Lafayette Electric Vehicle 2015 ECE 492: Senior Design II Morning Critical Design Review March 11, 2015 Hugel 100

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Roadmap Cont.

- 6. Tractive System Voltage (TSV)
 - a. Overview
 - b. Safety
 - c. Mechanical
 - d. PacMan System
 - e. Charging
 - f. AMS
 - g. BoB
 - h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

1. Meet the Morning Teams

- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Meet the Morning Teams

- Grounded Low Voltage (GLV)
 - 1. Dan Zakzewski
 - 2. Alo Posillico
 - 3. Nick DiNino
 - 4. Jordan Frank
 - 5. Zach Helwig
- Tractive System Voltage (TSV)
 - 1. William Stathis
 - 2. Duhang "Hansen" Liang
 - 3. Katherine Nellis
 - 4. Jaejoon Yang
 - 5. Jordan Blake
- Mechanical Engineering Team
 - 1. Ben Prevoznak
 - 2. Kailan Ottaway
 - 3. A. Freddie Hess

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Introduction: Motivation

- Formula Hybrid Competition Vehicle
 Electric Car
- Capable of Vehicle Integration
- Four Team Integration
- Integrate with Mechanical Engineering Department
- Provide next year's team with a wellstructured Formula Hybrid Vehicle ready for integration

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Interface Control

An Interface Control Document was created to accurately and completely define all (electrical, mechanical, semantic) aspects of top-level interfaces to allow different designers to coordinate with each other successfully.

Next, we will discuss these top-level interfaces.

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control

a. System Assemblies Layout/Interfaces (Car)

- b. System Assemblies Layout/Interfaces (Rack)
- c. Interconnects
- d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

System Assemblies Layout - Top View

System Assemblies Layout - Top View

Layout Selection

ENGINEERINC

Physical Interfaces Layout - Side View

Physical Interfaces Layout - Top View

Vehicle Layout

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

End-of-Term Integration Layout

ENGINEERING

End of Term Integration Layout

ENGINEERING

Semester Integration Physical Interfaces

Physical Interfaces

- Side Panel
 - Contains Master Switches
 - Safety Loop Interface
 - Power Indicators

ENGINEERING

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)

c. Interconnects

- d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

GLV Power and Data Distribution

GLV Power and Data Distribution

LAFAIEIIE LECTRICAL & COMPUTER ENGINEERING

Safety Loop Connections

Safety Loop Connections

LAFAIEIIE LECTRICAL & COMPUTER ENGINEERING

Tractive System High Voltage Path

Tractive System High Voltage Path

Tractive System High Voltage Path

Semester Integration Layout

ENGINEERING

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects

d. Panel Drawings and Hubs

- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Side Controls Panel

• Designed for testing purposes

Side Controls Panel Drawing

ELECTRICAL & COMPUTER ENGINEERING

GLV Hub 1

- Connects to GLV Hub 2 and 3
- Dangly that connects to TSV Pack 1 data port
- Dangly that connects to TSV Pack 2 data port

GLV Hub 2

- Connects to GLV Hub 1
- Connects to TSI
- Dangly that connects to TSV Pack 3 data port
- Dangly that connects to TSV Pack 4 data port

ELECTRICAL & COMPUTER

GLV Hub 1 & 2

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

GLV Hub 3

- Connects to GLV Hub 1
- Connects to Motor Controller Interface
- Dangly that connects to the VCI
- Dangly that connects to the Cockpit
- Dangly that connects to GLV Power

GLV Hub 3

ELECTRICAL & COMPUTER ENGINEERING

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs

4. Grounded Low Voltage (GLV)

- a. Safety Loop
- b. GLV Power
- c. VCI
- d. TSI
- 5. GLV BOM and Budget

Grounded Low Voltage

 GLV system is responsible for supplying power to all non-tractive devices on the vehicle, interfacing other subsystems together, and operating the safety circuit in accordance to the EV requirements.

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Cockpit and the Safety Loop

ELECTRICAL & COMPUTER ENGINEERING

Cockpit Panel and Internals

ELECTRICAL & COMPUTER ENGINEERING

Cockpit Panel Drawing

Aluminum Panel 5"x5"x1/4" **CPR - Cockpit Reset Button** Cockpit BRB Red 'Safety' LED Amber 'Warning' LED Green 'System OK' LED Amber Indicator LED RTD - Ready To Drive Key

Safety Loop and Safety Circuit

- Keeps high level voltage system in a safe state
- Monitors status of the system and provides multiple shutdown options to both driver and surrounding personnel
- Interacts with each electrical subsystem

Shutdown Priority Table

Controlled Systems

		GLV Supply to: Instrumentation, Data Acquisition, Computers, Telemetry, Etc.	AIRs (TS Voltage)
Shutdown Sources	TSMS		OFF
	Cockpit BRB		OFF
	AMS		OFF
	IMD		OFF
	Brake Over-Travel		OFF
	Side-Mounted BRBs	OFF	OFF
•	GLVMS	OFF	OFF

Safety Loop Summary

- Safety Loop accounts for failures/faults in the 4-wire safety loop
- Any failure in the safety loop will be appropriately reacted to within the time constraints provided by the Formula Hybrid Rules
- Appropriate steps must be taken in order to make the car ready-to-drive in each scenario
- The Test Plan for the Safety Loop does not have a threshold for any test; whether it be button/switch functionality or the shutdown circuit itself. The loop will function to the specifications provided.

