
LAFAYETTE

Formula Electric Vehicle 2015 Final Presentation

May 11, 2015

ECE 492: Senior Design II

Project Overview

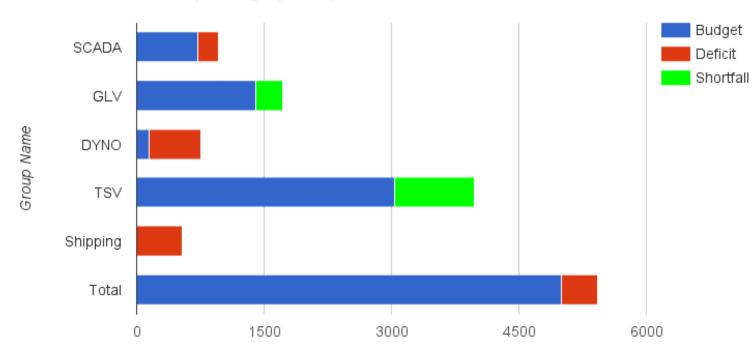
- 1. SAE Formula Hybrid Competition Vehicle
 - a. Electric Car
- 2. 4 year project senior spring semester
- 3. Spring 2013
 - a. Prototype 3-cell battery
- 4. Spring 2014
 - a. Full Spec 7-cell battery
 - b. Purchased Motor Controller and Dynamometer
- 5. Spring 2015
 - a. 4 competition ready accumulator packs
 - b. Fully integrated vehicle control and data acquisition
 - c. Low voltage electrical system interfacing with DYNO
 - d. Fully interfaced Dynamometer

Rules and Requirements

- 1. Maximum operating voltage of 300 volts
- 2. UL Recognized insulation
- 3. Accumulator Isolation Relays
- 4. High and Low voltage must be galvanically isolated
- 5. Accumulators must not be able to be touched
- Quick disconnect of the high voltage systems

LFEV Team Breakdown

Tractive System Voltage (TSV) High Voltage Battery Pack Design Dynamometer (DYNO) Huff Technologies Dynamometer Integration Vehicle Control Software (VSCADA) Vehicle Software Control System Grounded Low Voltage (GLV) Low Voltage Power Supply Vehicle Safety Loop System


> ELECTRICAL & COMPUTER ENGINEERING ELECTRICAL & COMPUTER ENGINEERING

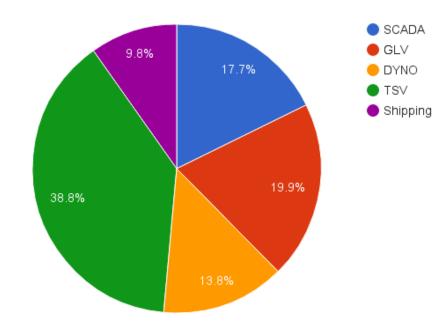
Team Members

DYNO	TSV	VSCADA	GLV	
Steve Mazich	William Stathis	Yiming Chen	Dan Zakzewski	
Brendan Malone	Jordan Blake	Bikram Shrestha	Zach Helwig	
Nate Hand	Hansen Liang	Rameel Sethi	Nick DiNino	
Alex Hytha	Katie Nellis	Adam Cornwell	Jordan Frank	
John Bloore		John Gehrig	Alo Posillico	
		Sam Cesario		

Project Budget

LFEV Spending By Group

Spending (Dollars)



Project Budget

Requested Budget

54.8%

Spending Breakdown

TSV Objectives

- Plug-and-forget charging
- Control and data acquisition
 - Overall Pack
 - Individual Cell
 - LCD/State of Charge
- Safe charging and discharging
 - Voltage
 - Temperature
 - Fusing
- Communicate with VSCADA
- Reduce Cost/Power consumption

TSV Requirements

- Galvanic Isolation from GLV
- Accumulator must be separated into segment maintenance disconnects
- High voltage indicator light
- Individual cell voltages and temperatures must be monitored for error
- High Voltage Disconnect port
- Shutdown circuit carries AIR current


Physical Pack Design

- Secure components against forces created in racing
- Increase accessibility for pack maintenance
- Design pack to be mountable to a vehicle
- Ensure galvanic isolation (10mm)
- Divide pack into 33lb sections (FSAE rule)

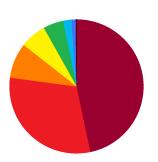
What Changed?

