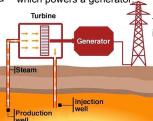
LAFAYETTE

COLLEGE U.S. Geothermal Electricity Fact Sheet

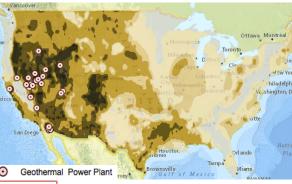
Jessica Ross Lafayette College Mechanical Engineering Department https://engineering.lafayette.edu/

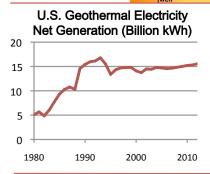
N/A

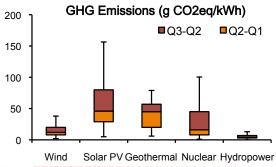

Main Types of Geothermal Systems

Water is heated by geothermal heat. Under pressure, This separates into steam and hot water through a steam separator. The steam powers a generator through a turbine, and the hot water is injected back into the reservoir.

Water is heated by geothermal heat. This turns purely into steam that goes to the turbine which powers a generator.

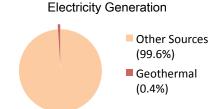

⊌Binary Power Plants:


Binary cycle power plants operate on water at lower temperatures. The heat from the hot water boils a working fluid with a low boiling point. The working fluid is vaporized in a heat exchanger and used to power a turbine. The water is then injected back into the ground to be reheated.

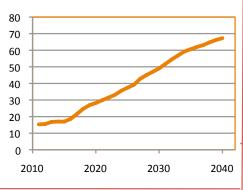

U.S. Geothermal Potential

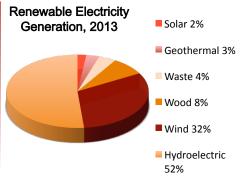
Most favorable

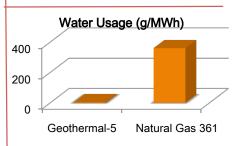
geothermal



potential


Geothermal Percent of Total


Least


favorable

Key Terms

Geothermal energy- Steam and hot water that is extracted from geothermal reservoirs. This can be used for geothermal heat pumps, water heating, and electricity generation.

Geothermal plant- A plant with the main driver being a steam turbine. The turbine can be driven either by steam from hot water, or by steam from natural sources such as geysers.

Geothermal heat pump- A heat pump that uses the constant temperature of the earth as the heat source in the winter, and a heat sink in the summer instead of the outside air temperature.

Enhanced Geothermal System (EGS)- An engineered reservoir created where there is geothermal energy but a lack of permeability. Fluid is injected into the earth's surface which causes pre-existing fractures to open again, creating permeability.

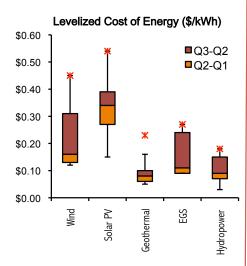
Closed-loop system-A geothermal system where gases that rise from the well are

injected back into the earth and are not

exposed to the atmosphere.

Issues & Environmental Concerns

- Many geothermal resources are often located in national parks and are protected by laws and regulations, making them non-usable.
- Enhanced Geothermal Systems can increase the risk of seismic activity. This can be avoided by placing plants far away from fault lines.
- Geothermal facilities require approximately 0.0627 mi² per MW of electricity produced.
- Geothermal power plants produce noise pollution during drilling and operation


Key Numbers

Current land space occupied by geothermal power plants: ~63.3 mi²

Land space required to produce all U.S. electricity with geothermal energy: ~9,873.1 mi² With wind energy: ~224,191m²

Total U.S. Capacity (2012) ~3187 MW

Geothermal Capacity Factor (2010) ~ 87.4%

U.S. Geothermal Energy Fact Sheet References

Jessica Ross Energy Technology

Main Types of Geothermal Systems

For more definitions, see

"Geothermal Electricity Production." NREL: Learning -. N.p., n.d. Web. 13 Apr. 2014.
"Geothermal Basics - Basics." Geothermal Basics - Basics. N.p., n.d. Web. 13 Apr. 2014.

