

# Internal Combustion Engine Cars

#### Classification

•Reciprocating, Spark Ignition, 4-Stroke •In-line or V-line Cylinder Arrangement •Water and Air Cooling Systems •0.75-37.5 kW Average Power Output

| Parts Common to both Petrol   |                |  |
|-------------------------------|----------------|--|
| and Diesel Engines            |                |  |
| Cylinder                      | Cylinder Head  |  |
| Piston                        | Piston rings   |  |
| Gudgeon pin                   | Connecting rod |  |
| Cranksaft                     | Crank          |  |
| Engine bearing                | g Crancase     |  |
| Flywheel                      | Governor       |  |
| Valves                        |                |  |
| Parts for petrol engines only |                |  |
| Spark plugs                   |                |  |
| Carburettor                   |                |  |
| Fuel pump                     |                |  |
| Parts for diesel Engine       |                |  |
| Fuel Pump                     |                |  |
| Average Power Output and      |                |  |
| ;                             | Speed          |  |
| Gas Engine                    | Diesel Engine  |  |
| 30 to 60 kW                   | 1 to 3000 kW   |  |
| 4500 rpm                      | 100 to 400 rpm |  |

#### **EPA GHG Compliance Standards**

- 1. National Emission Standard for
- Hazardous Air Pollutants 2. New Source Performance Standards
- 3. Standards of Performance for

Stationary Compression Ignition Internal

**Combustion Engine EPA Exhaust Emissions Compliance** Standards

- Tier 2 Exhaust Emissions Standards 1.
- Tier 3 2017 Implementation 2.
- **Environmental Impacts**
- Air Quality
- Water Quality - GHG Emissions
- Use of Finite Resources CFC Emissions
- -Noise Pollutio n

## Solid Waste Estimations

- Lead Emissions

| Year                 | Direct Waste                     | <b>Recycled Material</b>         |  |
|----------------------|----------------------------------|----------------------------------|--|
| 2013                 | 7.61E+08                         | 1.45E+10                         |  |
| 2012                 | 7.19E+08                         | 1.37E+10                         |  |
| 2011                 | 5.21E+08                         | 9.90E+09                         |  |
| 2010                 | 4.78E+08                         | 9.08E+09                         |  |
| Year                 | <b>Recovered Material</b>        | Shredded Material                |  |
| 2012                 |                                  |                                  |  |
| 2013                 | 1.08E+10                         | 2.20E+08                         |  |
| 2013<br>2012         | 1.08E+10<br>1.02E+10             | 2.20E+08<br>5.03E+02             |  |
| 2013<br>2012<br>2011 | 1.08E+10<br>1.02E+10<br>7.42E+09 | 2.20E+08<br>5.03E+02<br>5.03E+02 |  |

## **How It Works**



Intake Stroke – The fuel/air mixture is drawn in as the piston travels down

Compression Stroke - The piston travels back up the cylinder compressing the fuel/air mixture. A spark plug emits a spark to combust the fuel/air mixture.

Combustion Stroke - The piston is now forced down by the pressure wave of the combustion of the fuel air mixture

Exhaust Stroke- The piston travels back up expelling the exhaust gases through the exhaust valve. This process is then repeated.

Vehicle Miles Travelled in U.S. (2011-2014)











Projected Fuel Economy of ICE Cars in U.S.



Projected Conventional Car Sales in U.S.



2011 2013 2015 2017 2019 2021 2023 2025 Year **Recent Innovations** 

- Improved fuel efficiency
- 10% increase in patents received by auto companies
- Spending more than \$18 billion annually on research and development in the U.S.
- Incorporating Driver Assist Systems to improve safety - Ultrasonic Sensors, Radar Application, Lidar Detection
- Connected Cars with factory installed telematics - Vehicle-to-Vehicle, Vehicle-to-Infrastructure
  - Advanced Materials
    - Graphene, Aerogel. Smartphone Gass



# **Fuel Prices**



# **Internal Combustion Engine Cars**

#### Classification

Gupta, H. (2013). Introduction to Internal Combustion Engines. Fundaments of Internal Combustion Engines (ed., ). New Delhi: PHI Learning Private Limited.

