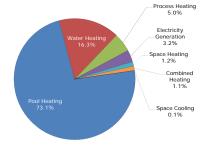
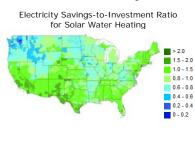

Solar Thermal Fact Sheet

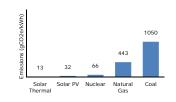


*No data for 1985

Thermal Collector Distribution


U.S. Solar Thermal Collector Shipments by End Use (2009)

Key References


U.S. Department of Energy National Renewable Energy Laboratory Federal Energy Management Program U.S. Energy Information Administration

Cost Efficiency

Greenhouse Emission Estimates

Lifecycle Estimates for Electricity Generators (2008)

Key Terms and Technologies

Solar Thermal Energy (STE)

Technology that uses design features to capture and transfer solar energy and use it for heating and cooling applications, often in buildings.

Solar Thermal Collectors

Low-Temperature Collectors Operate below 110°F

Medium-Temperature Collectors Usually operate between 140-180°F, but sometimes can operate as low as 110°F

High-Temperature Collectors Operate above 180°F

Solar Air Heat

Technology that uses glazed and unglazed collectors to transfer solar insolation into buildings to heat and/or condition air. Used in residential, commercial, and industrial buildings.

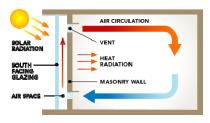
Solar-Driven Cooling

Technology that uses solar heat to pump cool air through a building by way of convective heat transfer.

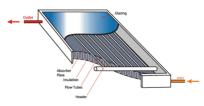
Process Heat

Technology that uses solar evaporation ponds and concentrated solar energy to provide integral heat storage for large, nonresidential buildings.

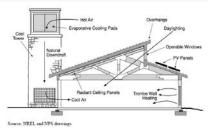
Seasonal Thermal Energy Storage


Process of storing solar thermal energy between seasons and in the short-term. Commonly includes stone, concrete, water as storage materials.

Passive vs. Active Solar


Passive solar design incorporates building features that absorb and distribute solar thermal energy without mechanical or electrical devices, which are used in active solar heating.

Technology Examples:


Trombe Wall (Passive)

Low-Temperature Collector (Active) Flat Plate Collector

Solar Chimney (Passive)

Sam Brinton, EGRS 352 Energy Technology and the Modern World April 15, 2014

Solar Thermal Fact Sheet References

Cost Efficiency Bredehoeft, G. (2012, September 27). Solar Energy technology cost and performance thermal collector shipments by type, price, data for distributed generation. (n.d.). and trade, 1974-2009. U.S. Energy National Renewable Energy Laboratory. Information Administration - Annual Energy Retrieved April 15, 2014, from 36(8), 2950-2963. Review 2011. Retrieved April 15, 2014, from http://www.nrel.gov/analysis/ http://www.eia.gov/totalenergy/data/annual tech_cost_data.html showtext.cfm?t=ptb1006 Key Terms and Technologies Solar Thermal Energy (STE) Passive vs. Active Solar Energy explained: Solar thermal Energy explained: Solar thermal collectors. (n.d.). U.S. Energy collectors. (n.d.). U.S. Energy Information Administration. Retrieved Information Administration. Retrieved April 15, 2014, from April 15, 2014, from http://www.eia.gov/energyexplained/ index.cfm?page=solar_thermal_collector S S Solar Thermal Collectors **Technology Examples:** Thermal Collector Distribution Bredehoeft, G. (2012, September 27). Solar thermal collector shipments by Trombe Wall (Passive) Bredehoeft, G. (2012, September 27). Solar http://meadowlarkbuilders.com/ type, price, and trade, 1974-2009. U.S. thermal collector shipments by market Energy Information Administration assets/trombe-wall-day.png sector, end Use, and type, 2001-2009. U.S. Annual Energy Review 2011. Retrieved Energy Information Administration - Annual April 15, 2014, from Energy Review 2011. Retrieved April 15, http://www.eia.gov/totalenergy/ 2014, from data/annual/showtext.cfm?t=ptb1006 http://www.eia.gov/totalenergy/data/

annual/showtext.cfm?t=ptb1007

Thermal Collector Production

Greenhouse Emission Estimates

Sovacool, B. K. (2008). Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy,

Solar Air Heat

Learning: Solar process heat. (n.d.). National Renewable Energy Laboratory. Retrieved April 15, 2014, from http://www.nrel.gov/learning/ re_solar_process.html

Solar-Driven Cooling

Learning: Solar process heat. (n.d.). National Renewable Energy Laboratory. Retrieved April 15, 2014, from http://www.nrel.gov/learning/ re_solar_process.html

Process Heat

Learning: Solar process heat. (n.d.). National Renewable Energy Laboratory. Retrieved April 15, 2014, from http://www.nrel.gov/learning/ re_solar_process.html

Seasonal Thermal Energy Storage

Hui, L., Edem, N. K., Nolwenn, L. P., & Lingai, L. (2011). Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Conversion and Management, 52(6), 2427-2436.

http://www.eia.gov/energyexplained/ index.cfm?page=solar_thermal_collector

Low-Temperature Collector (Active) http://renewables.morris.umn.edu/ images/solar/flatplate-diagram.png

Solar Chimney (Passive) http://upload.wikimedia.org/ wikipedia/commons/c/c5/ Zion_Visitors_Center_Cool_Tower.PNG