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

GLV Power

GLV Power Box and Dependents

GLV Power

GLV Power Box

ELECTRICAL & COMPUTER ENGINEERING

GLV Power Box - End Goal (JGB)

ELECTRICAL & COMPUTER ENGINEERING

GLV Battery Cell

3.3V LiFePO4 10Ah

GLV Battery

Eight cells 24V 10Ah

GLV Battery Connection

Crimped Terminal (Open Barrel)

Battery Mounting

EV3.7.1- All GLV batteries must be attached securely to the frame.

GLV Battery Capacity Calculation

R006-1 The GLV system shall contain a rechargeable battery of sufficient capacity to run the car GLV systems for at least three hours.

GLV Relays AIRS VSCADA	(2.04W x 2) = 8.16W + ~100mW (CAN transceivers)		
Total	17.88W / 24V = 0.745A x 1.5 =	1.1175Ah 2.235Ah <mark>3.3525Ah</mark> 4.47Ah 5.5875Ah	2hr <mark>3hr</mark> 4hr

Utilizes the measured power consumption of the VSCADA computer and a reasonable ceiling estimation for the screen.

GLV Battery Capacity Calculation

R006-1 The GLV system shall contain a rechargeable battery of sufficient capacity to run the car GLV systems for at least three hours.

GLV Relays	(2.04W x 2) = 4.08W + 1W (for microcontrollers, relays)				
AIRS	(2.04W x 2) = 8.16W + ~100mW (CAN transceivers)				
VSCADA	5.28W computer + 4W screen				
Total	25.52W / 24V = 1.06A x 1.5 =	1.595Ah 3.19Ah <mark>4.785Ah</mark> 6.38Ah 9.57Ah	1hr 2hr <mark>3hr</mark> 4hr 5hr		

Utilizes the peak power consumption of the VSCADA computer and a higher ceiling estimation for the screen.

GLV Power and Battery Duration Test

R006-0 The GLV system shall provide DC supply voltage with sufficient current to supply all the power needs of the GLV systems and other non-tractive systems.

R006-1 The GLV system shall contain a rechargeable battery of sufficient capacity to run the car GLV systems for at least three hours.

Simplified Procedure:

- 1. Fully charge the battery.
- 2. Attach the Power Box to the adjustable load and set the current to simulate appropriate power consumption.
- 3. Record voltage at timing intervals.
- 4. Voltage must remain above designated value (21V) for three hours.

Charging Circuit

Charging Circuit - Charging

R006-2ii The charging system shall be capable of powering the GLV system indefinitely as it simultaneously charges the GLV battery in a *plug and forget* functionality.

Charging Circuit - Discharging

GLV Power - Charger

R006-2i The GLV system shall be rechargeable by means of a UL listed charging device that plugs into the 120 VAC mains.

www.trcelectronics.com

Battery Protection

R006-2iii It shall be possible to charge a fully discharged GLV battery without disassembly or special actions. R006-2v The GLV battery shall be protected from full discharge, overcharge, overcurrent, and overvoltage.

Full Discharge:

- The 24-24 DC-to-DC Converter has an under voltage shutdown of 15.7 VDC.
- The solid-state relay controlling the charge circuit will be the normally closed type.

Overcharge:

• Discussed on previous slides.

Overcurrent:

- The 24-24 DC-to-DC Converter has a current limitation of 110% its typical, which is 2.5A for this device.
- 2.5A x 1.1 = 2.75A... Well above the expected range and below battery capabilities.

Overvoltage:

• The 24-24 DC-to-DC Converter has an overvoltage protection trigger point of <42V.

uk.farnell.com

Voltage Sensing

R006- The GLV battery shall be protected from overcharge. GLV voltage shall be measured by VSCADA.

GLV Power Software

R006- GLV voltage, current, temperature, and SOC shall be measured by VSCADA.