#### Parts

Rajput, R. (2005). Introduction to Internal Combustion Engines. Internal Combustion Engines (). : Laxmi Publications.

#### **Power Output and Speed**

Ganesan, V. (2003). Introduction. *Internal Combustion Engines (ed., ). New Delhi: McGraw Hill Publishing Company.* 

#### **EPA GHG Compliance Standards**

Reciprocating internal combustion engines (rice). (2013, November 15). Retrieved from http:// www.epa.gov/region1/rice/

#### **EPA Exhaust Emissions Standards**

Light-duty vehicle, light-duty truck, and medium-duty passenger vehicle -- tier 2 exhaust emission standards . (2012, November 14). Retrieved from http:// www.epa.gov/otaq/standards/light-duty/ tier2stds.htm

#### **Environmental Impacts**

Rubin, E. (2001). *Introduction to engineering & the environment*. (1st ed., pp. 83-109). New York, NY: The McGraw Hill Companies.

#### **Solid Waste Predictions**

Rubin, E. (2001). *Introduction to engineering & the environment*. (1st ed., pp. 83-109). New York, NY: The McGraw Hill Companies.

#### How it Works

Maheta, N. (2014). *What is 2-stroke and 4-stroke engine?*. Retrieved from http://www.makingdifferent.com/2-stroke-engine-and-4-stroke-engine/

4-stroke engine basic operation. (2014). Retrieved from http:// www.gillinstruments.com/products/ digital\_ignition/introduction/ 6\_4stroke.asp

#### **Vehicle Miles Traveled**

U.S. Energy Information Administration, (2014). *Light-duty vehicle miles traveled by technology type*. Retrieved from website: www.eia.gov/forecasts/ aeo/er/supplement/suptab 60.xlsx

#### **GHG Emissions**

Estimated national emissions of carbon monoxide . (2013, January). Retrieved from http://www.rita.dot.gov/bts/sites/ rita.dot.gov.bts/files/publications/ national transportation statistics/ index.html

*Estimated national emissions of Sulfur Dioxide*. (2013, January). Retrieved from <u>http://www.rita.dot.gov/bts/sites/</u> <u>rita.dot.gov.bts/files/publications/</u> <u>national transportation statistics/</u> <u>index.html</u>

*Estimated national emissions of Nitrogen Oxides*. (2013, January). Retrieved from http://www.rita.dot.gov/bts/sites/ rita.dot.gov.bts/files/publications/ national\_transportation\_statistics/ index.html

#### **Projected Energy Consumption**

U.S. Energy Information Administration, (2014). *Light-duty vehicle energy consumption by technology type and fuel type*. Retrieved from website: www.eia.gov/ forecasts/aeo/er/supplement/suptab\_47.xlsx

#### **Cylinder Arrangements**

Ganesan, V. (2003). Introduction. Internal Combustion Engines (ed., ). New Delhi: McGraw Hill Publishing Company.

#### **Fuel Prices**

Gasoline and diesel fuel update. (2014, April 7). Retrieved from www.eia.gov/petroleum/ gasdiesel/

#### **Projected Fuel Economy**

Center for Transportation Analysis, (2014). *Fuel economy and carbon dioxide emissions standards, my 2012-2025*. Retrieved from website: cta.ornl.gov/ data/tedb32/Spreadsheets/Table4 19.xls

#### **Projected Conventional Car Sales**

U.S. Energy Information Administration, (2014). *Light-duty vehicle sales by technology type*. Retrieved from website: www.eia.gov/ forecasts/aeo/er/supplement/ suptab 57.xlsx

#### **Recent Innovations**

Alliance of Automobile Manufacturers Association. (2014). How automakers are driving innovation. *2014 Innovation Report*, 1-8.

#### **Energy Flow**

Ganesan, V. (2003). Introduction. Internal Combustion Engines (ed., ). New Delhi: McGraw Hill Publishing Company.

#### **Energy Losses**

Where the energy goes: Gasoline vehicles. (2014, April 11). Retrieved from www.fueleconomy.gov/feg/ atv.shtml