- definitions
 - what is it?
- theories
 - Why are we using it?
- Examples
 - How are we using it?
- Applications
 - How is it related to us?

What is it?

- A statistical test provides a mechanism for making quantitative decisions about a process or processes. The intent is to determine whether there is enough evidence to "reject" a conjecture or hypothesis about the process.
 - NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

- Statistical
- Hypothesis
- Testing

- statistical model & statistical inference
 - random variables X
 - distribution P_{Θ} (at least partly unknown)
 - a set of observations/measurement

- statistical model & statistical inference
 - "Statistical inference is concerned with methods of using this observational material to obtain information concerning the <u>distribution of X</u> or the parameter O with which it is labeled"
 - "A statistical inference is a <u>procedure</u> that produces a <u>probabilistic</u> statement about ... a statistic model"

- Sample vs. Population
- Example ("Lake Wobegon")
 - Someone claims kids at Lake Wobegon have above average intelligence
 - random samples of 9 kids there with test result of {116, 128, 125, 119, 89, 99, 105, 116, 118}
 - Wechsler scores (the test they take) are scaled to be normally distributed with a mean of 100 and standard deviation of 15.
 http://wwmga.eu@fcog/gap.loi/stale2in&r/hyp-test.pdf

- Null Hypothesis vs. Alternative Hypothesis
- Null hypothesis being "attacked"
- Usually more emphasis on Alternative Hypothesis
 - "Formulate the null hypothesis H_0 (commonly, that the observations are the result of pure chance) and the alternative hypothesis H_{α} (commonly, that the observations show a real effect combined with a component of chance variation)."

Weisstein, Eric W. "Hypothesis Testing." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypothesisTesting.html

- The idea is to refute H₀ if the sample is statistically far from the population/distribution, which is modeled only under the assumption that H₀ is true.
- we want to know the confidence level of refuting H_0
- Failed to reject the null hypothesis does not mean the null hypothesis is true

- one-sided vs. two-sided alternatives
- one-sided:
 - H_0 : u ≤ 100
 - − H_a: u > 100
- two-sided:
 - $H_0: u = 100$
 - H_a: u ≠ 100

Statistical Hypothesis Testing .0052. 0052 mirror -2 -1 2 0 Zstat 1 2.56 image of $z_{stat} = -2.56$ z-stat-two-sided.ai

- Test Statistic:
 - The test statistic is a statistical method based on the specific hypothesis test.
 - T = r(X) where X is the random sample from the distribution.
 - H_0 will be rejected if $T \in R$
- Critical Region:
 - the set $S_1 = \{x: r(x) \in R\}$

- Significance Level: α
 - "A value of α = 0.05 means that we inadvertently reject the null hypothesis 5% of the time when it is in fact true."
- Power: 1β
 - "the probability of accepting the null hypothesis when the alternative hypothesis is, in fact, true, is called β."
- often referred as Type 1 and Type 2 errors, respectively

- Critical Region: encompasses those values of the test statistic that lead to a rejection of the null hypothesis.
- P-value: the probability that a test statistic at least as significant as the one observed

z-stat-one-sided.ai

NIST/SEMATECH e-Handbook of Statistical Methods

NIST/SEMATECH e-Handbook of Statistical Methods

Why are we using it? What's an alternative?

- Quantitative understanding of data
- Exploratory Data Analysis (EDA)
 - The primary goal of EDA is to maximize the analyst's insight into a data set and into the underlying structure of a data set
- Quantitative (Classic) Techniques
 - Hypothesis tests
 - Interval estimation
 - An interval estimate quantifies ... uncertainty in the sample estimate by computing lower and upper values of an interval

How are we using it?

- Someone claims kids at Lake Wobegon have above average intelligence
- random samples of 9 kids there with test result of {116, 128, 125, 119, 89, 99, 105, 116, 118}
- Wechsler scores (the test they take) are scaled to be normally distributed with a mean of 100 and standard deviation of 15.
- mean of sample: 112.8

- mean(X) = 112.8
- u = 100
- test statistic: z-statistic
- $H_0: u = 100$
- H_α: u > 100

$$z_{stat} = \frac{\overline{x} - \mu_0}{SEM}$$

- SEM = $\sigma/sqrt(N) = 15/sqrt(9) = 5$
- $Z_{\text{stat}} = (112.8 100)/5 = 2.56$
- look up Z table \rightarrow p = 0.0052 = 0.52%

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

z-stat-one-sided.ai

- Define conventions:
 - When p value > .10 → the observed difference is <u>"not significant"</u>
 - When p value $\leq .10 \rightarrow$ the observed difference is <u>"marginally significant"</u>
 - When p value ≤ .05 → the observed difference is <u>"significant"</u>
 - When p value $\leq .01 \rightarrow$ the observed difference is <u>"highly significant"</u>

How is it related to us?

- Test Calibration
- Test Constraints
- QA audit
- Actually test some hypothesis...

How can we use it?

- Data Acquisition:
 - Input side:
 - A sensor input value
 - Output side:
 - VSCADA
 - raw sensor data is retrievable and transformable
- Post analysis:
 - apply suitable test statistic using favorable tools