
Lafayette Electric Vehicle
2015

ECE 492: Senior Design II
Afternoon Critical Design Review

March 11, 2015
Hugel 100

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Meet the Afternoon Teams

● Vehicle Supervisory Control and Data Acquisition (VSCADA)
1. Yiming Chen
2. Bikram Shrestha
3. Rameel Sethi
4. John Gehrig
5. Sam Cesario
6. Adam Cornwell

● Dynamometer (DYNO)
1. Steve Mazich
2. Brendan Malone
3. John Bloore
4. Nate Hand
5. Alex Hytha

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Interface Control

An Interface Control Document was created to
accurately and completely define all (electrical,
mechanical, semantic) aspects of top-level
interfaces to allow different designers to
coordinate with each other successfully.

Next, we will discuss these top-level interfaces.

Introduction: Motivation

● SAE Formula Hybrid
Competition Vehicle
○ Electric Car

● Capable of Vehicle Integration
● Four Team Integration

System Assemblies Layout - Top View

Driver Interface Panel

High Voltage Supply

Side Panel Interfaces

Low Voltage Power Source

Vehicle Computer Interface
Motor ControllerTractive System Interface

Layout Selection

● SAE Requirements:
○ Side Panels
○ Cockpit Panel
○ Warning Devices

● Mechanical:
○ TSV best placed adjacent to the driver
○ Motor located near rear axle

● Cabling
○ Orientation of TSV System Packs
○ TSI, Motor Controller, and Motor all adjacent

● Interfacing
○ VCI accessible by pit station crew

Physical Interfaces Layout - Side View

Physical Interfaces Layout - Top View

End-of-Term Integration Layout

State Transition Diagram

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

VCI

Embedded Computer: VAB-820

VSCADA

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Logging/Daemons - Main Program
● VSCADA uses systemd to initially launch the main

program
○ systemd has most major linux distributions support

● The main program will run in the background as the
server with PID registered

● The main program will start by doing system startup
procedures

Logging/Daemons - Main Program
[Unit]
Description=vscada main program
After=default.target

[Service]
ExecStart=/usr/bin/python3 /home/vscada/main.py
Type=simple
WorkingDirectory=/home/vscada

[Install]
WantedBy=multi-user.target

System Startup

System States and Exceptions

Startup Stage
● When system boots up and will

goto one of the following stages
Good to Go Stage

● No error or warning and is ready
to be driven

Driving Stage
● The car is drving

Vehicle Boot Up Error Stage
● VSCADA is functional but other

subsystems are not
VSCADA Boot Up Error Stage

● VSCADA is not functional
Failed Stage

● VSCADA failed to boot up

★ You are not allowed to drive
if in these error stages

System States and Exceptions
System Errors:
Syntax error
➔ Failed Stage

VehicleStartupConfigLoadException
➔ Other Boot Up Error Stage

DatabaseLoadException
➔ VSCADA Boot Up Error Stage

RRDFileNotFoundException
➔ VSCADA Boot Up Error Stage

VehicleStartupTimeoutException
➔ Other Boot Up Error Stage

SensorCheckingTimeoutException
➔ Other Boot Up Error Stage

SystemFailureError
➔ Failed Stage

OtherCommunicationException
➔ Vehicle Boot Up Error Stage

OtherSystemException
➔ VSCADA Boot Up Error Stage

Sensor Errors:
Logic:
Errors are configurable and specific
If happens before driving, then the car is disabled from
driving;
else take actions according to sensor configuration

Possible Errors:
OverHeating
UnderCharged

Possible Actions:
Do Nothing
Send warning upward
pull safety relay

http://icetea09.com/

Logging/Daemons - Logging
● Have 5 levels, in their respective order:

○ Debug: detailed information, mainly used for debugging
○ Info: general information, should contain important data
○ Warning: Need user’s attention
○ Error: Need user to check the source of the error
○ Critical: Opps.

