



GEOTHERMAL ELECTRICITY FACT SHEET

Kyle Brennan Lafayette College Engineering Prof. Nicodemus Last Updated: 15/04/2014


- Potential Installed Capacity represents reported expected project impacts on completion
- US installed geothermal power capacity increased by 147.05 MW (+5%) in 2013
- Approximately 5.15 to 5.523 GW of known geothermal resources are currently in development
- Around 2.511 to 2.606 GW of potential capacity additions (PCA) are currently under development
- In 2013, 125 developing geothermal projects were reported to the Geothermal Energy Association (GEA)

Key Terms:

- Conventional Hydrothermal the development of a geothermal resource where levels of geothermal reservoir temperature and reservoir flow capacity are naturally sufficient to produce electricity.
- **Binary** geothermal power conversion technology that operates in a closed-loop system and therefore maintains zero emissions. Highly efficient nationwide potential.
- Flash geothermal power conversion technology in which high-pressure and temperature geothermal fluids are segregated into steam and water in a separator. As a result, pressure decreases.
- Dry Steam geothermal power conversion technology in which steam is taken directly from a geothermal reservoir and used to run turbines and a generator.
- Enhanced Geothermal Systems (EGS) the development of a geothermal system where hydraulic fracturing of the system can allow the production at a commercial level. Nationwide potential with engineered reservoirs 6- to 8-km deep
- Potential Capacity Additions (PCA) the expected power plant's estimated installed capacity.
- **Resource Capacity** the megawatt (MW) value of the total recoverable energy of a the subsurface geothermal resource.
- **Direct Use** use of geothermal heat with first converting it to electricity. Highest potential located in western United States, Alaska and Hawaii.

- Levelized cost of the three geothermal processes is \$90.4/MWh
- Therefore, over its lifetime geothermal energy costs ~40% less per MWh than solar and only ~4% more per MWh than wind.

Benefits:

- Low operating & management costs
- Minimal emissions compared to its competitors (<30 g/kWh)
- High capacity factor (92%)
- Flexible & adaptive to the grid (can handle disturbances)
- Economically competitive over the its full lifecycle

Risks:

- Large upfront investment/drilling costs
- Land availability and leasing agreements
- Land Permitting difficulty can hinder projects
- Long developmental timeline
- Transmission capability (location of resource)

GEOTHERMAL ELECTRICITY BIBLIOGRAPHY

Thompson, Alison. North American Geothermal Update 2013.
Rep. Canadian Geothermal Energy Association and US
Geothermal Energy Association, n.d. Web. 14 Apr. 2014.
http://www.geothermal.org/Annual Meeting/PDFs/
North_America_Update.pdf

Matek, Benjamin. 2013 Annual US Geothermal Power Production and Development Report. Rep. Geothermal Energy Association, Apr. 2013. Web. 14 Apr. 2014.

http://geo-energy.org/pdf/reports/
2013AnnualUSGeothermalPowerProductionandDevelopmentR
eport_Final.pdf.

Matek, Benjamin, and Karl Gawell. Report on the State of Geothermal Energy in California. Rep. Geothermal Energy Association, Feb. 2014. Web. 14 Apr. 2014.

http://geo-energy.org/events/California%20Status%20Report %20February%202014%20Final.pdf.

Matek, Benjamin. 2013 Annual US Geothermal Power Production and Development Report. Rep. Geothermal Energy Association, Apr. 2013. Web. 14 Apr. 2014.

http://geo-energy.org/pdf/reports/
2013AnnualUSGeothermalPowerProductionandDevelopmentReport Final.pdf.

Electricity Generation from Geothermal Energy

Williams, Colin F., and Brenda S. Pierce. *The USGS National Geothermal Resource Assessment*. Rep. United States Geological Survey and US Department of the Interior, n.d. Web. 14 Apr. 2014. http://energy.usgs.gov/other/geothermal/

Boyd, Lauren. "Geothermal Energy: A Glance Back and a Leap Forward." *Energy.gov*. Office of Energy Efficiency & Renewable Energy, 23 Oct. 2013. Web. 14 Apr. 2014.

http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward

Matek, Benjamin, and Brian Schmidt. *The Values of Geothermal Energy*. Rep. Geothermal Energy Association and Geothermal Resources Council, Oct. 2013. Web. 14 Apr. 2014.

www.geothermal.org/PDFs/Values_of_Geothermal_Energy.pdf

Matek, Benjamin, and Karl Gawell. Report on the State of Geothermal Energy in California. Rep. Geothermal Energy Association, Feb. 2014. Web. 14 Apr. 2014.

http://geo-energy.org/events/California%20Status%20Report %20February%202014%20Final.pdf.

Matek, Benjamin. 2013 Annual US Geothermal Power Production and Development Report. Rep. Geothermal Energy Association, Apr. 2013. Web. 14 Apr. 2014. http://geo-energy.org/pdf/reports/
2013AnnualUSGeothermalPowerProductionandDevelop mentReport_Final.pdf.

Matek, Benjamin, and Brian Schmidt. *The Values of Geothermal Energy*. Rep. Geothermal Energy Association and Geothermal Resources Council, Oct. 2013. Web. 14 Apr. 2014.

www.geothermal.org/PDFs/ Values_of_Geothermal_Energy.pdf

"Geothermal Glossary." *Geothermal Technologies Office*. United States Department of Energy, 7 Oct. 2008.
Web. 14 Apr. 2014.

http://www1.eere.energy.gov/geothermal/glossary.html

"State Geological Surveys: Tapping Geothermal Energy in the 21st Century." *The Arizona Geological Survey*. The Department of Energy Geothermal Technologies Program, n.d. Web. 14 Apr. 2014.

http://www.azgs.az.gov/geothermal_ngds.shtml

Ziagos, John, Benjamin R. Phillips, Lauren Boyd, Allan Jelacic, Greg Stillman, and Eric Hass. *A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems*. Rep. Stanford University, 13 Feb. 2013. Web. 14 Apr. 2014.

https://www1.eere.energy.gov/geothermal/pdfs/stanford_egs_technical_roadmap2013.pdf.

"Power Plant Costs." *Geothermal Basics*. Geothermal Energy Association, n.d. Web. 14 Apr. 2014. http://www.geo-energy.org/geo-basics-plant-cost.aspx#powercost

Matek, Benjamin, and Karl Gawell. Report on the State of Geothermal Energy in California. Rep. Geothermal Energy Association, Feb. 2014. Web. 14 Apr. 2014. http://geo-energy.org/events/California%20Status%20Report%20February%202014%20Final.pdf.

Matek, Benjamin. 2013 Annual US Geothermal Power Production and Development Report. Rep. Geothermal Energy Association, Apr. 2013. Web. 14 Apr. 2014. http://geo-energy.org/pdf/reports/
2013AnnualUSGeothermalPowerProductionandDevelopmentReport Final.pdf.