
Software Maintainability
A Brief Overview & Application to the LFEV 2015

Adam I. Cornwell
Lafayette College

Department of Electrical & Computer Engineering

Easton, Pennsylvania

iscimena@lafayette.edu

Abstract — This paper gives a brief introduction on

what software maintainability is, the various methods

which have been devised to quantify and measure

software maintainability, its relevance to the ECE 492

Senior Design course, and some practical

implementation guidelines.

 Keywords — Software Maintainability; Halstead

Metrics; McCabe’s Cyclomatic complexity; radon

I. INTRODUCTION

Software Maintainability is an important

concept in the upkeep of long-term software

systems. According to the IEEE, software

maintainability is defined as “the ease with which

a software system or component can be modified

to correct faults, improve performance or other

attributes, or adapt to a changed environment

[1].” Software Maintainability can be measured

using various devised methods, although none

have been conclusively shown to work in a large

variety of software systems [6]. Software

Maintenance as an actual action is divided into

several different categories by the IEEE. To go

along with putting Maintenance into actual

practice, there exist maintenance and

configuration guidelines, two of which will be

discussed in this paper. Finally, the VSCADA

Software team of the LFEV 2015 project has

Python software written which was analyzed with

an automated Maintenance analysis program. The

results, along with the limitations, will be

mentioned and discussed here.

II. MEASUREMENT APPROACHES

Several different software maintainability

measurement approaches have been devised, but

many include a mixture of the following [2].

For “lexical level” approaches which base

complexity on program code, the following

measurands are typical: individual and average

lines of code; number of commented lines,

executable statements, blank lines, tokens, and

data declarations; source code readability, or the

ratio of LOC to commented LOC; Halstead

Metrics, including Halstead Length, Volume, and

Effort; McCabe’s Cyclomatic Complexity; the

control structure nesting level; and the number of

knots, or the number of times the control flow

crosses. The final measurand is not as useful with

object oriented programming but can still be of

some use.

“Psychological complexity” approaches measure

difficulty and are based on understandability and

the user [3]. The nature of the file and the

difficulty experienced by those working with the

file are what contribute to these kinds of

measures. Obviously because a user is required to

interact with the code and attempt to maintain it,

a downside is that the code must already be in

production and use for useful metrics to be

obtained. This is in contrast to the lexical level

algorithmic approaches which can run solely on

the code itself and so can be useful earlier in a

project’s cycle.

A final consideration which can be used to

measure maintainability is the existence and

understandability of software documentation.

This belongs more in the psychological

complexity category due to its dependence on the

user and their understanding.

III. HALSTEAD METRICS OVERVIEW

Halstead metrics are primarily used to estimate

the number of errors in a program [4]. The three

most important metrics measured are

Implementation Length, Volume, and Effort.

Volume and Effort have been correlated with

maintainability, although there is criticism due to

the small sample sizes [6]. Implementation length

is computed as follows.

 n1 = number of unique or distinct operators

appearing in a program.

 n2 = number of unique or distinct operands

 N1 = the total number of operators

 N2 = the total number of operands

 Program Length: N = N1 + N2

Once N has been computed, it is used to

calculate Volume, V = N * log2(n1 + n2), and

Effort as follows.

 Difficulty: D = (n1/2) * (N2/n2)

 Effort: E = D * V

IV. MCCABE’S CYCLOMATIC COMPLEXITY

OVERVIEW

McCabe’s Cyclomatic Complexity metric is used

to determine an upper bound on the model for

estimating the number of remaining defects [5].

Complexity is equated with the number of

decisions a program makes so that overly-

complex sections can be recoded. McCabe’s

metric provides the upper bound on module

complexity. The graph and formula below define

Cyclomatic Complexity.

 e = number of edges

 n = number of nodes

 p = number of modules

 Cyclomatic Complexity: v(G) = e – n + 2×p

V. VSCADA GENERATED MAINTAINABILITY

RESULTS

The Python package “radon” was used on the

VSCADA team’s Python modules to estimate

maintainability based on lexical approaches. A

maintainability “grade” of A-F was given to

modules based on Cyclomatic Complexity. The

results were close to expectations since there

were not a lot of control loops in the written code;

roughly 90% of the files received an A ranking,

close to the remaining 10% received a B, and

three files received a C. Another measurand

simply titled the “maintainability index” was also

calculated on the same modules. This time the

“grades” were given as A-C, with A representing

a score of 20-100, B representing 10-19, and C

representing 0-9. Surprisingly, all files received

an A despite full team knowledge of the lack of

built-in maintainability features. This represents

a good example of the limits of automated

maintainability metrics.