● Logs are stored in syslog of Linux
○ syslog handles storage, update, filter, etc.
○ Python and other library support for syslog

● Can be viewed by clients over the TCP protocol
● Levels can be set by configuration. Info level by default

Logging/Daemons - Logging -
Updated
● Logs are stored in syslog of linux by default
● They can also be stored in local files, printed to console or remotely to

other computer
● The exact method of logging storage is configurable per each logger, as

shown on the next slide

Configuration
[loggers]

keys=root

[handlers]

keys=sysLogHandler,consoleHandler

[formatters]

keys=simpleFormatter

[logger_root]

level=INFO

handlers=sysLogHandler

[handler_sysLogHandler]

class=logging.handlers.SysLogHandler

level=INFO

formatter=simpleFormatter

args=('/dev/log',)

[handler_consoleHandler]

class=StreamHandler

level=DEBUG

formatter=simpleFormatter

args=(sys.stdout,)

[formatter_simpleFormatter]

format=%(asctime)s - %(name)s - %
(levelname)s - %(message)s

datefmt=

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Interfaces
● TSV Communication

○ Send/Receive Packets of data from the four
PACMAN via CAN

○ will follow Application Layer Protocol
● GLV Communication

○ JGB act as a hub for groups of sensors via CAN
● DYNO Communication

○ Control Throttle via JGB board
○ Motor Controller CAN
○ Dynamometer - USB interface to read RPM and

torque, set valve

Interfaces - Updated
● TSV Communication

○ Send/Receive Packets of data from the four
PACMAN via CAN

○ will follow Application Layer Protocol
● GLV Communication

○ JGB act as a hub for groups of sensors via CAN
● DYNO Communication

○ Control Throttle via JGB board
○ Motor Controller CAN
○ Dynamometer - USB interface to read RPM and

torque, set valve
● Safety Loop control via CAN
● A virtual CAN driver is used for testing

CAN Interface

● SocketCAN -Linux Drivers

● Python-CAN

CAN Interface - Updated

● SocketCAN -Linux Drivers

● Python-CAN

Architecture: Server will send a Remote
request, can device will respond following the
data format in the next slide

JGB - CAN Frame

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Byte 0 - Header
Byte 1 - Measurement (High)
Byte 2 - Measurement (Low)

Header: Sensor IdCAN ID: Cockpit, TSI, GLV_Power
 200 250 275

Measurements:
Ambient Temp
LED status
Temperature
Voltage Current
Temperature SOC

JGB/TSV CAN Frame (Updated)

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Mask Empty Slot 1 Slot 2 Slot 3

● Slots will hold measured data
● Mask will define which Slot should be read by server

PACMAN - CAN Frame - Deprecated

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Header:
AMS # (Can be Zero)

Byte 0 - Header
Byte 1 - Measurement (High)
Byte 2 - Measurement (Low)

CAN ID: PACKMAN
 1, 2, 3, 4
 110, 120,130,140

Measurement:
Voltage
Current SOC
Fuse Temp
Temperature

Motor Controller CAN Frames (1 / 2)

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Byte 0 - RPM (High)
Byte 1 - RPM (Low)
Byte 2 - Motor Temp
Byte 3 - Controller Temp

Byte 4 - RMS Current (High)
Byte 5 - RMS Current (Low)
Byte 6 - Capacitor V (High)
Byte 7 - Capacitor V (Low)

Motor Controller CAN Frames (2 / 2)

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Byte 0 - Stator Freq (High)
Byte 1 - Stator Freq (Low)
Byte 2 - Controller Fault P
Byte 3 - Controller Fault S

Byte 4 - Throttle Input
Byte 5 - Brake Input
Byte 6 - System Bits
Byte 7 - (UNUSED)

CAN Microcontroller Board (JGB)

Automotive AVR
● CAN Bus
● LIN
● UART (RS-232)
Board Inputs/Outputs
● Internal Temperature
● 5 ADC Channels
● 3 PWM Channels
● 1 DAC Channel
● 6 GPIO/SPI
● 2 Differential ADC
● USB - UART

Microcontroller Firmware Design

UART
Send/Receive
Test/Debugging Information

CAN
SCADA Communication

TIMER
PWM, Sensor Timing

WATCHDOG TIMER
Crash Prevention

I/O
System Control Interface

Microcontroller Prototype Hardware

WORKING:
● ADC
● D2A
● PWM
● GPIO
NOT WORKING:
● UART
● CAN

Microcontroller Prototype Hardware -
Update

WORKING:
● ADC
● D2A
● PWM
● GPIO
● CAN
● UART

Request - Response Model
● Client Initiates Request
● Server Responds to Request
● JSON Object Passing
Unix-Style Commands
● Modular, Flexible, Expandable

Client - Server Architecture

CLIENT
(WIRELESS)

SERVER
(IP)

CLIENT
(LOCAL)

TCP TCP

Server Command Architecture

CMD NAME FLAGS OPTIONS ARGUMENTS

Server Command Syntax:

Syntax Notes:

CMD NAME -
Unique command name, identifies specific server task to carry out.