GLV Power Arduino

Maintainability:

- Code will be written in C which is not going extinct in the near future.
- Files will be uploaded to the website containing the source code and Arduino ID.

www.arduino.cc

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI
- 5. GLV BOM and Budget

Vehicle Computer Interface

VCI

• Contains:

- VSCADA Computer
- Maintenance Panel Display
- Safety Loop Control and Monitors
- TSAL Circuit
- RTD Sound Control

ELECTRICAL

ENGINEERING

COMPUTER

VCI

• Contains:

- VSCADA Compt
- Maintenance Par
- Safety Loop Con
- TSAL Circuit
- RTD Sound Con

VCI

- Safety Loop Monitoring
 - Interfaced to the CAN
 Controller board
 - Safety Loop Monitor
 - AIRs State Monitor
- Safety Loop Control
 - Controlled by VSCADA digital I/O
 - Gives Safety Loop control to system software

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI

d. TSI

5. GLV BOM and Budget

Tractive System Interface (TSI)

TSI - Overview

- High Voltage Relay Control
- Precharge Protection
- Tractive System Voltage Present Light (TSVP)
- Insulation Monitoring Device (IMD)
- GLV PD 24 to 12 stepdown
- TSMP

TSI

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

TSI - Pre-Charge/Relay Control

- Precharge circuit prevents inrush current and damage to relay contacts
- This configuration will take about 4 seconds for the motor controller to reach 96V

TSI - TSVP

- Must be powered by TSV and grounded to GLV ground
- Use a DC DC converter to satisfy this requirement and maintain isolation

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

TSI - IMD

- Pin 8 Status Output High
- Feeds directly to a relay on Safety Loop
- Pin 8 output change opens Safety Loop (High → Low)

TSI - Other Components

GLV Power

- 24V to 12V DC-DC converter steps down the voltage from GLV24 to power the GLVPD at 12 Volts
- TSMP
 - TSMP+ is a direct contact to the HV+ terminal
 - TSMP- is a direct contact to the HV- terminal
 - GLV GMP provides a reference to GLV ground

TSI - QA Configuration

- Connect high voltage terminals to a high voltage power source
- Connect the high voltage load terminals to the motor controller
- Connect the GLV24 terminal to a low voltage power supply

TSI - QA Test Plan

TSVP Test

- Apply 30 volts to high voltage power supply and check the TSVP output with a multimeter
- Pre-charge/Relay Test
 - Put start signal high and measure time it takes relays to close
- IMD Test
 - Using a multimeter, check for connection across the relay after shorting the ground

Roadmap

- 1. Meet the Morning Teams
- 2. Introduction: Motivation
- 3. Interface Control
 - a. System Assemblies Layout/Interfaces (Car)
 - b. System Assemblies Layout/Interfaces (Rack)
 - c. Interconnects
 - d. Panel Drawings and Hubs
- 4. Grounded Low Voltage (GLV)
 - a. Safety Loop
 - b. GLV Power
 - c. VCI
 - d. TSI

5. GLV BOM and Budget

GLV Bill of Materials

			Unit	Total
Description	Vendor Part Name	Quantity	Price	Price
Te-Connectivity 2 pin/1 row parallel	1-480699-0	4	\$0.28	\$1.12
Te-Connectivity 2 pin/1 row free	1-480698-0	4	\$0.28	\$1.12
Te-Connectivity 3 pin/1 row parallel	1-480701-0	6	\$0.28	\$1.68
Te-Connectivity 3 pin/1 row free	1-480700-0	6	\$0.27	\$1.62
Te-Connectivity 8 pin/2 row parallel	794954-8	4	\$0.25	\$1
Te-Connectivity 8 pin/2 row parallel	794953-8	4	\$0.25	\$1
Te-Connectivity pin	350561-3	10	\$0.14	\$1.38
Te-Connectivity socket	350570-3	10	\$0.13	\$1.32
24V DIN Rail DC/DC Converter	TCL 060-124 DC	1	\$80.62	\$80.62
DIN Rail DC/DC Converter	STMGFS152405-N2	1	\$69.05	\$69.05
36vdc PFC Power Supply	HRP-200-36	1	\$64.80	\$64.80
DIN Rail	277-2064-ND	1	\$9.82	\$9.82
DIN Rail Terminal Blocks	APC1281-ND	50	\$1.33	\$66.63
SWITCH PUSH SPST-NO	CWI282-ND	1	\$4.12	\$4.12
SWITCH KEYLOCK SP3T	KO129B606-ND	1	\$9.80	\$9.80
DIODE SCHOTTKY 45V 7A	SB15H45-E3/73GITB-ND	5	\$0.81	\$4.05
LED RED 1/4" HOLE 5V	L10021-ND	5	\$2.17	\$10.85
Relay 5A 5V	Z2774-ND	10	\$1.18	\$11.78
			Grand	
			Total	\$341.76

GLV Budget

Total Allocated Funds - \$1397.90

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
- i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Tractive System Voltage

ELECTRICAL & COMPUTER ENGINEERING

Main subsystems

- Accumulator Managment System (AMS)
- Breakout Board (BoB)
- Pack Manager (PacMan)
- 7 3.2V 60A-hr LiFePO4 Cells

Roadmap Cont.