VI. MAINTENANCE METHODS

The three basic types of Software maintenance

methods as defined by the IEEE include

Corrective maintenance, which is done to fix

flaws in the original source code or

specifications; Adaptive maintenance, or

software maintenance activity intended to adjust

software to comply with changes in the

technological environment including version

upgrades, conversions, recompiles, and the re-

assembly and restructuring of code; and

Perfective maintenance, which is done for the

purpose of expanding and improving the

functionality of an existing software system [7].

Although these activities are what software

maintainability metrics are supposed to be used

for in determining the time taken while

performing each one, most studies done which

attempt to formulate a maintainability

measurement system fail to mention the actual

maintenance method which the system is

attempting to measure [6].

VII. PRACTICAL GUIDELINES

NASA’s Jet Propulsion Laboratory gives some

helpful practical guidelines which can help with

software maintainability which will be mentioned

here [8]. These include planning early and

accounting for future modifications; using a

modular design so that there is only one overall

task for each function; using an object-oriented

design if not already doing so; being sure to

follow uniform conventions, including naming

conventions, coding standards, comments, style,

and documentation standards; using common tool

sets throughout the project; and using

configuration management.

In addition to this, Microsoft’s MSDN Library

includes some helpful guidelines on project

configuration which should also help with

maintainability [9]. These include not

configuring everything, since if having

something configured incorrectly would have a

major system impact then it might be better to

leave it constant; having as few separate

configuration files as necessary in order to help

with complexity; giving default values to optional

configurable items and separating them from the

required items, which helps with complexity and

input error; and keeping thorough documentation

which covers all configurable setting

relationships, if any. The documentation should

be kept in the configuration resource itself if

possible, as this can help in the future when the

location of original separate documentation may

be lost or unknown.

VIII. CONCLUSION

In conclusion, this paper has covered what

Software Maintainability is; different ways it can

be measured; an overview of two of its important

measurement methods, Halstead Metrics and

McCabe’s Cyclomatic Complexity; VSCADA

maintainability metric results; an overview of the

actual Software Maintenance methods used; and

some practical guidelines which can be followed

to help keep software maintainable. It is hoped

that this information can be used by both current

and future VSCADA teams as part of the ongoing

LFEV senior project.

IX. REFERENCES

[1] IEEE Std 610.121990, IEEE Standard Glossary of Software

Engineering Terminology

[2] Rikard Land, “Measurements of Software Maintainability,” Uppsala

University, ARTES Graduate Student Conference, 2002.

[3] David L. Lanning and Taghi M. Khoshgoftaar, “Modeling the

Relationship Between-Source Code Complexity and Maintenance

Difficulty,” IEEE Computer Society Press, Volume 27 Issue 9, pp 35-

40, Sep. 1994.

[4] “Halstead's software metric interpreted.” (n.d.). Retrieved May 15,

2015, from

http://asetechs.com/NewSite2014/Products/Interpreting_Halstead_metri

cs.htm#BOTTOM

[5] “McCabe's Cyclomatic complexity metric interpreted.” (n.d.). Retrieved

May 15, 2015, from

http://asetechs.com/NewSite2014/Products/Interpreting_McCabe_metri

cs.htm

[6] Mehwish Riaz, Emilia Mendes, and Ewan Tempero , “A Systematic

Review of Software Maintainability Prediction and Metrics,” Empirical

Software Engineering and Measurement, ESEM 2009. 3rd International

Symposium on Empirical Software Engineering and Measurement, pp

367-377, Oct. 2009

[7] Evelyn J. Barry, Chris F. Kemerer, and Sandra A. Slaughter, “Toward a

Detailed Classification Scheme for Software Maintenance Activities,”

Proceedings of the 1999 Americas Conference, pp 726-728, 1999

[8] NASA JPL, “Software Design for Maintainability,” Johnson Space

Center

[9] Terry Young, “Manageability, Maintainability, and Supportability,”

MSDN Library, Dec. 2007, Retrieved May 15, 2015, from

https://msdn.microsoft.com/en-us/library/bb896744.aspx#anchor5