FLAGS -
Enables or disables specific command functionality or output.

OPTIONS -
Utilized to pass data from the client to server.

ARGUMENTS -
End objects affected by the server command.

All command Options, Flags, Arguments space separated.
Flags begin with the “-” character.
Options are followed by a string containing no spaces.

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Front-End User Application

● VSCADA Maintenance Application
○ Contains all required user functionality in one

program
○ Runs on remote PC (pit station PC) and vehicle

embedded computer with touchscreen or optional
USB input devices (mouse, keyboard, etc.)

○ Demo mode can be selected in the maintenance
application

○ Password is used to protect maintenance mode from
unauthorized access

Maintenance App -
Measurands/Input

Maintenance App - Add/Edit Sensor
Window

Maintenance App - Measurand
Graph Window

Maintenance App - Hardware/Output

Maintenance App - Rules

Maintenance App - Settings

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Round Robin Database (RRD)
● High performance data logging and graphing system for time

series data

● Uses circular buffer to store data

○ Data size does not expand with time.
○ Overwrites the data once it reach the starting point

● Framework for storing measurement averages, min,max and
derivative

● Graphical presentation for both stored and archived data.

RRD Creation
● Size of the database can be determined at creation

time.

● Specify the step time (rate at which the database
update the data)

● Specify the step time for archives too. Different time
steps can be applied for each archive.

Round Robin Archives (RRA)

● Average
● Minimum
● Maximum
● Last

Data Source

RRD for this project - Update
● Monitor the time series data.

● Take care of time and space complexity.

● Very simple in structure.

● Manipulate the stored data and archive the data. Only
store raw values and calibrate during retrieval and when
graphing (saves space and very little performance hit)

● Graphing tools. Images of graphs will be sent over
TCP; want to avoid client-side databases

Database and Configuration
● Database used for sensor list and most of the

configurations
● Text files used for setting internal logic (startup

procedures, logic switches, etc)

Database
● SQLite chosen for speed and simplicity
● Database auto generating and tearing down implemented for

testing
● Tables used include the following:

○ Table 1: restoring sensor information
■ sensor hierarchy
■ CAN id
■ sampling rate
■ rrd file reference

● This means, all data is going to be stored in RRD, but a
reference is kept in SQL as a cleaner solution

○ Table 2: type of sensor
■ analog in, analog out, digital in, digital out
■ need to know this for sending out data on CAN

Note: the speed of the queries is yet to be tested.

Database
○ Table 3: warning/error threshold

■ High and low values for warnings, errors and
failures

■ Reaching these values will trigger some certain
actions, which is referred in the next table

○ Table 4: warning/error actions
■ Each of the actions here is generic and

configurable
○ Table 5: calibration

■ have slop and offsets

SQL DB: ‘Sensor_Table’
Name id_CAN id_Sensor Type Sample_Rate

Overwrite_Period Units Factor Offset RRD_DB

id
Unique numerical identifier for each sensor.

id_CAN
Non-Unique 11-bit CAN bus id

id_Sensor
Non-Unique sensor id

Type
Enumerated value from ‘Sensor_Type’

Sample_Rate
How many often the sensor is read/written from
over a 60-second period of time.

Overwrite_Period
Persistence of data in hours.

Units
Enumerated unit from ‘Unit_Table’

Factor
Sensor scaling factor (double).

Offset
Sensor offset factor (double)

RRD_DB
Sensor RRD database location pointer.

SQL DB: ‘Sensor_Type’
id Description Type Direction

id
Unique numerical identifier link to ‘Sensor_Table’ for each sensor.

Description
A human readable description of the sensor/output.

Type
Sensor type description. Boolean value {0 - Analog, 1 - Digital}

Direction
Directionality of sensor. Boolean value {0 - Output, 1 - Input}

SQL DB: ‘Sensor_Levels’
id Warning_Low Warning_High Error_Low Error_High Fail_Low Fail_High

id
Unique numerical identifier link to ‘Sensor_Table’ for each sensor.

Warning_Low
A value below this threshold triggers a ‘WARNING’ state.

Warning_High
A value above this threshold triggers a ‘WARNING’ state.

