State Of Charge Algorithm

The battery pack needs to display state of charge of the cells and the battery pack as a whole.
Assuming that the cells are balanced, the SOC of the battery pack is the same as SOC of each
individual cell. The SOC algorithm implemented uses a coulomb counting and linear regression
to determine the current state of charge.

Coulomb Counting

The program uses coulomb counting to determine how much energy (in Amp-second) the
battery pack has. Coulomb counting is done by integrating the current over time.The battery cell
specification states that it has 60Ah so we can estimate 216000 (Amp-sec) for coulomb
counting.Therefore, 0% SOC will mean the battery has 0 coluomb count (ccount) and 100%
SOC will mean ccount of 216000.

Linear Regression

100

ccount

0 216000

As shown in the plot above, we can transform the SOC -ccount into a linear equation. The
equation is

y = alpha_gain * x + alpha_bias

where y = SOC, x = ccount, alpha_gain is 0.00046 and alpha_bias is 0.0 for the above plot.

In reality however, the cells might have more or less than 60Ah. We are also not discharging till
OAh. So, 0% SOC doesn’t necessarily mean 0 ccount and 100% doesn’t mean 216000 ccount.
The real graph could look like below assuming that the cell has a bit more than 60Ah.

100

i ccount
0y 216000

In such case, the alpha_bias and alpha_gain are going to be different. Therefore, we need an
algorithm that can determine the alpha_bias and alpha_gain over some period of time.

Algorithm
First, we need to assume that coulomb counting is consistent over charge cycles. While
this might be an invalid assumption, the algorithm should neglect it.

There are only two cases where we do not predict but actually know what the state of
charge of the battery pack is.
a) SOC is 100% when the battery pack has charged to the fullest.
b) SOC is 0% when the battery pack has been drained to the safety limit.

If we are coulomb counting, then we have data that look like below over charge cycles.

X (ccount) y (SOC)
210 0
217000 100
230 0
217880 100

This becomes a linear regression problem where we figure out the slope and intercept. Gradient
Descent algorithm starts with an initial bias and gain and slowly descent to the correct values. In
short, the equation used is

alpha_gain -= ccount * learning_rate * (predictedSOC - actualSOC);

alpha_bias -= learning_rate * (predictedSOC - actualSOC);

where, predictedSOC is the SOC predicted with the old bias and gain. Learning rate is the rate
at which we want the algorithm to approach the real values. A high rate will overshoot and a very
low rate will be very slow to reach the real values.

During trials and experiments, it was found that the gain approaches faster than the bias
because x is huge compared to y. Therefore, to slow down the gain approaching,
alpha_gain -= ccount * learning_rate * (predictedSOC - actualSOC) / 1000000000;

Display SOC

A disadvantage of gradient descent is that we will not get the real gain and bias values
immediately but will approach them. While the algorithm will reach the correct values over some
charge cycles, SOC calculation will be off until we reach the correct gain and bias values. One
of the requirements of SOC algorithm is that it displays 0% when discharged and 100% as soon
as charging ends.

To solve this, the predicted SOC is called real_SOC and a new variable called disp_SOC was
created. At the end of a discharge, real_SOC is around 20% if we haven’t reached the correct
bias and gain values. However, we want to display 0% instead. Therefore, we just create an
offset.

Offset = real_SOC - (0% or 100%) .

disp_SOC =real _SOC + offset.

This will ensure that the algorithm displays 0% or 100% at the end of discharge or charge cycle
until the correct gain and bias values are reached.

