VSCADA Preliminary Design Report

PDR Covering the LFEV Software Design
Road Map

- Resource Availability
- Project Overview
- Risk Assessment
- Requirements Analysis
- System Design and Subsystem Overview
- Interface
- System Control States
- System Test Plan
- Software Maintainability Plan
- Cost Analysis
- Team Schedule Overview
Resource Availability

● Need to find a balance of the three resource components
● Time:
 ○ Limited time (need to be finished earlier)
 ○ Flexible schedule between individuals
● Resources
 ○ ~$1000
 ○ 24 hours available computer labs
 ○ Advice from Professors
 ○ Design from previous years
● Scope
 ○ Need to be cut down
 ○ Major structure done in week 9
 ○ Other requirements can be addressed later
VSCADA Interface

cockpit box

Embedded System
- debug
- ethernet
- CAN
- Video

To Dyno Computer
- RF link
- io

To packman
- ethernet
- CAN
- Video

To Pit Computer
- linux
- microcontroller
- sensor

Motor Controller
- linux
- dashboard

VSCADA Interface

image reference: github, microsoft
Deliverable

- **Maintenance Mode**
 - Minimal restriction, ability to overwrite config files
- **Drive Mode**
 - Minimal display, load and clear
- **Demonstration Mode**
 - Pre-programed, labelled “Demo”
- **API**
- **SDK**
- **Database**
- **Datalogging**
- **Configuration management, no recompile**
Requirements Out of Scope

- Mobile App (~S009)
- Automatic Hardware Configuration (still check for sensors) (S017)
- GPS (S034)
- Long-term shutdown mode (S023)
- Plug-in and forget charging (S025)
- Plot data (S038)
- Dynamometer data acquisition (S042)
- Automated Charging of TSV (S013)
- Pre-Charge Discharge Circuits (EV 4.9)
Risk Assessment

- Coding Style
- Maintenance mode
- Warning/Fault Detection
- On-board Computer Handling
- Project Physical & Mental Health Effects
Requirements Analysis

● Back End Software
 ○ GLVIS - Grounded Low Voltage Interface Software
 ○ TSVIS - Tractive System Voltage Interface Software
 ○ MIS - Motoro Interface Software
 ○ DB - Data Base
 ○ DAA - Data Acquisition and Analysis
● DOC - Documentation
● Front End Software
 UI- User Interface
 Comm - Communication
VSCADA gathers information from other systems in electric vehicle and monitors these systems.

Communicate with three different systems.
- TSV(PacMan) using Ethernet
- GLV using CAN bus protocol
- Dyno(Motor Controller) using CAN bus protocol

Safety loop is also included in case of emergency and system shut down.

Operates on Linux OS.
System Design Overview
System Hierarchical BreakDown

- VSCADA is divided into two subsystems frontend and backend.
- Backend and Frontend are further divided into smaller subsystems.

Frontend (User Interface)
- Dashboard Interface
- Mobile Interface
- Pit Station Interface
- Maintenance Mode
- Drive Mode
- Demo Mode

Backend
- Data Acquisition
- Vehicle control
- DataBase
- Computer System
Fig. 2. System Hierarchical Breakdown
Interface

TSV
General Sensor Interface

GLV
General Sensor Interface

DYNO
General Sensor Interface
Motor Controller (CAN)
System Control States

- Flowcharts created represent:
 - System Startup Logic
 - Drive Mode
 - Maintenance Mode
 - Demonstration Mode
Startup States
Drive Mode States
Maintenance Mode States
Demonstration Mode States

1. START DEMO MODE
2. Load Config
3. Config Load Error?
 - No: Run Demo
 - Yes: Error Display
4. Error While Running
5. User Acknowledgement
6. EXIT DEMO MODE
Acceptance Test Strategy

- Show that all requirements are met
- High-level outline to be expanded into ATP
- Compliance can be proved by
 - Analysis
 - Inspection
 - Test
ATP Test Outlines

● T000 - System Startup Test
 ○ Tests successful VSCADA startup on GLV power without human interaction

● T001 - TSV Communication Test
 ○ Tests communication of VSCADA with Pacman using 2014 protocol

● T002 - System Failure Recovery Test
 ○ Tests ability of system to recover in event of unexpected failure
ATP Test Outlines (cont.)

● T003 - Motor Controller Test
 ○ Tests ability of VSCADA system communicating with motor controller

● T004 - User Interface Test
 ○ Tests simultaneously functionality across all physical interfaces

● T005 - Data Logging Test
 ○ Tests successful and accurate logging and plotting of measurands
ATP Test Outlines (cont.)

- T006 - Wireless Link Communication Test
 - Tests successful communication between interfaces with minimal latency over wireless link
- T007 - Hardware Detection Test
 - Tests autodetection of sensors without software recompilation
- T008 - Rules Test
 - Tests setting of user defined alarm/shutdown rules
Cost Analysis

Embedded Computer
The ‘Brain’ of VSCADA
Embedded Linux System

LCD Display
Driver Dashboard Display

Miscellaneous Hardware
Supporting Hardware
Connectors
Unexpected Costs

<table>
<thead>
<tr>
<th>EXPENSE DESCRIPTION</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Computer</td>
<td>$200.00</td>
</tr>
<tr>
<td>Dashboard LCD Display</td>
<td>$100.00</td>
</tr>
<tr>
<td>Wireless Radios</td>
<td>$100.00</td>
</tr>
<tr>
<td>Power/Safety Loop Electronics</td>
<td>$55.00</td>
</tr>
<tr>
<td>Interface Demonstration Microcontrollers</td>
<td>$60.00</td>
</tr>
<tr>
<td>Miscellaneous Hardware Costs</td>
<td>$235.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$750.00</td>
</tr>
</tbody>
</table>
Team Schedule Overview