Error_Low
A value below this threshold triggers an ‘ERROR’ state.

Error_High
A value above this threshold triggers an ‘ERROR’ state.

Fail_Low
A value below this threshold triggers a ‘FAILURE’ state.

Fail_High
A value above this threshold triggers a ‘FAILURE’ state.

SQL DB: ‘Sensor_Actions’
id Action_Name Priority_Level Effector_Name Effector_State

id
Non-Unique numerical identifier link to ‘Sensor_Table’ for each sensor.

Action_Name
A human readable name for the rule.

Priority_Level
A number between 0-5 describing the priority trigger for the action.

Effector_Name
An identifier link to ‘Sensor_Table’ for the effector sensor.

Effector_State
A numerical value which the Effector should be set to on occurrence of the event.

SQL DB: ‘Unit_Table’
id Unit Description Unit_Abrv

id
Unique identifier for each system unit.

Unit_Descrption
A human readable description of the unit.

Unit_Abrv
An abbreviation to use when displaying the unit.

id Name id_CAN id_Sensor Type Sample_Rate Overwrite_Period Units Factor Offset RRD_DB

1 TSV/Pack1/Voltage 0 1 Analog 20 24 V 1 0 /data/TSV/pack1/voltage.rrd

2 TSV/Pack1/Current 1 2 Analog 21 25 A 1 0 /data/TSV/pack1/current.rrd

3 TSV/Pack1/SOC 2 3 Analog 22 26 % 1 0 /data/TSV/pack1/SOC.rrd

4 TSV/Pack1/Fuse_Temperature 3 4 Analog 23 27 °C 1 0 /data/TSV/pack1/fuse_temperature.rrd

5 TSV/Pack1/AMS1/Temperature 4 5 Analog 24 28 °C 1 0 /data/TSV/pack1/AMS1/temperature.
rrd

6 TSV/Pack1/AMS1/Voltage 5 6 Analog 25 29 V 1 0 /data/TSV/pack1/AMS1/voltage.rrd

7 TSV/Pack1/AMS1/Current 6 7 Analog 26 30 A 1 0 /data/TSV/pack1/AMS1/current.rrd

8 TSV/Pack1/AMS2/Temperature 7 8 Analog 27 31 °C 1 0 /data/TSV/pack1/AMS2/temperature.
rrd

9 TSV/Pack1/AMS2/Voltage 8 9 Analog 28 32 V 1 0 /data/TSV/pack1/AMS2/voltage.rrd

10 TSV/Pack1/AMS2/Current 9 10 Analog 29 33 A 1 0 /data/TSV/pack1/AMS2/current.rrd

11 TSV/Pack1/AMS3/Temperature 10 11 Analog 30 34 °C 1 0 /data/TSV/pack1/AMS3/temperature.
rrd

12 TSV/Pack1/AMS3/Voltage 11 12 Analog 31 35 V 1 0 /data/TSV/pack1/AMS3/voltage.rrd

13 TSV/Pack1/AMS3/Current 12 13 Analog 32 36 A 1 0 /data/TSV/pack1/AMS3/current.rrd

SQL DB: ‘Sensor_Actions’

Configuration

● Bash style
● Read during startup, and bad syntax will

raise exceptions and the car will be disabled
from driving

● Switches can be updated and modified by
maintenance app

● Will be stored under same directory and
database in a separate folder

● Is accessible from debug port

Configuration
[loggers]

keys=root

[handlers]

keys=sysLogHandler,consoleHandler

[formatters]

keys=simpleFormatter

[logger_root]

level=INFO

handlers=sysLogHandler

[handler_sysLogHandler]

class=logging.handlers.SysLogHandler

level=INFO

formatter=simpleFormatter

args=('/dev/log',)

[handler_consoleHandler]

class=StreamHandler

level=DEBUG

formatter=simpleFormatter

args=(sys.stdout,)

[formatter_simpleFormatter]

format=%(asctime)s - %(name)s - %
(levelname)s - %(message)s

datefmt=

Acceptance Testing
● Show that VSCADA meets all requirements

as both:
○ part of integrated LFEV system
○ standalone software system

● Strive for minimum amount of test
configs/avoid recompiling software

● Main criteria:
○ Exception handling
○ Automated hardware detection/configuration
○ Logging, plotting and storing of measurands
○ Controlling system state

http://img.talkandroid.com/uploads/2011/08/seal-of-approval.jpg

Acceptance Testing (cont.)
Test configurations:

● Config A: VSCADA powered by 12 V power source
● Config B: VSCADA interfaced with GLV
● Config C: VSCADA interfaced with GLV and TSV
● Config D: VSCADA interfaced with GLV, TSV and

DYNO

Acceptance Testing (cont.)
T000 - System Startup/Shutdown and GLV
Data Logging
● Config B
● Tests:

○ Automatic startup without user interaction once GLV
power is provided

○ Logging of GLV measurands
○ Keeping of backup in case of unexpected shutdown

Acceptance Testing (cont.)
T001 - Safety Checking/Exception Handling
● Config D
● Tests:

○ Lighting of Ready LED on cockpit if all subsystems
are in a safe state when Ready-to-Drive buttton
pressed

○ Lighting of warning LEDs to warn user and prevent
drive mode being activated by Ready-to-Drive button
if unsafe condition occurs (exception handling)

○ Examples are open safety loop, voltage threshold
exceeded, temperature threshold exceeded, missing
config file for sensors

Acceptance Testing (cont.)
T002 - Maintenance App Operation
● Config D
● Tests:

○ Requirement of proper user credentials to login to
maintenance mode

○ Logging and storing of all subsystem measurands
(TSV pack/cell voltages, currents, temperatures,
GLV voltage, current, Dyno torque, RPM)

○ Allowing user to control all aspects of VSCADA such
as disabling safety checks, disabling data logging,
and programming individual shutdown rules

Acceptance Testing (cont.)
T003 - Drive Mode Operation

● Config D, then repeat with Config A
(simulated throttle)

● Tests:
○ Accurate reporting of measurands while driving
○ Logging of exceptions should unsafe condition occur

while driving
○ Demo operation of vehicle through software throttle

if other subsystems not available

Acceptance Testing (cont.)
T004 - Pack Charging/Discharging

● Config C
● Tests:

○ Displaying that accumulator is charging
○ Displaying that accumulator is discharging

Acceptance Testing (cont.)
T005 - Reliability Test

● Config D
● Tests:

○ System can run through series of drive
modes/simulations and maintenance configuration
changes over period of 24 hours without failure

Acceptance Testing (cont.)
T006 - Maintainability Test

● Config D
● Tests:

○ Novice user can solve frequently occurring problem
○ Expert maintenance individual can solve unexpected

problem
○ New sensors can be added to system without

software recompilation
○ VSCADA software can be installed easily using

“make/install” on different computer

Schedule
Week 9

Demonstration System Integration & Debugging
System parts designed in the past six weeks will be integrated into a cohesive system demonstration for
CDR, and for displaying system capabilities to other groups.

CAN Communication PCB Fabrication
The General Sensor CAN Communication PCB GERBER files will be ready for fabrication and sent out for
production.

Week 10
Preliminary Demonstration System

A primitive scada system will be functioning, and ready for demonstration to other groups. This system
should be capable of allowing groups to test communications between themselves and the SCADA system
in the future.

Week 11
SCADA Server Maintenance Mode

The main system server will be capable of performing all 'Maintenance Mode' tasks, and interfacing with all
'Maintenance Mode' client interfaces.

QA Report Submitted
Deliverable D006 (QA Report) will be submitted.

Schedule cont’d
Week 12

System Integration & Debugging
Any remaining components not added to the SCADA system will be added at this time. Debugging and
integration into other vehicle sub-systems.

SCADA Server Demo Mode
The main system server will be capable of performing 'Demo Mode' tasks.

Week 13
Final ATR Report Submitted

Deliverable D005 (ATR Report) will be submitted.

System Integration & Debugging
Any remaining components not added to the SCADA system will be added at this time. Debugging and
integration into other vehicle sub-systems.

Dynamometer Communication Library
The main system is capable of sending messages to the Huff Box over serial ports.

Schedule cont’d
Week 14

System Integration & Debugging
Any remaining components not added to the SCADA system will be added at this time. Debugging and
integration into other vehicle sub-systems.

System Documentation
All project documentation will be finalized and completed.

Completed Maintenance Manual Submitted
A VSCADA Maintenance Manual Working Draft will be submitted.

Week 15
Final Report & Maintenance Manual Submitted

Deliverable D003 (Final Report) will be submitted.

System Errata Documentation
Any known bugs, and system errata will be documented for use by future students.