- 5. Tractive System Voltage (TSV)
 - a. Overview
 - b. Safety
 - c. Mechanical
 - d. PacMan System
 - e. Charging
 - f. AMS
 - g. BoB
 - h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

TSV - Safety

- Fusing
 - 2 fuses for BoB
 - 1 fuse for voltage present LED
 - 1 large fuse for pack main current path
 - 2 fuses for charge relay
- Voltage present LED
 - turns on when voltage > 20V DC present at poles
 - can sustain voltage up to 96V
 - works even when a cell fails with all other packs connected
- Safety protocols

Pack Safety Loop

 \bigcirc

ENGINEERING

- One port at each end of the pack
- Each contains safety loop and SL 24V/GND
 SL 24V/GND used to power AIR
- Safety path:

High Voltage Interfaces

- 4 "Danglies" one per pack
 - 400A rated Newark 44W4352
 - Source Hangs off of pack with cable to + terminal
- 4 Panel mount female connectors
 - 400A rated Newark 44W4361
 - Connected to terminal bus bar

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

http://www.newark.com/itt-cannon/nls-3-gy-s120-m40a/line-source-line-3-grey-400a/dp/44W4352

http://www.newark.com/itt-cannon/npdft-3-gy-l-t4/panel-drain-line-3-grey-400a/dp/44W4361

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Mechanical Objectives

- acceleration requirements
- splash proof
- internal wall
- vibration
- galvanic isolation

Mechanical-Frame/External Casing

- Rigid 8020 Aluminum External Frame

Mechanical- Frame/External Casing

-Removable Top For Quick Battery/BMS

Access

Mechanical-Frame/External Casing

-Splash Resistant Ventilation

Cell Restraint

Top Bars

Side Bars

End Plates

Integration with Container

BMS Restraint

BMS Removal

Added Components

Free Terminal

Mechanical - Conductor Bars

- Carries large current
- Low resistance

TER

Mechanical - Current Measuring Shunt

- Special conductor used to measure current
- $118\mu\Omega$ at STP

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

PacMan System

- Receives and processes data from AMS
- Receives and processes pack sensor data
- Opens BoB safety loop
- CAN communication with VSCADA and LCD
- Implement charge and forget charging

PacMan Computer

https://www.embeddedarm.com/products/board-pictures.php?product=TS-7400-V2

Technologic Systems TS-7400-V2

PacMan Computer Hardware Specs

- 1.2W Typical power usage
 6.67 Weeks for each pack
- 10mW sleep mode
 15.35 years for each pack
- I2C bus for AMS and LCD communication
- CAN bus for VSCADA interface
- 4 ADC inputs for pack sensors
- 39 DIO ports for logic functions

PacMan Computer - Connections

https://www.embeddedarm.com/products/board-pictures.php?product=TS-7400-V2

PacMan Computer - Connections

I2C Data

GND

https://www.embeddedarm.com/products/board-pictures.php?product=TS-7400-V2

PacMan Computer - Connections

https://www.embeddedarm.com/products/board-pictures.php?product=TS-7400-V2

PacMan Software

- Debian 'Wheezy' Linux (Kernel 2.6.36)
- Updates from 2014 team's code
 - Correct State of Charge algorithm
 - Reboot should not invalidate state of charge
 - Temperature adjustment for current-measuring shunt
- CAN communication with VSCADA

PacMan Safety Loop Control

- Safety loop opened in 3 different ways
 - Charger plugged
 - Watchdog timeout
 - CPU DIO02 pin for software control
- Watchdog fed by CPU DIO03 pin

VSCADA CAN Interface

- No longer RS-485, new isolated chip
- All 4 packs on the same main CAN line
- When address prompted, will return all relevant data to VSCADA

http://www.mouser.com/ProductDetail/TE-Connectivity-AMP/1-480705-0/?qs=OSEowtgdlxJxrUuPTLeZpA%3D%3D

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Charger-GENESYS 750W Half-Rack

http://www.testoon.com/images_produit/009789-full.jpg

http://sites.lafayette.edu/ece492-sp14/files/2014/02/LFEV-ESCM-2014-UsersManual.pdf

Charging

- Anderson PowerPole connector used
 - Charge Detect
 - Charge Detect goes to BoB ends at PacMan
 - Charge +/-
 - Charge +/- go to charge relays
 - Safety Loop
 - Open when charging plug is plugged in
 - Closed when dummy plug is in charge port

Pack State Diagram

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

Charge Detect

Charger creates electrical connection
 between CHRG_DET1 and CHRG_DET2
 Pulls CPU DIO06 pin high through optoisolator

Cooling

- When bypassing cells, they get HOT
- When charger is plugged, fan switches on
 Fan powered by charger to not deplete batteries
- Reducing heat sink to half height
 - Thermal resistance now 3.7 °C/W @ 200 LFM
 - With 10.2W power, 37.74 °C rise

