Critical Design Review

LFEV-ESCM-2014
March 28, 2014
LFEV-Y2-2014

Continuation of Lafayette Formula Electric Vehicle-Energy Storage, Control, and Management (LFEV-ESCM) project for use in the Formula Hybrid Competition.

Website:
http://sites.lafayette.edu/ece492-sp14/
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
ROADMAP

- Introduction
- **2014 Deliverables**
- System Design
 - Pack Mechanical
 - AMS
 - PacMan
 - Charger
 - Motor/MCS
 - Software
- ATP
- Budget
- Schedule
2013 Achievements

- 3-cell pack
 - Good for demo, not for competition
- OBPC-AMS
 - Voltage - some minor range issues
 - Temperature - questionable accuracy
 - Current - java.util.Random
 - PIC Firmware - SOLID!
- SCADA - currently inoperable
- Pit Station - not user-friendly
- GLV - plug-in power supply, not battery
- IMD/Safety Loop
2013 INTEGRATED SYSTEM
2014 Goals - Key Deliverables

- AMS with improved sensor performance
- PacMan - Pack Manager
 - Monitor cell- and pack-level parameters
 - Display key parameters and status on-pack
 - Manage charging (Plug and Forget)
 - Meet Safety Loop requirements (EV3.6.7)
- One, 7-cell, competition-ready pack
 - Improved current path
 - Pack construction
- Pack Charger (part of Pit Station)
- Motor, MCS, & test stand
2014 Goals – Key Non-Deliverables

• Central VSCADA components
 o Driver Dashboard
 o Off-car data link
 o Pit Station data analysis

• 4 packs
 o Not enough budget or manpower for fab

• Other components (not originally included)
 o GLV system
 o Safety Loop
2014 Scope Considerations

- Aim for quality over quantity
- Object-Oriented Design - HW and SW
- Leave "hooks" for future teams
ROADMAP

- Introduction
- 2014 Deliverables
- **System Design**
 - Pack Mechanical
 - AMS
 - PacMan
 - Charger
 - Motor/MCS
 - Software
- ATP
- Budget
- Schedule
LFEV-ESCM System Block Diagram

Key:
- In Scope
- Out of Scope
- Completed By LFEV 2013 Team
PACK BLOCK DIAGRAM
Top-level State Diagram

- **Cell Depleted**
 - CR Open
 - SL Open
 - Supply Voltage Present

- **Boot-Up**
 - CR Open
 - SL Open

- **Active**
 - CR Open
 - SL Closed
 - Charger Connected

- **Charging**
 - CR Closed
 - SL Open
 - Charging Algorithm Termination

- **Charge Complete**
 - CR Open
 - SL Open

- **Fault**
 - Back to Previous State

- **Critical**
 - CR Open
 - SL Open

- **Fault Corrected**
ROADMAP

- Introduction
- 2014 Deliverables
- System Design
 - Pack Mechanical
 - AMS
 - PacMan
 - Charger
 - Motor/MCS
 - Software
- ATP
- Budget
- Schedule
2013 Pack Layout

- Current Formula SAE design
 - Recycled into next year's EV
- 2013 pack design is too long
 - Pack length: >53"
 - 2014 SAE car 46" between wheels
- Under-driver mount raises COG
2014 SAE Car Dimensions (not to scale)

SAE Car Body

- 46"
- 14"
- 43.5"

2014 Pack: 36" x 6"
2014 Pack Layout
2014 Pack Layout
2014 Pack Layout

Top View

Front View
Pack
Assemblies Overview

<table>
<thead>
<tr>
<th>Step</th>
<th>Assembly Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>Battery Cells</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>Negative Side Components</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>Positive Side Components</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>Negative Side End Wall</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>Positive Side End Wall</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>Bottom Plate Components</td>
</tr>
<tr>
<td>7</td>
<td>A7</td>
<td>Top Plate Components</td>
</tr>
<tr>
<td>8</td>
<td>A8</td>
<td>Face Plate with Upper Cover</td>
</tr>
<tr>
<td>9</td>
<td>L91</td>
<td>A2-4X1 Bridge</td>
</tr>
<tr>
<td>10</td>
<td>L92</td>
<td>A2.X X1 Bridge</td>
</tr>
<tr>
<td>11</td>
<td>L93</td>
<td>A2.X, 1 Bridge</td>
</tr>
<tr>
<td>12</td>
<td>L94</td>
<td>A2.X, 1 Bridge</td>
</tr>
</tbody>
</table>

LAFAYETTE
ELECTRICAL & COMPUTER
ENGINEERING
Assemblies 1-4
Assemblies 5-8
Pack Construction

Movies on website

http://sites.lafayette.edu/ece492-sp14/system-design/pack-mechanical/
Current Monitoring Shunt

