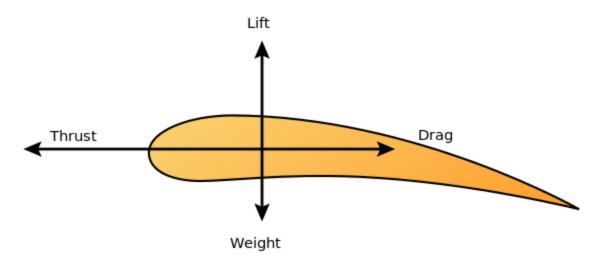


Table of Contents

- Purpose
- Factors
- Modeling
- Moving Forward


Purpose

- Reduce drag
 - Improve fuel consumption
- Reduce wind noise and reduce noise emission
 - Comfort Characteristics
- Prevent Lift and aerodynamic instability
- Create Downforce
 - Increase driving characteristics

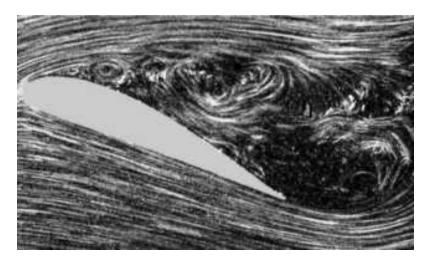
Aerodynamics

- Branch of fluid dynamics the deals with how air interacts with objects
- Early efforts based around flight
- Principles began to be applied to cars in 1920's

Fundamental Concepts of Aerodynamics

- Flow Classification
 - Subsonic (incompressible)
 - Transonic
 - Supersonic
 - Hypersonic
- Continuum assumption
 - Avoid molecular level collisions
 - Density and Flow Velocity anywhere in the flow
- Laws of Conservation
 - Mass
 - Momentum
 - Energy

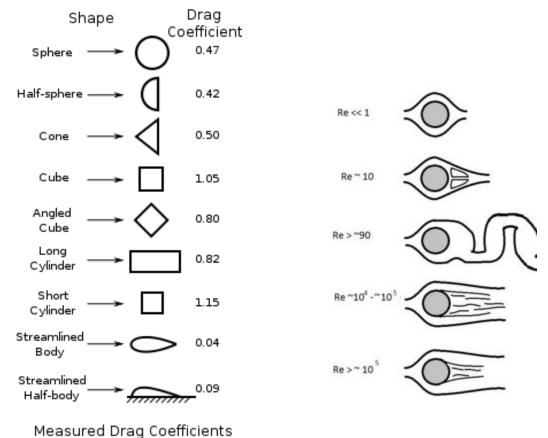
Drag


- Air Resistance
- Heavily dependent on velocity
- 3 Types
 - Parasitic
 - Wave
 - Lift-Induced

$$F_D = \frac{1}{2}\rho v^2 C_D A$$

Parasitic Drag

- 3 Types
 - o Form
 - Interference
 - Skin-Friction



http://upload.wikimedia.org/wikipedia/commons/6/67/Flow_separation.jpg

Drag Coefficient

Based off the shape of the object and Reynolds Number

Automobile Drag Coefficients

Average automobile is around: .3 - .35

SUV: .35-.45

Formula1: .7 - 1.1

Truck: .4

Drag Area

Drag Coefficient * Area

http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/Hummer_H2_black.JPG/1280px-Hummer_H2_black.JPG

http://upload.w ikimedia.org/w ikipedia/commons/thumb/e/e7/2 012_NAIAS_Red_Porsche_991_convertible_%28world_prem iere%29.jpg/1280px-2012_NAIAS_Red_Porsche_991_convertible_%28world_pre

miere%29.jpg

Reducing Automobile Drag Coefficients

- Remove
 - Roof rack
 - Mud Flaps
 - Rear Spoiler
 - Mirrors
 - Antenna

- Add
 - o Wheel Covers
 - Modified Front Bumper
 - Partial Grille Block
 - Undertray
 - Fenderskirts
 - Boattails & Kammbacks

Lift

Lift

The object will exert a downward force on the air. Which will cause the air to exert an upward force on the object

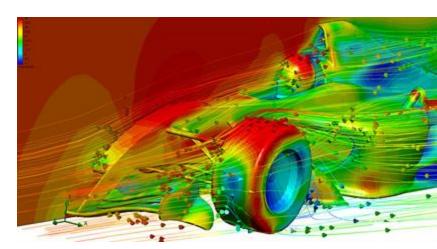
$$L = \frac{1}{2}\rho v^2 C_L A$$
Airfoil
Foil pushed up.

Downforce $D = \frac{1}{2} \rho v^2 (WS) HF \alpha$ Opposite of Lift

Two primary components

- Shape of Body
- Use of Airfoils

Better Handling Proportional to Drag



Modeling

Wind Tunnel Computer Modeling



 $\label{lem:http://www.mentor.com/company/news/f1-limitation-on-use-of-cfd-software-could-benefit-$

 $more/main Column Paragraphs/0/column 1 Column Paragraphs/0/content_files/file 0/Voxdale 1_smaller_420.jpg$

History

 $http://upload.wikimedia.org/wikipedia/commons/5/58/Aerodynamic_Drag_of_Car.jpg$

Comparison to Aircraft

- Shape of a road vehicle is much less streamlined compared to an aircraft.
- Operating speeds are lower
- Ground vehicle has fewer degrees of freedom than an aircraft, and its motion is less affected by aerodynamic forces.



Moving Forward

http://www.uvmaero.org/wp-content/uploads/2014/05/team-pic-2014.jpg