Image from http://www.reuk.co.uk/Eden-Project-Geothermal-Power-Plant.htm

U.S. Geothermal Potential

Graph created using EIA U.S. Energy Mapping System

Note: Geothermal potential for the U.S. based on Levelized Cost of Electricity, with class 1 having the most favorable geothermal potential, and class 5 having the least favorable geothermal potential.

Data period: 2009

For more assumptions, see

"U.S. Energy Information Administration - EIA - Independent Statistics and Analysis." *U.S. Energy Mapping System (EIA). N.p., n.d. Web. 12 Apr. 2014.*

U.S. Geothermal Electricity Net Generation

Data from EIA
For assumptions and methods, see:
"International Energy Statistics." U.S. Energy
Information Administration (EIA). N.p., n.d. Web.
http://www.eia.gov/cfapps/ipdbproject/
iedindex3.cfm?
tid=2&pid=35&aid=12&cid=regions&syid=1980&e

GHG Emissions

Data from Moomaw, W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, A. Verbruggen, 2011 (2011): Annex II: Methodology, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

Geothermal Percent of U.S. Total Energy Production/Consumption

Source: Energy Information Administration, Monthly Energy Review (April 2013) "Geothermal." *Institute for Energy Research. N.p., n.d. Web. 12 Apr. 2014.*

U.S. Geothermal Electricity Net Generation Projection

yid=2012&unit=BKWH>.

Data from Table 16 from AEO2014 Early Release Overview Source: "AEO2014 Early Release Overview." U.S. Energy Information Administration. N.p., n.d. Web. 15 Apr. 2014. http://www.eia.gov/forecasts/aeo/er/tables_ref.cfm>.

Renewable Electricity Generation

Data from EIA Electricity Power Monthly (Released February 2014)
For more information, see
http://www.eia.gov/energy_in_brief/article/
renewable_electricity.cfm

Water Usage

Source: "Geothermal Energy Association Fact Sheets." *Geothermal Energy Association Fact Sheets. N.p., n.d. Web. 13 Apr. 2014.*This figure does not include geothermal fluid, because this is injected back into the reservoir and therefore is not withdrawn from freshwater sources.

Levelized Cost of Energy

Chart generated by "Transparent Cost Database." *Energy Information, Data, and Other Resources. N.p., n.d. Web. 14 Apr. 2014.*Note: Data from 2010-2012. Other renewable sources shown for reference.

Key Terms

Definitions from:

"U.S. Energy Information Administration - EIA - Independent Statistics and Analysis." *Glossary. N.p., n.d. Web. 13 Apr. 2014*

"Energy.gov." Enhanced Geothermal Systems. N.p., n.d. Web. 14 Apr. 2014. http://www.energy.gov/eere/geothermal-systems-0

"Geothermal Heat Pumps." Energy.gov. N.p., n.d. Web. 14 Apr. 2014. http://energy.gov/energysaver/articles/geothermal-heat-pumps>.

Issues and Environmental Concerns

For more information see Kagel, A. (2007) A Guide to Geothermal Energy and the Environment, Washington, DC: Geothermal Energy Association
Though this is from 2007- it is mostly discussing the

Though this is from 2007- it is mostly discussing the major issues associated with geothermal energy, which I doubt have changed drastically since.

Key Numbers

Calculation assuming Geothermal plant area per MW =0.0627 mi² per MW, and total U.S. electricity consumption to be 4.36*10⁹ MWh/year. Data from Rogers, Mike. "The Geysers: Renewable, Geothermal Energy." *Calpine. N.p., 18 Oct. 2012.*

Web. http://www.geysers.com/media/ Calpine-10-18-2012-Impact-Sonoma-

Presentation.PDF>.
Total US capacity calculation

2012 US Geothermal Power Production and Development Report

"Geothermal Plants." *Geothermal Plants. N.p., n.d.* Web. 14 Apr. 2014. http://geo-energy.org/ plants.aspx>

Capacity Factor estimated from Table 8 of NREL Cost and Performance Assumptions for Modeling Electricity Generation Technologies. Rep. no. SR-6A20-48595 http://www.nrel.gov/docs/fy11osti/48595.pdf