- Redesigned PacMan system
 - Replaced computer with embedded microcontroller
 - More efficient power consumption & cost
 - All new software
 - Allows for future integration with VSCADA
 - Unified data interface to I2C

What Changed? - Cont'd

- Changed fusing, relays, and connections
- Ambient temperature measurement
- Full system remote reset
- RS-485 replaced with CAN
- Smaller heat sinks more compact design

Power Consumption


- BoB 0.624W in idle
- AMS 0.46W for all of them
- Total Power Idle 0.884W
- ~66 Days before recharging needed
 - About double last year

Cost

- AMS \$38.68 each (down from \$63.36)
 Ordered 30 boards enough for future 4 packs
- PacMan \$61.31 each (down \$308+)
 - No separate Linux computer
- Pack Electrical
 - Only 1 AIR and 1 Charge Relay (down from 2 each)
 - Down \$94.35 (AIR) and \$54 (charge relay)
 - Other changes are minor

TSV Errata

- Correcting current measurement
- SOC algorithm correction
- LCD display utilization and low charge notification
- Plug-and-forget charging
- Anderson port can power low-current devices

TSV Items Descoped

- VSCADA fuse failure sensors
 - Not a necessary function

Pack interface to VSCADA
 TSI replaces this system

DYNO Objectives

- Control the motor and motor controller
- Use software to acquire data from motor and motor controller
- Learn motor and motor controller characteristics
- Integrate Dyno control and data acquisition with VSCADA
- Integrate with GLV safety loop

DYNO Requirements

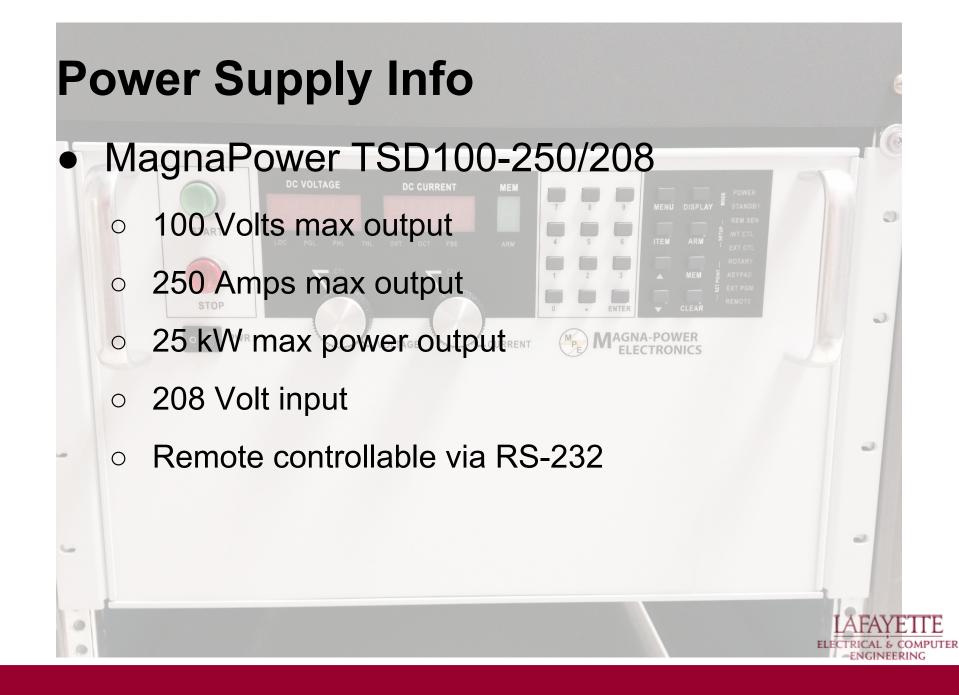
- Galvanic Isolation
- Color Coded Wiring
- 300 Volt maximum
- Conductive surfaces must be covered
- Send sensor data to VSCADA
- Integrate with GLV Safety Loop
- Integrate with TSI

Motor Info

- HPEVS AC50
 - Air Cooled
 - 6500 Max RPM
 - 71 HP, 120 lb-ft torque w/ 96V and 650A
 - 18 HP, 48 lb-ft torque w/ 89.6V and 200A

Motor Controller Info

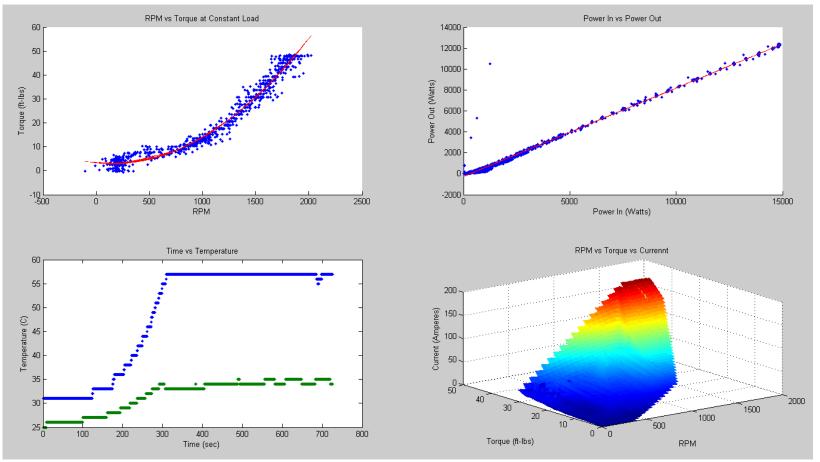
- Curtis 1238R-7601
 - Input Voltage: 72-96 VDC
 - Three Phase AC Sinusoidal PWM Output
 - Operating Internal Temp: -40°C to 95°C
 - Programmable Parameters (Max RPM, Throttle


Type, Current Limits, etc.)

