Cell-Balancing & State of Charge Algorithms

Katherine Nellis Lafayette College Electrical & Computer Engineering

Introduction & Scope

LFEV 2105 Project: Tractive System Voltage

 \rightarrow Battery Packs

- high voltage system
- needs to be monitored and maintained
 - AMS, VSCADA

Cell-balancing Methods State of Charge Algorithm

Importance of Cell-balancing

Safety

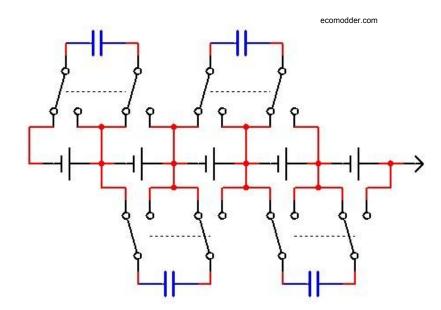
- LiFePO₄ cells
 Voltage maximum: 3.65 V
- overcharging can be dangerous

Maintainability

- Voltage Minimum: 2.5 V
- depleting a cell can degrade its life cycle

Active Methods

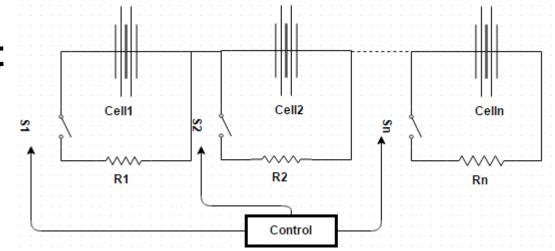
 \rightarrow removing excess energy from highly charged cell and distributing it to the other cells


Ex. Charge Shuttling

Advantages

• simple control

Disadvantages


• slow equalization rate

Passive Methods

 \rightarrow bypasses highly charged cell to allow the other cells in the system to "catch up"

Ex. Resistive Shunt

Importance of State of Charge

 \rightarrow level of available capacity of a battery \rightarrow indicated to user as range from 0 - 100%

Algorithms

- 1. Open Loop Coulomb Counting
- 2. Closed Loop Coulomb Counting

Open Loop Coulomb Counting

 $SOC_{c}(t) = SOC_{c}(0) - (1/Q) \int_{0}^{t} I(t) dt$

LFEV 2014's Algorithm \rightarrow y = Gx + B \rightarrow G = a*x*(SOC₁ - SOC₂) \rightarrow B = a*(SOC₁ - SOC₂)

Closed Loop Coulomb Counting

 \rightarrow includes feedback from system

Kalman Filter

$$X_t = K_t Z_t + (1 - K_t) X_{t-1}$$

• predicts the state of a signal

$$\rightarrow$$
 y = K*SOC₂ + (1 - K)*SOC₁

Conclusions

Improvements:

- active methods
- Kalman Filter application
 - \rightarrow unable to simulate

Questions?