- 15 week project
- first 9 weeks should design, build and test a simplified, working version
- Crucial deadlines:

<table>
<thead>
<tr>
<th>milestones</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Due Date</td>
</tr>
<tr>
<td>PDR presentation</td>
<td>2/10/2015</td>
</tr>
<tr>
<td>CDR presentation</td>
<td>3/11/2015</td>
</tr>
<tr>
<td>phase one demonstration</td>
<td>3/25/2015</td>
</tr>
<tr>
<td>acceptance test</td>
<td>4/13/2015</td>
</tr>
<tr>
<td>final demonstration</td>
<td>5/1/2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDR materials</td>
<td>2/8/2015</td>
</tr>
<tr>
<td>user manual</td>
<td>2/13/2015</td>
</tr>
<tr>
<td>calibration and accuracy</td>
<td>2/16/2015</td>
</tr>
<tr>
<td>acceptance test plan</td>
<td>2/19/2015</td>
</tr>
<tr>
<td>maintainability plan</td>
<td>2/26/2015</td>
</tr>
<tr>
<td>CDR materials</td>
<td>3/9/2015</td>
</tr>
<tr>
<td>QA audit report</td>
<td>4/8/2015</td>
</tr>
<tr>
<td>acceptance test report</td>
<td>4/17/2015</td>
</tr>
<tr>
<td>final report</td>
<td>4/27/2015</td>
</tr>
</tbody>
</table>
Team Schedule Overview (cont.)

- Timeline
- Has 12 main tasks, each with sub tasks
Team Schedule Overview (cont.)

- example part of the full task list
- shows tasks completed for PDR
- total of 103 tasks

<table>
<thead>
<tr>
<th>TASK NAME</th>
<th>ID</th>
<th>LENGTH (DAYS)</th>
<th>START</th>
<th>FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR Preparation</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of Approved System Level Test Plan</td>
<td>35</td>
<td>2</td>
<td>2/20</td>
<td>2/23</td>
</tr>
<tr>
<td>Safety Plan</td>
<td>36</td>
<td>1</td>
<td>2/13</td>
<td>2/13</td>
</tr>
<tr>
<td>Updated System Design/System report draft</td>
<td>37</td>
<td>4</td>
<td>2/16</td>
<td>2/19</td>
</tr>
<tr>
<td>Detailed Specifications for each subsystems</td>
<td>38</td>
<td>3</td>
<td>2/17</td>
<td>2/19</td>
</tr>
<tr>
<td>Enhanced requirement analysis</td>
<td>39</td>
<td>3</td>
<td>2/17</td>
<td>2/19</td>
</tr>
<tr>
<td>Program budget</td>
<td>40</td>
<td>2</td>
<td>2/23</td>
<td>2/24</td>
</tr>
<tr>
<td>Revised Program schedule</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update with current progress</td>
<td>42</td>
<td>1</td>
<td>2/25</td>
<td>2/25</td>
</tr>
<tr>
<td>List of completed/incomplete tasks</td>
<td>43</td>
<td>1</td>
<td>2/26</td>
<td>2/26</td>
</tr>
<tr>
<td>CDR material check/revisit</td>
<td>44</td>
<td>3</td>
<td>3/3</td>
<td>3/5</td>
</tr>
<tr>
<td>CDR write up/slide show</td>
<td>45</td>
<td>2</td>
<td>3/6</td>
<td>3/9</td>
</tr>
<tr>
<td>CDR Presentation</td>
<td>46</td>
<td>1</td>
<td>3/11</td>
<td>3/11</td>
</tr>
</tbody>
</table>
Team Schedule Overview (cont.)

- Individual tasks
 - Some are short tasks, required a day or two
 - Some are more complicated and may take more than one week, and the assignees are responsible for proposing his detailed weekly plan

<table>
<thead>
<tr>
<th>task id</th>
<th>task name PDR preparation</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Requirements Analysis</td>
<td>1/29/2015</td>
<td>2/3/2015</td>
</tr>
<tr>
<td>7</td>
<td>Risk Assessment</td>
<td>2/3/2015</td>
<td>2/4/2015</td>
</tr>
<tr>
<td>101</td>
<td>Research sensors/protocols already on the system and possible additions</td>
<td>2/4/2015</td>
<td>2/9/2015</td>
</tr>
<tr>
<td>22</td>
<td>User manual: Block Diagram</td>
<td>2/9/2015</td>
<td>2/10/2015</td>
</tr>
<tr>
<td>26</td>
<td>User manual: FAQ</td>
<td>2/10/2015</td>
<td>2/12/2015</td>
</tr>
<tr>
<td>39</td>
<td>Enhanced requirement analysis</td>
<td>2/17/2015</td>
<td>2/19/2015</td>
</tr>
<tr>
<td>44</td>
<td>CDR material check/revisit</td>
<td>3/3/2015</td>
<td>3/5/2015</td>
</tr>
</tbody>
</table>
Conclusion

- VSCADA is a subsystem of LFEV-Y3-2015 project. This preliminary design will serve as a baseline for the VSCADA team to enter a more detailed design phase.

- Moving forward, the VSCADA team will
 - expand and complete the Acceptance Test Plan
 - develop a user manual
 - finalize the breakdown of the system into implementable software modules
 - decide on the libraries and software tools to use
 - purchase the main interface, an embedded Linux device
Questions?