Dyno Info

- Huff HTH-150
 - 11000+ RPM limit
 - 150+ ft.lb. Torque limit
 - 100+ HP limit
 - Weighs 600+ lbs with oil

Huff Box Info


- Measurement Computing USB-7204
- Vickers EEA-PAM-571-A-32
 - Dataforth SCM5B49 Isolated Voltage
 - Module
- Dataforth SCM5B45 Isolated Frequency

Dataforth SCM5B38 Isolated Strain Gage

Module

Torque Curve (and other graphs)

DYNO Errata

- Water Cooling System
- Twist lock connector wrong colors
- Integration with GLV safety loop
- Oil Temperature shutdown
- Integrate with TSI

VSCADA Objectives

Vehicle

Supervisory

Control

And

Data

- Collect, Graph, Store Data

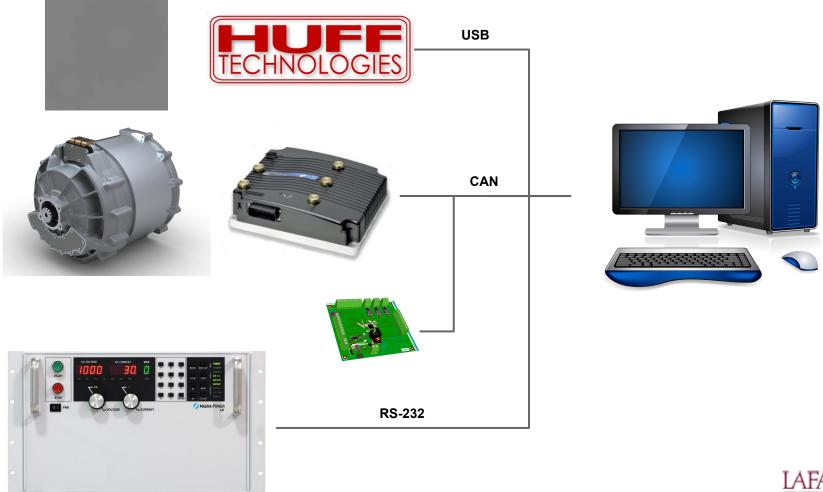
- Modularity of Current Sensors/Outputs
- Expandability for Future Sensors/Outputs
- Flexible, Robust Data Storage
- Vehicle Fault Logging
- Verbose Data Output

- Control Vehicle Subsystems

- Interface with all Present and Future Systems
- Make Vehicle Control Decisions
- Monitor Vehicle Safety
- Aid System Development
- System Debugging/Testing

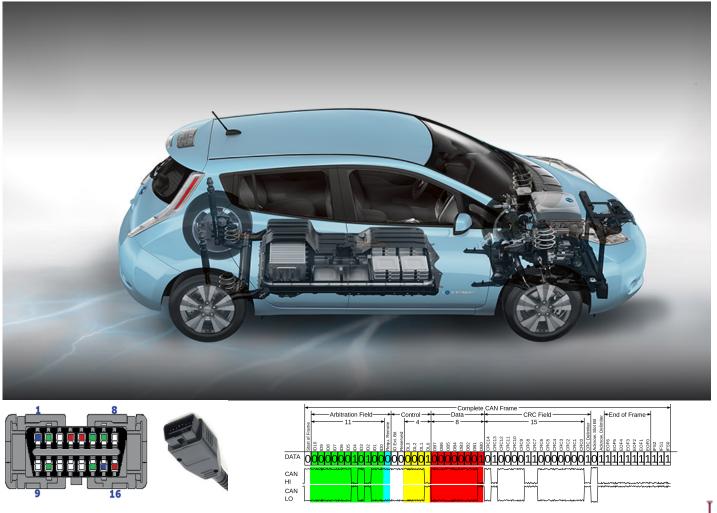
VSCADA Requirements

- Interface with all subsystems (GLV, TSV, Dyno)
 - \circ integrated with Dyno team
- On-car and off-car (remote) control
 - \circ is accessible locally
- Unified API; SDK; common data format and protocols
 - Installation and tool chain will be documented and provided; Use .csv format and CAN protocol



VSCADA Requirements

- Three modes: Demo, Drive, Maintenance
 maintenance mode is provided
- Measuring, calibrating, logging, plotting and storing data; high level control over the subsystems
 - Is able to talk with Dynamometer and motor controller; manual control to throttle
- Shall be configurable, maintainable, userfriendly
 - Configuration control over database; source code hosted on bitbucket and lfev website