 $http://www.digikey.com/product-detail/en/657-20ABP/345-1035-ND/340333?WT.z_cid=ref_octopart_dkc_buynow&site=uspectures and the state of the state$

Charge Relays

- We will be using a normally closed charge relay
 - This fixes previous error where pack was unchargeable when depleted
- Charging is finished when all AMS bypass
 - CPU DIO00 pin signals CHRG_TRIG to optoisolator for charge relays to open when charging is finished
- Using relay OMRON MGN1C-DC24
 - SPDT can wire to be NO or NC
 - 24V DC 30A

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Accumulators and AMS

ELECTRICAL & COMPUTER ENGINEERING

TЕ

Accumulator Management System Board

- Boards monitor attributes of each assigned cell
 - Voltage levels
 - Current levels
- Ability to bypass cell during charging
- Reports back to PacMan through I²C
- Board Reset
 - Software
 - Remote/Manual

ENGINEERING

AMS Command List

Command #	Description	#Bytes Returned
0x 10	Gets the cell voltage	2
0x 11	Gets the cell temperature	2
0x 12	Gets the pack charging current	2
0x 13	Gets the pack discharging current	2
0x 14	Gets the bypass resistor switch state	2
0x 15	Gets the slave/board address	2
0x 16	Gets the software version	2
0x 17	Gets 0x0042(test command)	2
0x 18	Gets the bypass time in minutes	2
0x 19	Gets charging coulomb count as well as the number of times the charging current was summed	8*
0x 1A	Gets discharging coulomb count, as well as the number of times the discharging current was summed	8*
0x 1B	Gets cell voltage and temperature	4
0x1C	Gets the voltage, temperature and charging current of the cell	6
0x 1D	Gets the voltage, temperature and discharging current of the cell	6
0x 1E	Gets the time elapsed since the bypass switch has been set	6**
0x00	Sets the bypass switch state	n/a
0x 01	Sets the board address	n/a
0x 02	Sets the bypass time in minutes	n/a
0x 03	Calls the function to test the watchdog timer	n/a 2

Designed by 2013 Team.

AMS Software Bug

- Bugs documented by LFEV-2013
 - 1. No constraint to force PacMan to wait until the AMS board has processed a request
 - Results: incorrect data readings on the first response
 - 2. Concurrency issues in memory: read/write collisions
 - Results: possible retrieval of unwanted data

• LFEV-2015 Goals

- 1. Manipulate clocks so that no additional requests could be sent by PacMan until original request is processed.
- 2. Implement constraints so that data cannot be read and written at the same time

AMS Software Reset

- Initialization: PacMan will attempt to communicate with each board
 - $\circ \quad \text{Failed attempt} \rightarrow \text{reset} \\ \text{of that board}$
 - Error & Reset will display on Pack LCD

ELECTRICAL & COMPUTER ENGINEERING

AMS Remote Reset

- LFEV 2014's Design \rightarrow LFEV 2015 utilizing it
- Asserted by manual reset button through PacMan BoB

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

PacMan Breakout Board

- Acts as connector between TS-7400-V2 and the AMS boards and proper sensor relays
- Contains circuitry used for current, temperature, and pack voltage measurements
- Includes isolation chips to provide galvanic isolation between low and high voltage circuits

PacMan BoB Manual Reset

 6N135 high-speed optocoupler (Vishay Semiconductors)
 U16

PacMan BoB Layout Errata

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Acceptance Testing

- Overview
 - Designed around requirements
 - Minimizing time and charge cycles needed
 - Repeatable for individual packs
- Focus
 - Safety
 - Plug-and-forget charging
 - Accuracy of measurands
 - New SoC algorithm

- Test configuration A

- Test configuration B

- T000: Pack Display and Safety Qualification
 - Prerequisite for all other tests
 - Configuration A
 - No active load
 - Measurement accuracy verification
 - Safety checks (isolation, sensor readings)
 - Controls/reset tests

- T001: Low Current Discharge Test
 - Discharge cycle
 - Configuration A
 - Safety features tested (safety loop, low-voltage protection, temp/voltage sensors)
 - Un-balances cells for subsequent tests
 - Measurement accuracy verification
 - SoC tested

- T002: Charge Cycle Test
 - Complete charge cycle
 - Configuration B
 - Charges at two different rates to test SoC
 - Safety loop tested
 - Measurement accuracy verification
 - Cell-balancing tested
 - Plug-and-forget feature tested

- T003: High/low Current Discharge Test
 - Discharge cycle
 - Configuration A
 - Discharge at 3 different rates (high/low/paused)
 - Max current performance tested
 - Measurement accuracy verification
 - Safety features tested
 - SoC tested
 - Simulates real-life use case

Roadmap Cont.

