Android App Development

Importance in the LFEV project and basics of writing apps

Rameel Sethi
Lafayette College

Department of Electrical and Computer Engineering

Easton, Pennsylvania
sethir@lafayette.edu

Abstract— This document provides a discussion of the
need for an Android version of a vehicle SCADA
(Supervisory Control and Data Acquisition) application
for the LFEV (Lafayette Formula Electric Vehicle)
project and justifies development for Android over iOS. A
brief overview of Android development is then provided
(assuming the reader has basic knowledge of the
programming language Java) and provides a step-by-step
of a rudimentary ‘Hello, world’ Android application.

Keywords— Android, LFEV, SCADA, Java, XML, activity,
layout

[. INTRODUCTION

The LFEV (Lafayette Formula Electric Vehicle) project is a
senior design project for Lafayette College’s Electrical and
Computer Engineering Department that has been running
since 2013. The objective is to design an electric vehicle to
compete in the Electric Vehicle category of the Formula
Hybrid student competition. Now in the project’s third year,
many of the on-vehicle systems are expected to be
competition-ready within a year or two. The vehicle software
must perform two critical functions: data acquisition from
hardware of all other subsystems, and control of the vehicle
system state. There is a requirement for several different
physical user interfaces to be present through which the
SCADA system can be accessed, one of them being an
Android cell phone application. This paper is intended to
serve as a starting point for future project team members to
consider the importance of developing an Android SCADA
app and provide them a short introduction to Android
development.

II. IMPORTANCE OF AN ANDROID APP FOR THE LFEV
PROJECT

It may seem that an Android SCADA app is redundant since
the necessary functions of data acquisition and system control
can be performed on a desktop or laptop computer with much
more processing power and screen space than an Android
device. However, there are two main reasons why it is
desirable to include an Android app as part of the vehicle
SCADA system.

The first and most important reason is that in the actual
Formula EV competition, the racecar technicians from the

Lafayette Formula EV team need to be monitoring data and
system state from the SCADA app while being as close to the
racetrack as possible to tend to the car should some unsafe
condition or other maintenance issue occur. Accomplishing
both these tasks would be much easier with a cell phone on
hand rather than carrying a desktop or laptop machine.

Another reason to warrant the development of an
Android app is to serve as a demo app to showcase the
functionality of the SCADA system to ECE department
visitors and prospective students. The ability to download the
app to their cell phones and see the SCADA functionality for
themselves would spark their interest in the LFEV project as
well as the ECE department, which would potentially result in
stronger, more dedicated future LFEV teams. Fig. 1 shows an
example of an Android vehicle SCADA app (called Prowl
Torque)[1].

GPS Position

Latitude

Fig. 1 Prowl Torque Android vehicle SCADA app

II. CHOOSING BETWEEN ANDROID AND iOS
DEVELOPMENT

The Android operating system faces iOS as its major
competitor. Mobile app developers are more often than not
faced with a tough choice: whether to develop their app for
Android or i0S (if not both). Table 1 shows a list of major
differences developers must consider when selecting a mobile
development platform. For LFEV purposes, ease of app store
publication is the deciding factor in choosing Android.

mailto:sethir@lafayette.edu

TABLE I
DIFFERENCES BETWEEN ANDROID AND iOS
DEVELOPMENT

Android

i0S

Java; less verbose
(compared to Objective-C)

Objective-C; extremely
verbose

Any dev OS fine

Need Mac OS X to dev

Publishing to Play Store
easy

Difficult process of publishing
to App Store

Free to develop

$99/yr to join iOS Developer
Program

Many different devices and
screen sizes need to be
catered to

Max of 3 devices (iPod,
iPhone, iPad) with known
screen sizes

Eclipse IDE hard-to-use
(Android Studio now
official IDE though buggy)

Xcode mature IDE

Clunky drag-and-drop Ul
editor; need to write tons of
XML

Easy-to-use Interface Builder

It is equally important for developers to consider their user
platform demographic, which varies by location. In North
America, i0S may be the platform of choice. However, in
other areas of the world, Android usage is either equal to or
far greater than that of iOS. Fig. 2 shows priority platform
usage across the world[2].

PRIORITY PLATFORM BY COUNTRY

iOS or Android dominate every market

M ios
M Android

— 34%
o e 35%
N Asia I 46%
I 28%
I
> ica I 29%
o North America 1 3"7%
; o I 35%
South America _— 2%
1o I 37%
Oceania e 379

ica NN 47 %
Africa 19%

Licensed under CC BY ND | Copyright VisionMobile
Source: Developer Q12014 | www.Dx ics.com/go

Crisiom
rmobile

Fig. 2 Prowl Torque Android vehicle SCADA app

III. THE ANDROID OPERATING SYSTEM

The Android operating system was first released in 2007
beginning with version 1.5 ‘Cupcake’; the current version is
version 5.1 ‘Lollipop’. It is based on the Linux kernel and
previously used ANT for its build system, but has recently
switched to Gradle.