Budget
Item/Group Total

SCADA

Embedded Computer System 270
Dashboard LCD display and
controller 80

Wireless Radio 50
Slave Sensor Micro Controller
Hardware 100

Debugger 80

Programmer 10

Total 590

Budget: 715

Other Items Which Will Be Addressed -
Update
● Brownouts/System Power Loss Handler needs to be designed
● To go along with this, crash handling system needs to be designed
● Watchdog timer exists and has been tested on main board, will be

integrated into code
● Timing diagrams will be made and inspected a little later on in the

database process
● UML diagrams will be auto-generated using code and comments with

Doxygen; any missing or incorrect diagrams will be created or modified
manually

● Other documentation such as API docs, code comments following
language specific specifications, etc. will either be created by hand or
generated with Doxygen

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

http://ops.fhwa.dot.gov/publications/seitsguide/images/image068.jpg

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Concepts of Operation
● Generate a torque curve
● Develop a software simulation of the car
● Develop a hardware simulation of the car
● Determine the car gear ratio

System Requirements
● Motor/Dyno Selection
● Motor Controller
● Software

○ Data Acquisition
○ Throttle Control

● Interfaces
○ VSCADA
○ GLV
○ TSV

● Safety

Motor Selection
● HPEVS AC 50-27.28

Photo: HPEVS

Dynamometer Selection
● Huff HTH-100

Motor Controller
● Curtis 1238R-7601

Photo: evwest.com

Interfaces
● VSCADA - Interface for data acquisition and

throttle control
● GLV - Interface for power and data

transmission
● TSV - Interface to power supply

Software
VSCADA - Dyno
● Data Acquisition

○ RPM
○ Torque
○ Temp - Motor and Controller
○ RMS Current
○ Voltage

● Throttle Control

Safety
● Emergency Shutoff

○ Must be have an emergency stop
○ Must be shut down when GLV is down

● Oil Temperature Shutoff
○ Must shut down when temperature limit is exceeded

● Galvanic Isolation
○ Must separate high and low voltage subsystems

● Motor Controller Contact Shield
○ Prevents accidental contact with terminals

High-Level Design
● ICD Layouts
● HUFF - VSCADA Interface
● Motor Controller

○ Cooling
○ Safety

● Safety Shutoff
● Throttle
● Galvanic Isolation

ICD Layout
● Two configurations

○ Dyno Testing Configuration:

ICD Layout
● Two configurations

○ Integrated Design Configuration:

Huff - VSCADA interface
● USB interface
● Utilizes serial communication
● Based on a call and response system
● Used to acquire data and set values
● Protocol is defined by the chip on data

acquisition board

Motor Controller Cooling
● Must regulate MC temperature

○ Storage ambient temperature range:-40°C to 95°C
○ Operating ambient temperature range:-40°C to 50°C
○ Internal heatsink operating temperature range:-40°C

to 95°C

● Utilize a Water Cooling system
○ Pump→ MC→ Radiator→ Pump
○ Mounted Cooling Housing
○ Effectiveness to be determined upon delivery of

parts

Motor Controller Safety
● Must prevent conductive injury from MC

ports
○ High Voltage

● Cover all electrical hazards to prevent
accidental contact
○ Use non-conductive plastic cover

Safety Shutoff
● Requirements -

○ Must include emergency stop
○ Must include temperature shutoff

● Design -
○ Use the power supply control

inputs. These control mechanical
contactors.

Conditions to trip the Safety Loop
● Overcurrent
● Current Sensor Fault
● Precharge Fail
● Severe Undertemp
● Severe Overtemp
● Severe Overvoltage
● Main Open/Short
● Main Contactor Welded
● Main Contactor Did Not Close
● EEPROM Failure
● Parameter Change Fault
● Motor Open

○ U, V, or W not connected
● VCL Run Time Error
● OS General Fault
● Motor Characterization Fault
● Motor Type Fault
● VCL/OS Mismatch
● Illegal Model Number

Throttle
● Must control the throttle input of the MC

○ Throttle input is 0 to +5 volts
○ VSCADA must be connected
○ Must be scriptable for testing

● Use two systems:
○ Use a VSCADA CANbus node with an

analog output for the integrated system

○ Use an Arduino connected over USB to
control an analog output

Galvanic Isolation

● High/Low voltage CAN must be separated
● High/Low Voltage Throttle must be

separated

Layout Review:

Detailed Design
● Simulations

○ Motor
○ Car
○ Track

● Safety
○ Independent shutoff
○ Insulating covers

● Throttle
○ Independant solution
○ VSCADA solution

● Motor Controller
○ Isolation
○ Parameters
○ Wiring Diagram
○ Cooling
○ Safety

● Room Wiring
○ Testing config
○ Integrated config

Simulation Block Diagram

Simulations - Motor
● dq0 Circuit Equivalent Circuit
● Transform 3-phase circuit into 2 phases for

easier analysis
● MATLAB
● Simulink

AC Induction Motor Model:
dq0 Transformation

Simulation - Torque Response

Time (sec)

S
pe

ed
 (r

pm
)

To
rq

ue
 (l

b-
ft)

Simulations - Car
Static
● Static Friction
Dynamic
● Air Drag
● Dynamic Friction
● Turn Radius
● Momentum

http://www.asawicki.info/Mirror/

Simulations - Track
Course Layout using arrays to match
specifications of courses in SAE EV rules
● Position on the track
● Angle of incline and decline
● Angle of curves
● Embankments
● Throttle input
Course Parameters
● Coefficient of friction (dry, damp, wet)

Safety - Independent Shutoff
● Use the input control lines

○ Directly linked to mechanical contactors

● Interface is a 37-pin D-Sub connector
○ Need only the start and stop inputs

Safety - Independent Shutoff
● Solution: simple rack mounted unit

● The extra panel will be removed in
integrated system
○ The GLV emergency stop will be integrated into the

power supply

Safety - UPDATE

● Need to control throttle from a computer
○ Arduino with USB connection

● No analog outputs
○ Low pass filter on a PWM

● Scripting
○ Write values in a python script

Throttle - Independent Solution

http://arduino.cc/en/uploads/Main/ArduinoMega2560_R3_Fronte.jpg

https://www.python.org/static/community_logos/python-logo.png

Python script writes PWM
values, which are filtered to
analog voltages

Throttle - Independent Solution

Throttle - VSCADA Solution
● USB connection from VSCADA to Huff Box
● Serial communication
● Call and response
● Protocol dictated by DAQ chip
● Generate PWM signal

○ Relates RPM to voltage
○ PWM is low pass filtered

Motor controller - Isolation
● Isolates motor controller from GLV systems

○ Isolate CANbus
■ Using TI ISO1050DUBR
■ Voltage step down using LM7805

○ Isolate throttle
■ Using 6N135 optocoupler
■ low pass filter PWM signal

Motor Controller - Parameters

Motor Controller - Wiring
Testing w/ Power Supply

Motor Controller - Wiring
Testing w/ TSV Packs

Motor Controller - Wiring
Suggested in-vehicle wiring

Safety - Insulating Covers
● Plastic Cover

○ Non-conductive
○ Transition temperature higher than cutoff temp

● Aluminum connecting rods

Motor Controller - Cooling

Room Wiring - Testing Config

HV Lines

Huff Sensors

Computer links

CANbus

Room Wiring - Integrated Config

HV Lines

Huff Sensors

Computer links

CANbus

System Integration
● Two configurations

○ Dyno Testing Configuration
○ Integrated Design Configuration

Dynamometer
● Dyno Testing Configuration

○ Utilizes Windows PC with software
○ Records RPM and Torque
○ Controls dynamometer

● Integrated Design Configuration
○ Utilizes VSCADA computer
○ Records RPM and Torque
○ Controls dynamometer

System Wide
● VSCADA

○ CAN data acquisition
○ Dyno data acquisition and control
○ Throttle

● TSI
○ Galvanic isolation from TSV packs

● TSV
○ Supplies power

Budget
● Wires/Tubing: $203.92

○ Water cooling tubes - $15.30
○ Power supply cables - $188.62

● Transistor/Electrical Parts - $43.22
○ Button switches - $15.76
○ Transistors - $27.46

● Connectors - $216.55
○ Power locks - $214.36
○ Pin Connector - $2.19

● Total - $463.69

Roadmap
10. Meet the Afternoon Teams
11. Interface Control and Assemblies Review
12. Vehicle Supervisory Control and Data Acquisition

(VSCADA)
a. Daemon
b. Interfacing
c. User Applications
d. Data Storage

13. Dynamometer (DYNO)
a. Decomposition and Definition
b. Integration and Recomposition

Unit/Device Testing
● Throttle Testing
● Safety Shutoff
● Galvanic Isolation

Throttle Testing
● Independant Solution - T001-2

○ Using Arduino system
○ Sweep the throttle in increments of 100 RPM
○ Value must be within 5 RPM with 90% confidence