5. Tractive System Voltage (TSV)

- a. Overview
- b. Safety
- c. Mechanical
- d. PacMan System
- e. Charging
- f. AMS
- g. BoB
- h. Acceptance Testing
- i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Maintainability

- Hardware

- MTTR = 1 day for most parts when spare parts on hand
- MTTR < 8 days for most parts when no spare parts available
- Full analysis in maintainability plan

Maintainability Cont.

- Software
 - PacMan software and AMS firmware
 - Source control
 - Backup/restore
 - Instructions for programming
 - Compatibility with VSCADA

TSV BOM & Budget

Total TSV Budget Required					
AMS	PacMan	BOB Parts	Pack Electrical Parts	Grand Total Budget	
\$430.38	\$674.15	\$223.75	\$1,263	\$2,590.95	

Total Given Budget:	\$2,739.10
Spent So Far:	\$1,026.03
Remaining Budget:	\$1,713.07

AMS

Vendor Part# / Order#	Description	Unit Price	QTY	Total Price
4649779111111	Xelekolek birtzike Azelek eleksek eleksek birtzet beritet beritet beritet birtzet birtzet birtzet birtzet birtz	4,6,62,11/		18449.44
Mouser				
538-70543-0040	6-PIN SL Locking Header, tin-plate (J2, J3)	\$0.74	20	\$14.80
538-50-57-9706	6-PIN SL Locking Plug w/TPA (for J2, J3)	\$0.75	20	\$15.00
538-73838-0006	6-PIN SL TPA Piece (for J2, J3)	\$0.26	20	\$5.20
538-16-02-0096	SL Socket 24-30 AWG	\$0.06	100	\$6.00
567-657-15ABPN	TO-220 Vertical Board Mount Heatsink	\$1.31	10	\$13.10
652-PWR220T-20-R750F	TO-220 Resistor 20watt 0.75ohms 1% (RPOW)	\$4.00	10	\$40.00
567-173-7-220P	Thermal Interface Pad TO-220.007" GRAY (for Q1, RPOW)	\$0.42	17	\$7.14
532-7721-7PPS	Insul Shoulder Washer (for No. 4 screw)	\$0.18	15	\$2.70
579-PIC16LF1827-I/SO	PIC16LF18278-bit Microcontroller (U4)	\$1.72	8	\$13.76
652-SRN8040-100M	SMD Inductor 10uH 20% (L1)	\$0.39	20	\$7.80
859-LTV-357T	Transistor Output Isolator (U6)	\$0.19	20	\$3.80
634-SI8600AB-B-IS	Silicon Labs Dual I2C Isolator Interface (U7)	\$3.18	8	\$25.44
579-MCP1825S-3302EDB	LDO Voltage Regulators 500 mA 3.3V (U3)	\$0.51	9	\$4.59
Digikey				
LT1307BCS8#PBF-ND	LT1307B	\$2.75	4	\$11.00
TIP102TU-ND	TRANS NPN DARL 100V 8A TO-220 (U2)	\$0.73	1	\$0.73
MCP9700AT-E/TTCT-ND	IC Sensor Thermal 2.3V SOT-23-3 (USA, USB)	\$0.25	11	\$2.75
MBR0520LCT-ND	Diode Schottky 20V 500MA SOD123 (D1)	\$0.23	2	\$0.46
MCP6242-E/SN	IC Opamp GP 550KHz PRO 8SOIC (U1)	\$0.30	5	\$1.50
655K-ND	Banana Plug	\$1.72	3	\$5.16
RMCF0805FT20K0CT-ND	20K 0805 SMD Resistor 1% 1/8W	\$0.016	50	\$0.81

LAFAYETTE ELECTRICAL & COMPUTER ENGINEERING

PacMan & BOB

PacMan (Pack Manager)				
Vendor Part# / Order#		Unit Price	QTY	Total Price
<u> </u>	vivlex/ac/ac/ac/ac/ac/ac/viz/	िहम् <i>ये</i>	K	1965296
908-MSD04GCS4P-1TM	Micro SD Card 4GB Class 10 Industrial	\$10.54	4	\$42.15