System Overview

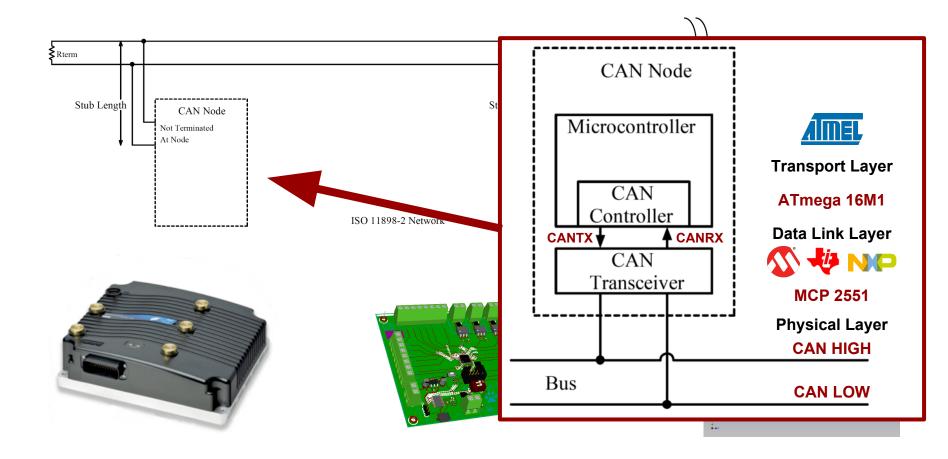
ELECTRICAL & COMPUTER ENGINEERING

CAN BUS

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

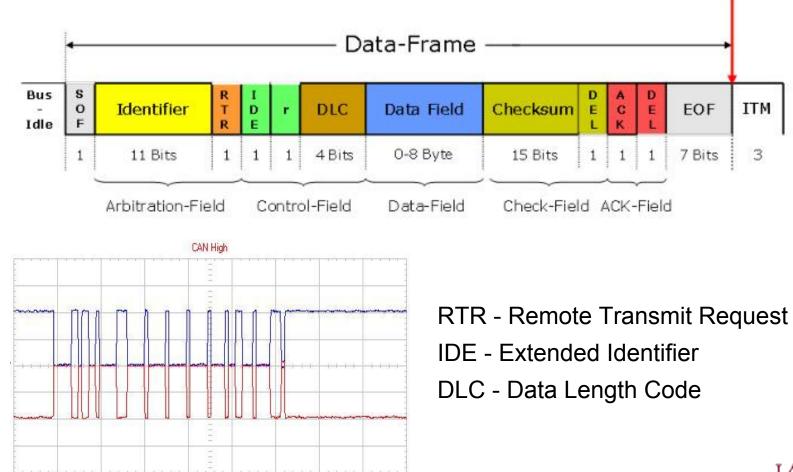
Network Model (7-Layer)

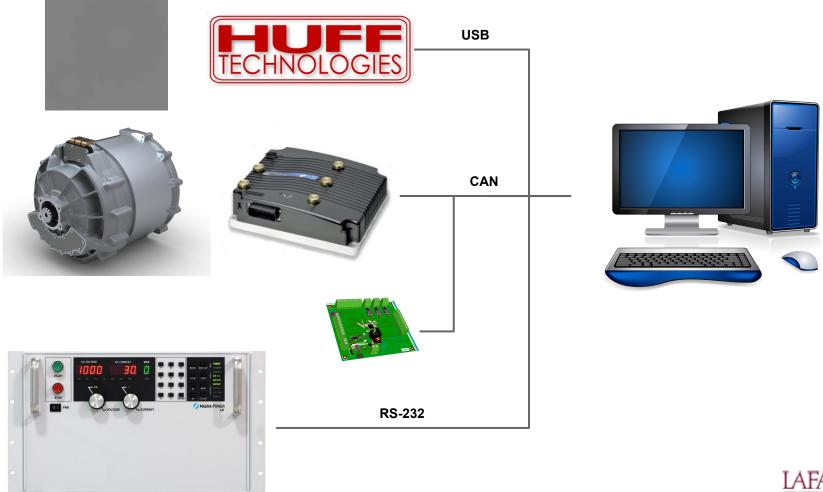
OSI (Open Source Interconnection) 7 Layer Model									
Layer	Application/Example	Central Device/ Protocols			DOD4 Model				
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat SMT	ions		Process				
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/AS EBDIC/TIF PICT	F/GIF	G					
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.		/NFS	A T					
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control F Message segmentation • Message acknowledgement • A Message traffic control • Session multiplexing C			Host to Host					
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) K E R I I N G Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting G	Routers		Y Can be used	Internet				
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	Land Based		Network				
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		Network				