Safety Shutoff
● Emergency Stop - T000-1

○ Press the stop, check that the system powers down

● Oil Temp. Shutoff - T000-3
○ Heat up sensor, check that the system powers down

Galvanic Isolation
● Tested using an ohmmeter to measure

resistance
○ Ensure ground on both sides
○ Grounds are not connected

● Data Acquisition
○ Verification tests for:

■ Torque
■ Velocity
■ Current
■ Voltage
■ Temperature
■ Load control

● Simulation Results Comparison

Subsystem Verification

● Verify sensor accuracy - T001-1
○ Torque - verified with first principles

■ Calibrate with weights on the arm
■ Verify calibration with different weights

Data Acquisition

● Verify sensor accuracy - T001-2
○ Motor Velocity - redundant measurements

■ Dynamometer encoder
■ Motor encoder
■ Handheld tachometer

○ Verified statistically

Data Acquisition

http://www.abqindustrial.net/store/images//products/ET-2109LSR/main_small.jpg

● Verify sensor accuracy - T001-3
○ Motor Current - redundant measurements

■ Motor controller output
■ Clamp sensor

○ Verified statistically

Data Acquisition

http://www.hiokiusa.com/images/products/m9709.gif

● Verify sensor accuracy - T001-4
○ Motor Voltage - redundant measurements

■ Motor controller output
■ Power supply reading

○ Verified statistically

Data Acquisition

http://www.magna-power.com/products/programmable-dc-power-supplies/ts-series

● Verify sensor accuracy - T001-5
○ System Temperature - redundant measurements

■ Motor controller output (Motor/Controller temp.)
■ Handheld sensor

○ Verified statistically

Data Acquisition

http://www.chinoamerica.com/products/sensors/mc1000/img/sensor_mc1000.jpg

● Verify sensor accuracy - T001-6
○ Load Variance - check torque response

■ Use steady motor RPM
■ Vary load and check that torque varies

Data Acquisition

http://curriculum.vexrobotics.com/sites/default/files/7.7.1%20Torque%20vs.%20Speed.PNG

● Using the graph of torques that were
inputted to the motor in simulation to create
scripts

● Serialy control the valve of the dynamometer
to follow a similar curve.

● Correlate the data acquired from model and
test set-up

Simulation Results Comparison

System Verification
● VSCADA Tests

○ Data acquisition
○ Throttle control

● TSI Tests
○ Checks for galvanic isolation

● TSV Pack Tests
○ With 4 packs
○ With 1 pack

VSCADA Tests
● VSCADA data acquisition via CAN
● VSCADA data acquisition from Huff Box
● VSCADA throttle control

○ Uses data from CAN and Huff Box
○ Control Dynamometer valve via Huff Box

TSI Tests
● Run the dynamometer with the TSI attached

○ T002-4 (assumes the TSI works properly)
○ If the system powers down:

■ It is not galvanically isolated
○ If the system runs:

■ It is properly isolated

TSV Tests
● Run the dynamometer with TSV power

○ If 4 packs have been completed:
■ Connect the packs to the TSI

○ If only 1 pack has been completed:
■ Connect the pack in series with the power supply
■ Power supply will make up voltage difference

System Validation
● Gear Ratio
● Torque Curve
● Final Demonstration

Gear Ratio
● Single Gear
● Top speed 80 mph
● 6500 rpm

http://www.technologystudent.com/gears1/gears5.htm

Torque Curve
● At minimum:

○ Must show velocity vs. torque at an estimated load

● Goal:
○ Will show velocity vs. torque at several load points
○ Will show power consumption

● Ideal:
○ 3D graph of velocity, torque, and load

Budget
● Initially Allocated Money: $5000

○ Dyno - $148
○ SCADA - $715
○ GLV - $1397.90
○ TSV - $2739.10

Budget
● Money Spent So Far

○ Dyno - $471.37
○ SCADA - $448.37
○ GLV - $618.99
○ TSV - $2152.08

● Total Spent - $3691

Budget

● Money Remaining:
○ DYNO - $323.37
○ SCADA - $266.63
○ GLV - $778.91
○ TSV - $587.02

● Total Remaining:
$1309