Android apps are primarily written in Java, and since the
purpose of the rest of this paper is to give future teams a short
introduction to Android app development, we will assume
that the reader has a working knowledge of Java and
understands the terms class, subclass, instance, extending,
method and overriding in the context of the Java
programming language. User interface layouts are done in
XML (Extensible Markup Language); however, XML is easy
enough to understand without prior usage since it is a markup
language rather than a programming language. The Android
Studio IDE and SDK Tools are available as a free download
for Windows, Mac OS X and Linux at:

http://developer.android.com/sdk/index.html

A. Android - Activity

An Activity is an instance of the Activity class in the Android
SDK. The Activity manages user interaction with the screen
and all UI widgets present. It is the developer’s task to
provide the app’s functionality by extending the Activity
class. The resulting Activity subclass often has methods
overriding implementations of standard Activity class
methods managing user interaction, as well as user-defined
methods.

B. Android - Layout

A layout defines the set of user interface objects and their
position on the screen. It is composed of XML definitions
which create widgets on the screen, such as text fields,
buttons and sliders. The resulting widgets exist in a hierarchy
of View objects called the view hierarchy. XML tags are
similar to HTML tags which make up web pages, except that
whereas HTML has a fixed set of tags, XML allows
user-defined tags. At runtime, the XML tags are parsed and
widgets corresponding to each tag are populated on the
screen.

IV. A SIMPLE ANDROID APP - GEOQUIZ

We shall now dive headfirst into developing a simple ‘Hello,
world’ level Android app called GeoQuiz[3], which is shown
in Fig. 3. This app poses a statement ‘Constantinople is the
captial of Turkey’, with True and False buttons. Pressing True
leads to an ‘Incorrect’ message being displayed, while
pressing ‘False’ leads to a ‘Correct” message begin displayed
(of course, the above is debatable since Constantinople was
the old name of the capital of Turkey until it was renamed to
Istanbul).

http://developer.android.com/sdk/index.html

'=' GeoQuiz

Constantinople is the largest city in Turkey

True False

Fig. 3 GeoQuiz app
A. Layout Design
The first step is to write the XML corresponding to the above

layout. Fig. 4 shows the screen in Fig. 3 with the individual
UI widgets highlighted.

LinearLayout

/ (verfical)

il _ LinearLayout
(horizontal)

Buttons

Fig. 4 GeoQuiz layout with widgets highlighted

The layout in Fig. 4 translates to the XML below in
layout/activity _quiz.xml. Note that the root LinearLayout tag
is vertical in orientation (to make subsequent widgets be
placed below each other) but the LinearLayout tag enclosing
the two Button tags is horizontal (making the True/False
buttons side-by-side). Also note there is no tag corresponding
to the Correct/Incorrect message (called a toast) since this is
displayed by the methods for the True/False buttons by
accessing a separate Toast class.

<LinearLayout
xmins:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
android:orientation="vertical" >
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="24dp"
android:text="@string/question_text" />
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal" >
<Button
android:id="@+id/true_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/true_button" />
<Button
android:id="@+id/false_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/false_button" />
</LinearLayout>
</LinearLayout>

It is good practice to declare strings in a string resource file in
res/strings.xml and refer to them in the XML layout or Java
Activity subclass.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">GeoQuiz</string>

<string name="question_text">Constantinople is
the largest city in Turkey.</string>

<string name="true_button">True</string>

<string name="false_button">False</string>
<string name="correct_toast">Correct!</string>
<string name="incorrect_toast">Incorrect!</string>
<string name="menu_settings">Settings</string>

</resources>

A. The Quiz Activity - QuizActivity.java

Let us now extend the Activity class to provide the
functionality for the GeoQuiz app. We begin by creating two
Button objects to represent the two buttons. The onCreate()
method is present for all activities and serves to initialize the
activity state, possibly with data passed from other activities if
there are multiple in an app. It also inflates the XML into Ul
widgets.

public class QuizActivity extends Activity {
private Button mTrueButton;

private Button mFalseButton;

@Override
public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

setContentView(R.layout.activity_quiz);

}

We next fetch the True button widget from the layout and set
a listener to perform an action when the button is pressed. We
do so by overriding the listener’s onClick() method to make a
toast within the app saying ‘Incorrect’. This is done by
accessing the Toast object, changing its text to ‘Incorrect’ and
displaying the toast. A similar method override is done for the
False button, but with the toast displaying ‘Correct’ instead.

mTrueButton = (Button)findViewByld(R.id.true_button);

mTrueButton.setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View v) {
Toast.makeText(QuizActivity.this,
R.string.incorrect_toast,

Toast.LENGTH_SHORT).show();

V.CONCLUSIONS

In this paper we have looked at the reasons for developing
a mobile version of a SCADA application for the Lafayette
Formula EV project, the reasons for choosing Android over
iOS for the application platform, and a quick introduction to
Android app development. It is hoped that the 2016 and
beyond LFEV teams will read this paper and gain inspiration
to develop the Android SCADA app.

REFERENCES
[1] http://play.google.com/store/apps/details?id=org.prowl.torque
(2]
http://developereconomics.com/report/q1-2014-regional-outlook/
[3] B. Hardy and B. Phillips, Android Programming: The Big

Nerd Ranch Guide (2013)

http://play.google.com/store/apps/details?id=org.prowl.torque
http://developereconomics.com/report/q1-2014-regional-outlook/