International Organization for Standardization

ISO 7498-1


CAN Physical Layer


CAN Frames Overview

Generation of time stamp

System Overview

ELECTRICAL & COMPUTER ENGINEERING

Motor Controller Frame

			Gen	eric C/		essa	ges fron	n Contr	oller		
	ADDRESS ID										
	CAN	ADDRESS	0x601	Units	Scale		0	AN ADDR	ADDRESS 0x602		Scale
Byte0	Moto	or RPM hig	h byte	RPM	1		Stator Frequency high byte		Hz	1	
Byte1	Mot	or RPM lov	v byte				Stat	Stator Frequency low byte			
Byte2		Motor Tem	пр	DeerC	-40 to		Co	ntroller Fa	ult Primary		
Byte3	Co	ontroller Te	emp	Deg C	200		Controller Fault Secondary				
Byte4	RMS Current high byte		Amos	0.1		Throttle Input		%	1		
Byte5	RMS Current low byte		Amps 0.1			Brake Input			70	1	
Byte6	Capacitor Voltage high byte		Volte	Volts 0.1 System Bit		Bits*					
Byte7	Capacitor Voltage low byte		VOILS	0.1		Not used					
							* System bits configuration				
							Bit		Logic		
							0		Econo bit		
							1		Regen bit		
							2		Reverse bit		
							3		Brake Light Bit		

Huff Box Data Acquisition

http://www.mccdaq.com/PDFs/manuals/DAQFlex%20Software.pdf

import daqflex

```
def _send_cmd(dev, cmd, regex):
    try:
        resp = dev.send_message(cmd)
        m = re.findall(regex, resp)
        if m:
            return m
        except:
```

```
print('ERR: Message "' + cmd + '" not recognized!')
return None
```

```
def get_cal_date(self):
```

```
year = int(resp[0][0])
    month = int(resp[0][1])
    day = int(resp[0][2])
    hour = int(resp[0][3])
    minute = int(resp[0][4])
    second = int(resp[0][5])
    date = datetime.datetime(
        year, month, day, hour, minute, second)
```

return date

https://github.com/torfbolt/PyDAQFlex

DAQFlex SCPI Commands

ΑΙ

Gets the analog input properties of a device.

Properties

CJC, CHANNELS, CHMODES, FACCAL, INPUTS, MAXCOUNT, MAXRATE, RANGES, SELFCAL, SENSORS, SENSORCONFIG, TCTYPES

CJC

• Get the CJC channel number associated with an analog input channel.

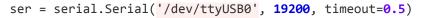
Message "@AI{ch}:CJC"

Response "AI{*ch*}:CJC=*implementation*>*value*"

ch Channel number.

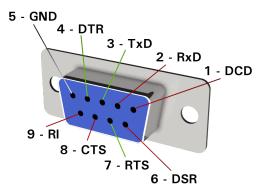
implementation FIXED%, PROG% (programmable), HWSEL% (hardware selectable), or not specified if value is NOT_SUPPORTED

value Channel number for the CJC associated with the specified channel, or returns NOT_SUPPORTED if the device doesn't support CJCs or the value of {ch} is not valid for the device.


Example "AI{0}:CJC=FIXED%0"

Power Supply Control


```
def _send_cmd(cmd, read=True):
```


Private Method: Send SCPI commad cmd: string containing SCPI command returns: response message ''' ser.flushInput() ser.write(cmd.encode('ascii') + b'\r\n') time.sleep(.05) if(read): resp = ser.read() while ser.inWaiting(): resp+= ser.read() return resp else:

return None

```
def get_voltage():
```

Get PSU Voltage
returns: floating point voltage value
'''
cmd = "MEAS:VOLT?"
resp = _send_cmd(cmd)
return float(resp)

Power Supply SCPI Commands

5.1.7.3. OUTP:START

Description

This command closes the power supply's input contactor and initiates either normal or auto sequence mode. Auto sequence mode will be initiated if the **ARM** option is enabled. Normal mode energizes the power supply with the current parameters for voltage set point, current set point, over voltage trip, and over current trip. Auto sequence mode will sequentially step through memory locations until the stop is commanded, **OUTP:STOP**, or a terminating condition is reached (see **PER**, **OUTP:STOP**).