PacMan Total:	\$674.15
---------------	----------

BOB (Breakout Board)				
Vendor Part#/ Order#	Description	Unit Price	QTY	Total Price
N/A	PCB for BOB boards	\$10	6	\$60
998-MIC4680-5.0YM	Switching Regulators 1.3A SuperSwitcher in SO-8 (Lead Free)	\$4.23	3	\$12.69
LTC4151CS-2#PBF-ND	IC CURRENT MONITOR(12BIT) 1650IC	\$5.55	4	\$22.20
MCP6242-E/SN	Switching Regulators 1.3A SuperSwitcher in SO-8 (Lead Free) (also in AMS)	\$4.23	5	\$21.15
859-LTV-357T	Transistor Output Optocouplers (also in AMS)	\$0.19	2	\$0.38
584-ADM 1232ARN	ADM1232 Watchdog Timer SOIC-8	\$2.53	2	\$5.06
849-LDA2105	LDA210 Dual Optoisolator/Darlington Pair SIP-8	\$1.83	2	\$3.66
771-HCT4002D118	Single 4 Input NOR/OR Gate SOIC-8	\$0.50	2	\$1.00
653-G6B-1114P-DC5	SPST 5V PCB Relay	\$5.16	2	\$10.32
ADM2483BRWZ	Half Duplex RS-485 Isolator	\$6.84	2	\$13.68
511-74LCX07YMTR	M74HC07 Hex Open-Drain Buffer SOIC-14	\$0.52	2	\$1.04
652-SRU1028-680Y	SMD Inductor 68uH 30%	\$0.75	2	\$1.50
P2N2222AGOS-ND	P2N2222A NPN BJT Transistor 600ma	\$0.50	2	\$1.00
621-B260A-F	B260A Schottky Diodes	\$0.47	2	\$0.94
512-1N4148	D1N4148 Diode Through Hole	\$0.10	6	\$0.60
810-C3216X5R1V226M	22uFSM Ceramic Capacitor 1206	\$1.26	2	\$2.52
598-AVE227M16X16T-F	220uF Electrolytic Capacitor Surface Mount 16V	\$0.51	2	\$1.02
538-70543-0013	Headers & Wire Housings 14 POS SHROUD HDR	\$3.50	5	\$17.50
538-50-57-9414	Headers & Wire Housings HSG 14P SINGLE ROW POSITIVE LATCH	\$0.87	10	\$8.70
517-D3408-6202-AR	16-PIN Shrouded Header	\$1.99	3	\$5.97
517-3452-6000	16-PIN Plug	\$3.23	6	\$19.38
517-D3793-6202-AR	10-PIN Shrouded Header	\$1.44	2	\$2.88
517-3473-6000	10-Pin Plug	\$2.64	4	\$10.56
BOB Total: \$2	23.75			

ECTRICAL & COMPUTER ENGINEERING

AFAY

ΤЕ

Pack Electrical Parts (page 1)

	Pack Electrical Parts			
Vendor Part# / Order#	Description	Unit Price	QTY	Total Price
G3475534	Fuse, 200A, Class T, A3A, 300VAC/160VDC	\$28.34	2	\$56.68
G1878003	Fuse Holder, 200A AC, 300V, 1 Pole, Molded	\$68.99	2	\$137.98
504-BK/HKP-R	Cooper Bussmann AGC 30A/250V Fuse Holder	\$4.72	6	\$28.32
504-C10G0.5	Fuse, Bussman .5A/500V	\$13.26	6	\$79.56
5912-4414F	Fans 119x25 24DC 100CFM 5W 2900RPM 43dBA BB	\$33.58	2	\$67.16
562-0945030	Fan Accessories BLK FLTR ASSM 4.65"	\$2.08	2	\$4.16
562-09123-G	Fan Accessories PLASTIC GUARD 120MM	\$1.21	3	\$3.63
GX14CB	AIR - 350A Contractor, 24VDC coil, 24-in flying leads, no auxiliary contact	\$94.35	1	\$94.35
Waytek 124-903 124-11411	POWER RELAY CONTACTOR 24V 100A SPNO WHITE-RODGERS 124-903	\$34.96	3	\$104.88
Newark 44W4342	Panel Drain, Line 3, Grey	\$74.10	2	\$148.20
Newark 44W4365	Panel Source, Neutral, Blue	\$50.62	2	\$101.24
0470489	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	///////	////	//////
571-14807030	Pin & Socket Connectors CAP HOUSE 4 POS	\$0.20	50	\$10.00
571-14807050	Pin & Socket Connectors CAP HOUSE 6 POS	\$0.32	50	\$16.00
571-32950	Insul. Ring Terminal, 18 AWG, #6/M3 stud	\$0.29	25	\$7.25
538-19070-0121	Insul. Ring Terminal, 10-12 AWG, #8/M4 stud	\$0.20	25	\$5.00
571-35492	Insul. Ring Terminal, 12-10 AWG #1/4 /M6 stud	\$0.56	10	\$5.60
579-MCP9700A-E/TO-ND	Board Mount Temperature Sensors Lin Active Therm	\$0.37	4	\$1.48
517-9602207102AR	Headers & Wire Housings 20P SIDE ENT DR SKT	\$3.18	3	\$9.54
517-9602406303AR	Headers & Wire Housings 40P STR SR BDMNT SKT 3.5MM TAIL/8.5M MBODY	\$4.85	3	\$14.55
879-1470G1	Heavy Duty Power Connectors PP PAK 2-4P HSG SNAP-IN RECEPT	\$2.10	4	\$8.40
879-1327FP	Heavy Duty Power Connectors PP15/45 FINGERPROOF HOUSING ONLY, RED	\$0.85	3	\$2.55
879-1327G6FP	Heavy Duty Power Connectors PP15/45 FINGERPROOF HOUSING ONLY, BLACK	\$0.82	3	\$2.46
879-269G1-LPBK	Heavy Duty Power Connectors PP30 HD LOOSE CONT #12-16 AWG	\$0.70	3	\$2.10
879-4827G6	Heavy Duty Power Connectors PPMX 2-PIECE BLACK HOUSING ONLY	\$0.80	3	\$2.40
879-261G2	Heavy Duty Power Connectors PP45 REELED CONTACT #10-14 AWG, TIN	\$0.16	25	\$4.00

