Theorem
3], proved that any T ∈ K(X,C(K)) can be approximated by finite rank norm attaining
operators. Note then, that our corollary 2.5 adds several new versions of the vector-valued
Bishop-Phelps theorem. Moreover, these cases provide the Bollobás part of approximation
of points at which the norm is attained.

Standard ε − δ tricks suffice to prove that for a pair of Banach spaces (X,Y ) the
following are equivalent:

(i) (X,Y ) has BPBP according to definition 1.1;
(ii) there are functions η : (0,+∞) → (0, 1), β, γ : (0,+∞) → (0,+∞) with

lim
t→0

β(t) = lim
t→0

γ(t) = 0, such that given ε > 0, for all T ∈ SL(X,Y ), if x0 ∈
SX is such that ‖T (x0)‖ > 1 − η(ε), then there exist a point u0 ∈ SX and
S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε) and ‖T − S‖ < γ(ε).

Once again, in (ii) above we can always take β(t) = γ(t) = t, but of course changing
η if needed!. Consequently we arrive to the following straightforward consequence of
theorem 2.4:

COROLLARY 2.6. For any Asplund spaceX and any locally compact Hausdorff topo-
logical space L the pair (X,C0(L)) has the BPBP.

Note that this corollary extends and strengthens Theorem 2 in [11]; we stress also
that we can take as X any c0(Γ) (Γ arbitrary set), or more generally any C0(S) where
S is a scattered locally compact Hausdorff space (see, for instance, [15] for scattered or
dispersed spaces). Indeed for a locally compact space S, the space C0(S) is Asplund if,
and only if, S is scattered. This can be proved in the following way:

(1) It is known that for K compact, C(K) is Asplund if, and only if, K is scattered,
combine [15, Main Theorem] with theorem 2.1 or alternatively see [14, Theorem 18].

(2) It is easy to check that if S is locally compact, then S is scattered if, and only if,
its Alexandroff compactification S ∪ {∞} is scattered,
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(3) Use now that Asplundness is a three space property, see [14, Theorems 11,12 and
14], and conclude that C0(S) is Asplund if, and only, if C(S ∪ {∞}) is Asplund.

(4) Summarizing, C0(S) is Asplund if, and only if, S is scattered.

Note that whereas the hypothesis of X being Asplund in the above corollary is an
isomorphic property, for the range space we have to use the sup norm in C0(L). Indeed,
Lindenstrauss [12, Proposition 4] established that if (c0, ‖·‖) is a strictly convex renorming
of c0 then id : c0 → (c0, ‖·‖) cannot be approximated by norm attaining operators. Notice
also, that corollary 2.6 may fail when X is not Asplund: Schachermayer [19] gave an
example of an operator T ∈ L(L1[0, 1], C[0, 1]) that cannot be approximated by norm
attaining operators.

With our comments above together with theorem 2.4 we have:

COROLLARY 2.7. For any Banach space X and any scattered locally compact Haus-
dorff topological space L the pair (X,C0(L)) has the BPBP.

An alternative proof for this corollary can be obtained using the fact that for such an
L the space Y = C0(L) has property (β), see [18, Definition 1.2], and for spaces Y with
property (β), every pair (X,Y ) has BPBP, see [1, Theorem 2.2].

In a different line of ideas, and to finish the paper, we point out that Lindenstrauss
proved in [12, Theorem 1] that every operator T ∈ L(X,Y ) can be approximated by
operators S ∈ L(X,Y ) such that S∗∗ ∈ L(X∗∗, Y ∗∗) attains the norm on BX∗∗ . In
[1, Example 6.3] it is established that the counterpart of the above Lindenstrauss’ result
is not longer valid for the corresponding natural Bishop-Phelps-Bollobás with bi-adjoints
operators. The example again uses c0 as a domain space. Replacing Y ∗∗ by C(BY ∗ , w∗),
we state our last result.

COROLLARY 2.8. Let T : X → Y be an Asplund operator with ‖T‖ = 1, 1
2 > ε > 0

and x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

4
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C(BY ∗ )) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < ε and ‖i ◦ T − S‖ ≤ 3ε,

where i : Y ↪→ C(BY ∗) is the natural embedding.
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