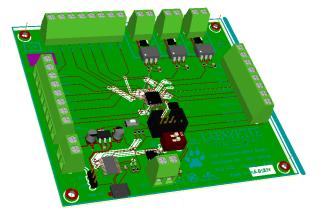
Command Syntax OUTP:START

Examples OUTP:START OUTPUT:START

CAN Communication Board (JGB)

Purpose

- Interface SCADA with all other systems


Capabilities

ATmega 16M1 Automotive AVR

- Supports CAN 2.0 A/B
- Support LIN

Capabilities

- Analog to Digital Conversion
- Digital to Analog Conversion
- Pulse Width Modulation
- Isolated Relays
- Digital Inputs
- Digital Outputs
- RS-232 Debugging/Configuration

Program Structure (1/2)

GlobalParameters

_time

_motorRPM _motorTemp

- _controllerTemp
- _rmsCurrent
- _capVoltage
- _motorThrottle
- _psu_voltage
- _psu_current
- _strain_guage
- _tachometer
- _dyno_power
- _throttle_value
- _load_value slopeTorque = 0.366
- $_offsetTorque = -641.906$
- _onsetTorque = -041.8 slopeRPM = -4.499
- _offsetRPM = 9402.315

_HuffBox(*HuffBox*) _psu_control (*PowerSupplyControl*)

Window

-spinBoxPSUVoltageChanged(int) -spinBoxPSUCurrenteChanged (int) -initPSUButtons() -initGraph() -updateGraph() -actionSaveTriggered() -guiUpdate() -buttonEmergencyClicked() -buttonPauseDataClicked() -buttonPSUOnClicked() -buttonPSUOffClicked()

GUIUpdateThread

-run()

CANMonitorThread

can_dev (CANDataHandler)

-run()

CAN Frame Descriptor

id (*int*) name (*str*) offset (*int*) length (*int*) single-bit (*bool*) bit (*int*)

Program Structure (2/2)

PowerSupplyControl

get_voltage() get_current() get_state() set_voltage() set_current() set_state() turn_on() turn_off()

HuffBox

dev (DataDevice)

-set_throttle (int) -set_load_value (int) -get_strain_guage () -get_tachometer ()

DataDevice

device (_DeviceCmd)
anaolog_in (_AnalogInCmd)
analog_out (_AnalogOutCmd)

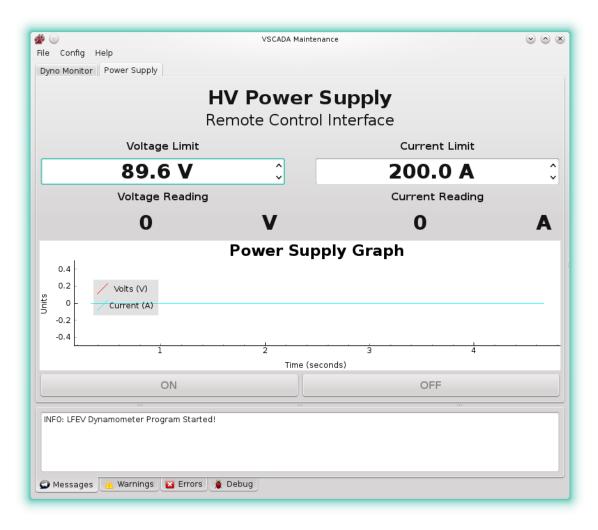
CANDataHandler

can_handler (SocketCANHandler)

request_data (*int*) recv_data_frame (*int, frame*) recv_frame () frame_available ()

SocketCANHandler

build_frame (*int, bool, list*) send_frame (*frame*) send_rtr (*int*) send_payload (*list*) recv_frame () recv_frame_blk ()



GUI Data Acquisition

💣 💿 VSCADA Maintenance 🎯 File Config Help					0 8
Dyno Monitor Power Supply					
Throttle		•	Solenoid		
Torque	Power	Speed (D)		Speed (MC)	
	իր հր	· · · · · ·	rpm		rpm
Current	Voltage	Temp (MC)		Temp (M)	
			°C		°C
Dyno Graph					
Speed (rpm x100)	1			4	
Time (seconds)					
PAUSI		CLEAR DATA			
EMERGENCY HALT					
INFO: LFEV Dynamometer Program Started!					
🗭 Messages 🔺 Warnings 🔯 Errors 🗋 Debug					

