Carbon Capture & Sequestration

How it works

High Density, Compressed CO₂ Stream Transported
- Sequestration Process
 - Geological Storage
 - Water Storage
 - Mineral Storage
 - Industrial Uses
- CO₂ Safely Stored or Reused
- CO₂ Emissions Captured

Why CCS

• High Efficiency (80-95% captured)
• No major energy infrastructure changes because CCS allows for use of fossil fuels without having high GHG emissions
• 60% of CO₂ emissions are large stationary emissions sources (suitable for CCS)
• CCS is an integral part of any realistic low-cost scenario for the future
• Captured CO₂ can be used for enhanced oil recovery (EOR) and other industrial processes

Sequestration

• Geological Storage
 - Deep Saline Formations
 - Un-minable coal seams
 - Oil and Gas Reservoirs
• Ocean Storage
 - Lake Type
 - Sinking plume
 - Rising plume

• Mineral Storage
 - MgO → MgCO₃
 - CaO → CaCO₃
 - EOR, Beverages, Welding, Urea etc.
• Industrial Uses
 - Lake Type
 - Sinking plume
 - Rising plume

Costs

• Significantly more power needed for plant with CCS
• Large uncertainty in upfront capital costs
• No infrastructure set up for transportation and storage of CO₂
• USD 30-50 million will be needed to launch 20 full-scale CCS

The Future

• Without CCS the capital investment to create a similar low carbon future would be increased by 40%
• Costs are significantly decreased when built into a new IGCC/GTCC plant
• Policy is required to support the development of CCS
• IPCC predicts 9-12% by 2020 and 21-45% by 2050 of CO₂ emissions
• IEA predicts 17% by 2020
• Plenty of Storage opportunities
<table>
<thead>
<tr>
<th>How it works</th>
<th>Why CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>Numbers From:</td>
</tr>
<tr>
<td></td>
<td>60% of CO2 emissions CCS able</td>
</tr>
<tr>
<td>The Future</td>
<td>40% extra power for power generation equipped CCS to fuel CCS</td>
</tr>
<tr>
<td></td>
<td>80% capture efficiency</td>
</tr>
</tbody>
</table>