PDR Presentation Team Dyno(mite)

Acceptance Test Plan

- Sensors
 - 5 main metrics Torque, speed, input voltage, output current, and system temperature
 - Will be tested by comparing results to manufacturers parameters
- Test Stand
 - Mostly physical design, including standards and safety measures
- Interfaces
 - Interfaces with every system
 - Testable assuming the respective system in complete
- Power Supply
 - Switchable sources with insulated connectors
- Safety
 - Safety loop fallback
 - Emergency stop button

ATP - Sensors

- Torque
 - Will be logged from the dynamometer
 - The basis for generating a torque curve
- Speed
 - Can be found in the motor encoder or controller frequency
 - Sources will be compared for redundancy
- Motor Current
 - Function of the motor controller for all three phases
- Controller Input Voltage
 - Function of the motor controller
 - Can be used to find the input current
- System Temperature
 - Measured at various points, including inside the controller

ATP - Test Stand

- Includes physical design considerations
 - checked by redundant inspection:
- Cable management
 - Based on the standards of GPR005
- MCS cooling system
 - Must operate, but not necessarily well
- Physical design safety
 - Shielded connector covers
 - cable insulation

ATP - Interfaces

- Assumes that the other half of the interface is complete
- VSCADA
 - Data regarding the sensor systems must be delivered accurately
 - Verified by comparing to the locally logged data

GLV Power

- Sensor systems
- VSCADA interface system

TSV Load Controller

• Alternative power source

Safety Loop

 \circ $\,$ The GLV safety loop must be able to shut the motor down

ATP - Power Supply

- The power supply must allow the motor to spin
 Ourrent draw figures will be collected
- Power supply switching
 - The power supply must be swappable without contacting uninsulated wiring

ATP - Safety

- Operational safety concerns should stop the motor
 - Ground Fault
 - Overtemperature
 - Overspin
 - Overtorque
- Emergency stop must be hardwired into the test stand
 - Disconnects the power supply from the motor controller

Subsystem Hierarchy

Motor Controller System (MCS)

Requirements Matrix -Formula Hybrid Competition Rules

- List of all relevant rules and requirements that are set forth by the Formula Hybrid Competition
 - Motor Parameters
 - Motor Controllers
 - Sensors
 - Safety Concerns

Requirements Matrix - VSCADA

- Discusses the interactions between the Dyno system and the VSCADA team
 - Sensor integration
 - Motor Controller

Requirements Matrix - Motor, Controller, and Dynamometer Test Stand

- All requirements set forth in the Statement of Work in section R005 about the motor system
 - Equipment Necessary
 - Motor Parameters
 - Independent Safety Loop
 - Sensor Integration
 - Power Supply

Requirements Matrix -Safety Loop / TSV Load Controller

 Proper cables and cabling practices shall be used to ensure safety when the motor is operational and to power the system from the load controller

System State Analysis

- VSCADA will have primary state machine
- In general, the motor control system will have two main states
 - On
 - Off

System State Analysis - "On" State

- The system enters the "On" state when the driver turns the car on and the car is ready to drive
- Forward or reverse acceleration is possible in this state

System State Analysis - "Off" State

- Idle state
- Triggered by the driver turning the car off
- Can also be triggered by certain safety conditions
 - Overtemp
 - Overspin
 - Overtorque
 - Ground Fault
 - Emergency Stop Button

Cost Analysis

Item	Quantity	Price	Total
0 AWG (gage) wire - 50ft	1	\$75.00	\$75.00
Wire connector package	2	\$50.00	\$50.00
Temp sensor - DS18S20+CT ND		\$4.95	\$24.75
Strain gage sensor - 1033 1004-ND		\$60.00	\$60.00
optical encoder - 102-1923-ND	1	\$20.00	\$20.00
A2D converter	r 5	\$4.00	\$20.00
		Total:	\$249.75

Risk Assessment

- Biggest risk team member(s) falling behind schedule.
- Late delivery of dynamometer manual
- Late delivery of remaining sensors purchased with dynamometer
 - Strain gauge, optical encoder, special data cable for feedback information regarding valve in motor to control oil flow rate.
- Late deliverables from TSV group regarding battery pack could impact accuracy of models.
- Late deliverables from GLV regarding safety loop could cause delays in integrating our safety loop with theirs to make a comprehensive system.

Work Breakdown Schedule

- Weekly Milestones
- Student Tasks
- Measurable and specific

Week 2			
	Group	Finish PDR and Present	0
	Steve		
		Hierarchical Subsystem breakdown and semester task breakdown	0
	Alex	Complete ATP	0
	John	Risk Assessment and Cost Analysis	0
	Brendan	Requirement Analysis	0
	Nate	System State Diagram	0