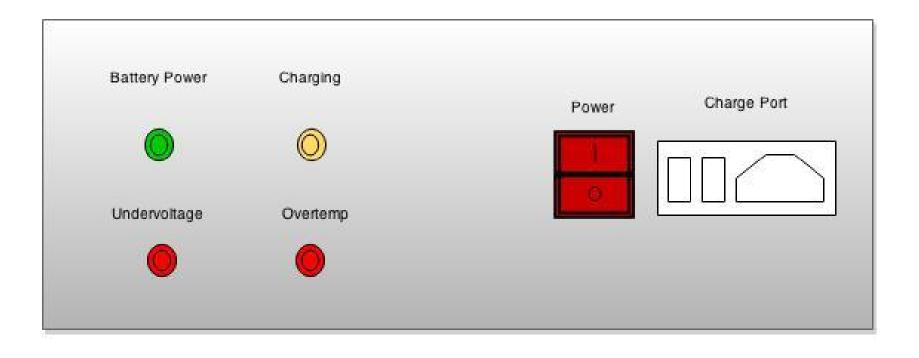
ELECTRICAL & COMPUTER ENGINEERING

GUI Power Supply Control

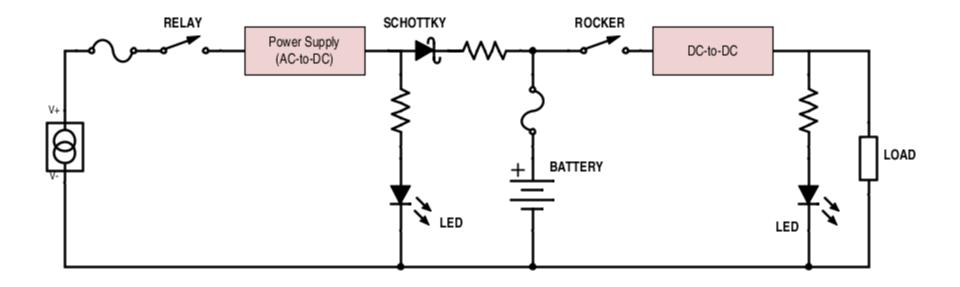
ELECTRICAL & COMPUTER ENGINEERING

GLV Objectives

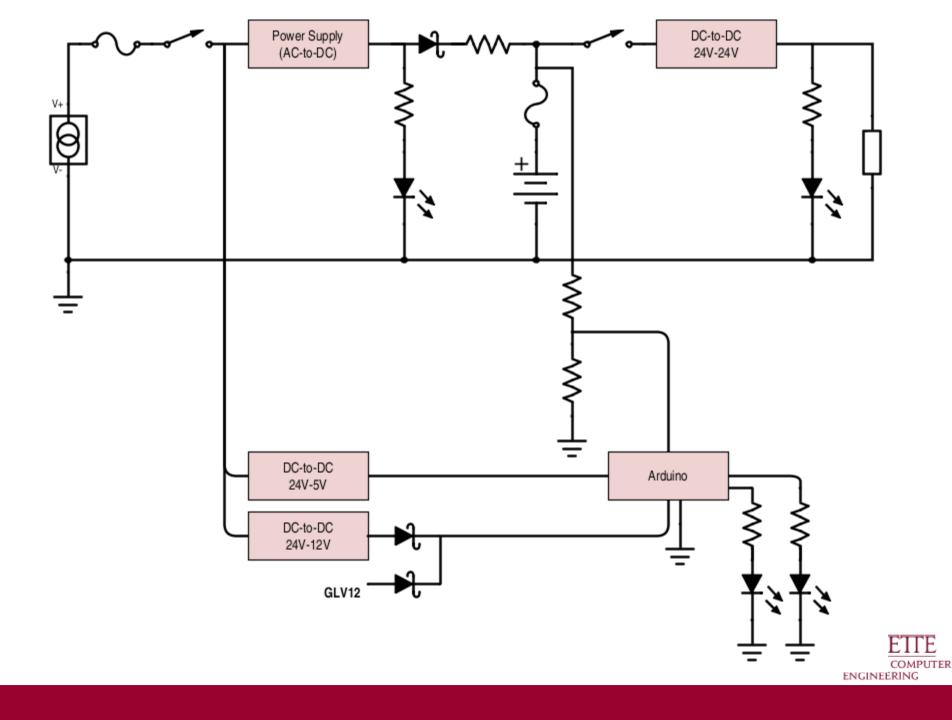
- 1. GLV Power
- 2. Tractive System Interface
- 3. Vehicle Computer Integration/Interface
- 4. High Voltage Safety Loop
- 5. System Interconnect


GLV Objective 1: GLV Power

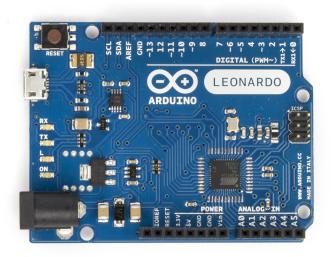
- Power all Low Voltage Systems
 - power non-tractive systems for three hours
 - charging system must have *plug-and-forget* functionality- simultaneous charging + load current
 - battery protection from full discharge, overcharge, overcurrent, and overvoltage
 - voltage, current, temperature, and SOC measured by VSCADA
 - battery is secu



Power Panel



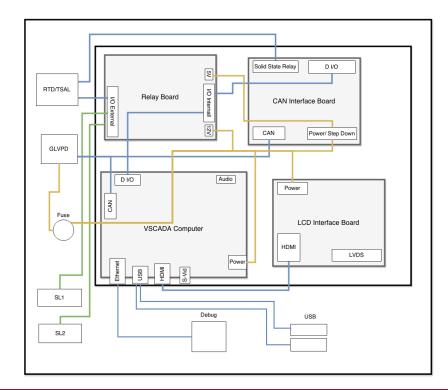
GLV Charging Circuit



Power Software

plug-and-forget functionality

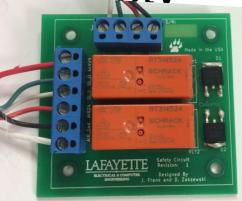
- wait for voltage at Charge Port
- hold relay closed until battery voltage reaches 28.5V
- close relay when battery voltage drops below 22.5V