Pack Electrical Parts (page 2)

Pack Electrical Tota	1: \$1,262.67			
164-9008-E	IDC SOCKET 16 PIN W/STRAIN RELIEF	\$0.61	2	\$1.22
164-9007-E	IDC SOCKET 14 PIN W/STRAIN RELIEF	\$0.65	2	\$1.30
156-1401-E	D-SUB CRIMP PIN FM	\$0.10	20	\$2.00
156-1409-E	D-SUB CRIMP FEMALE 9P	\$0.56	2	\$1.12
782-ILD755-1X017	Transistor Output Optocouplers Photodarlington	\$2.77	4	\$11.08
651-0203250	FBI10-6 Fixed Bridge for 6.2mm DIN blocks	\$9.86	1	\$9.86
298-C75LG72-ND	Wire Ducting COVER 3/4" 6-FOOT SECTION	\$8.46	1	\$8.46
651-3001624	FBRN 10-4 N Fixed Bridge (10 Position)	\$7.90	1	\$7.90
538-16-02-0096	SL Socket 24-30 AWG	\$0.10	100	\$10.00
571-3506901	Pin & Socket Connectors PIN 24-18 AWG	\$0.088	100	\$8.80
571-3506891	Pin & Socket Connectors SOCKET 24-18 AWG	\$0.085	100	\$8.50
651-1725669	Fixed Terminal Blocks 3P 2.54mm 90DEG	\$2.16	4	\$8.64
651-1725656	Fixed Terminal Blocks 2P 2.54mm 90DEG	\$1.42	3	\$4.26
651-1725711	Fixed Terminal Blocks 8P 2.54mm 90DEG	\$5.40	2	\$10.80
298-G75X75LG72-ND	Wire Ducting TYPE G .75 X .75 6-FOOT SECTION	\$28.56	1	\$28.56
651-1421659	DIN 15 End Clamp	\$1.28	4	\$5.12
651-1415021	MBK5/EZ End Plate	\$0.97	2	\$1.94
651-1402940	MBK5/EZ Feed-Thru DIN Rail Terminal Block	\$3.15	6	\$18.90
651-3002979	MT1.5 Twin End Plate	\$1.34	3	\$4.02
651-3100321	MT1.5 End Plate	\$0.78	3	\$2.34
651-3100318	MT1.5 PE Ground Din Rail Terminal Block	\$8.42	1	\$8.42
651-3001682	MT1.5 Twin DIN Rail Terminal Block	\$4.62	3	\$13.86
651-3100305	MT1.5 Feed-Thru DIN Rail Terminal Block	\$2.62	20	\$52.40
651-5602099	15mm DIN Rail Perf	\$9.64	1	\$9.64
571-5550521	Ethernet Connectors & COUPLER IN-LINE	\$7.02	2	\$14.04

Budget

• Initially allocated money:

- Dyno \$148
- SCADA \$715
- GLV \$1397.90
- TSV \$2739.10

Budget

- Money Spent so far
 - Dyno \$362
 - TSV \$1026.03
 - SCADA \$304.26
 - GLV \$10.24

Budget

Current status of money:

Roadmap Cont.

- 5. Tractive System Voltage (TSV)
 - a. Overview
 - b. Safety
 - c. Mechanical
 - d. PacMan System
 - e. Charging
 - f. AMS
 - g. BoB
 - h. Acceptance Testing
 - i. Maintenance

6. Out of Scope: LFEV-2016

7. Conclusion

Out of Scope: LFEV-2016

- GLV
 - Implement AIR failure sensors
 2.

Out of Scope: LFEV-2016 Cont.

- TSV
 - 1. Implement AIR failure sensors
 - 2. Low voltage indicator light
 - 3. Building 4 complete packs

Roadmap

- 6. Tractive System Voltage (TSV)
 - a. Overview
 - b. Safety
 - c. Mechanical
 - d. PacMan System
 - e. Charging
 - f. AMS
 - g. BoB
 - h. Acceptance Testing
 - i. Maintenance
- 6. Out of Scope: LFEV-2016
- 7. Conclusion

Conclusion