GLV Objective 2: Tractive System Interface

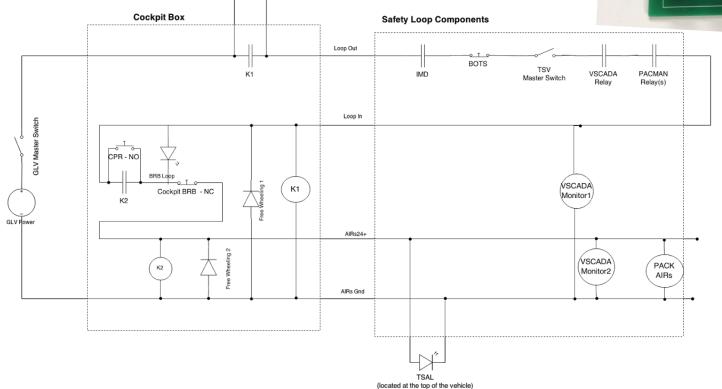
- Final high voltage relay before motor controller
 - Precharge circuit protects motor controller form inrush current
- Tractive System Voltage Present Light
- High Voltage Measurement
- IMD Safety Loop Control
- Provides measurement points for high voltage system
- GLVPD power

GLV Objective 3: Vehicle Computer Integration

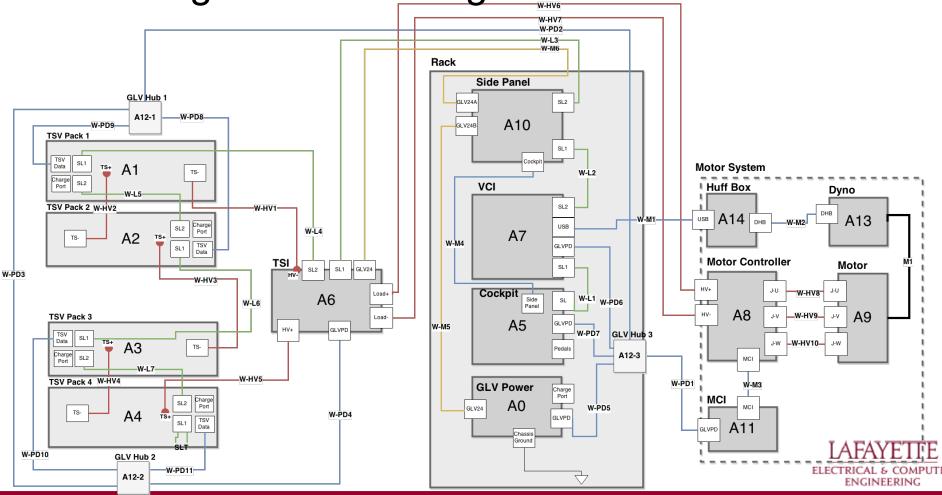
- Vehicle/Computer Integration
 - Hardware elements of VSCADA
 - Interfacing to Safety Loop.



GLV Objective 4: High Voltage Safety

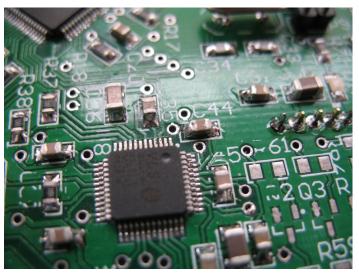

Safety / Shutdown Circuit
 Disable HV if issue found

Reset - NO (located on the side panel)


ELECTRICAL & COMPUTER

ENGINEERING

GLV Objective 5: System Interconnect


• Wiring and Interfacing

GLV Errata

1. GLV Power

- a. Replace the Arduino with a JGB to speak CAN
- b. Add current and temperature sensing technology
- c. Stabilize the battery vertically
- d. Fusing
- 2. Tractive System Interface
 - a. Motor Controller Connections
 - b. PCB errors/redesigns

http://www.sphere.ws/blog/?attachment_id=50

GLV Errata

- 3. Vehicle Computer Integration/Interface
 - a. Large/ hardware intensive touchscreen
- 4. High Voltage Safety Loopa. LED displays
- 5. System Interconnect
 - a. Assemble two more HUBs
 - b. Cable length

http://www.techandinnovationdaily.com/2013/02/27/uni-pixeltouchscreen-technology/

Moving Forward Next Year...

TSV

- Break Out Board Firmware

GLV

- Mechanical Integration

VSCADA

- General System Expansion
- Control System

DYNO

- Data Analysis

MECH

- Gearbox
- Chassis

Demonstration Time!

For further information, check us out at: sites.lafayette.edu/ece492-sp15/

ELEC

ENGINEERING