FIVE SLOTS SIMILAR 0.05" WIDE
INNER AND OUTER SLOTS SIMILAR LENGTHS

NOTES:
QUANTITY: 1
NOT DRAWN TO SCALE
TOLERANCE +/- 0.005
THIRD ANGLE PROJECTION

DRAWN
BEN DRACE 3/26/2014

UNIT
INCHES

BATTER TERMINAL U STRAP

LAFAYETTE COLLEGE

SCALE

SHEET 1 OF 1
Current Monitoring Shunt

\[0.0706V / 600A = 118\mu\Omega \]
Fuse to AIR Bridge
2014 Improvements

- Reduced overall length of pack
- Added fan for cooling while charging
- Added wire duct to keep wires neat
- Added charging relays
- Added LCD to display pack information
- More robust SCADA connector
- Subassemblies for connectors
- Lower Resistance of Current Path
 - Reduce number of mating surfaces
 - 4 Bolted joints
 - 1 Press-fit joint
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
AMS - Function

- Monitor cell parameters
 - Voltage
 - Temperature
- Activate bypass circuit
 - Bypass timeout
- Communicate with PacMan via I2C
AMS - PADS PCB LAYOUT
AMS - PADS PCB Layout
AMS - Key Improvements

● Two physical mounting configurations
● One-piece PCB-mount heatsink
● Simplified cell voltage measurement
● Added remote reset capability
● Current-sensing relocated to PacMan
AMS - Cell Mounting

- Boards face the same direction
- + / - terminals alternate
AMS - Bypass/Heatsink

- **Bypass Circuit**
 - Balance cells during charging
 - Constant 3A bypass when active
- **Heatsink selection**
 - One-piece, board-mount
 - Mounts both resistor and transistor
- **Heatsink Performance**
 - $3.5^\circ\text{C/W @ 100 LFPM}$
 - 10.2W Power Dissipation at 3.65V
 - 36°C Rise
AMS - Cell Voltage

- Maximum PIC A/D input: 2.048V
- Sense circuit:
 - 3:1 resistor divider into unity buffer
 - Allows 0-6V sense range
AMS - Temperature

- Added duplicate mounting pad
- MCP9700 output connects directly to PIC
- -50 to +150°C range (limited by PIC)

Note: Populate only one location on board
AMS - Remote Reset

- Reset action duplicated
 - PacMan can reset AMS boards if necessary
 - Optoisolator to address ground reference
 - Activated by 3.3V on pins 1 and 2 of J2/J3

![Diagram showing 3.3V on RST_POS to reset board and pin connections for U6 and J3.]
ROADMAP

- Introduction
- 2014 Deliverables
- System Design
 - Pack Mechanical
 - AMS
 - PacMan
 - Charger
 - Motor/MCS
 - Software
- ATP
- Budget
- Schedule
PACK MANAGER (PACMAN)

New in-pack component: PacMan

- Aggregate OBPC-AMS sensor data
- Monitor pack voltage, etc.
- Operate safety loop
- Display pack status and parameters
- Communicate with central SCADA
- Support pack charging
PacMan Controller Choice

TS-8160-4200

Considerations:

• I/O capability (analog/digital) - 8 DIO, 6 ADC, LCD Header, COM Port
• Power Consumption - Around 0.7W
• Dev Environment - Debian Linux
• Communication - RS-232, I2C, RS-485
PacMan Breakout Board
PacMan Breakout Board

Main functions:

- Contains components for current measurement, fuse temperature measurement, and total battery voltage monitoring.
- Connect TS-8160-4200 to relays and AMS boards
- House external watchdog chip
- Provide Galvanic isolation for external communication ports
PacMan Breakout Board - Sensor Array

- 2 LTC4151 used for current sensing across shunt resistance
 - Discharge
 - Charge
- 1 of the LTC4151 used to measure total pack voltage
 - Scaled down by a factor of 16 for ADIN input (2.048V tolerance)
- 4 General Purpose Sensor inputs to TS-8160-4200 built-in ADCs
PacMan Breakout Board - Relay Control

- 3 Main Controls
 - Charging Relays
 - Charger Communication Relay
 - Safety Loop Relay
Charger Plugged in creates electrical connection between CHRG_DET1 and CHRG_DET2, pulling DIO pin 13 high

TS-8160-4200 can determine when the charger is physically plugged in by polling this pin’s input
PacMan Breakout Board - Charger Interaction

- Charger Relays - Controlled by DIO Pin 1
- Communications Relay - Controlled by physical charger detection
PacMan Breakout Board - Charger Interaction

- **Cooling Fan**
 - Activated whenever charger plugged in
 - Ebm-papst 4414F
 - 24VDC 5W
 - 2900 RPM
PacMan Breakout Board - Safety Loop Relay

- Safety Loop can be opened in 3 ways by PM
 - DIO Pin 5
 - Watchdog Timeout
 - Charger Detection
PacMan Breakout Board - AMS I2C

- I2C from AMS isolated, so pull-up resistors needed
- PM can reset AMS board hardware remotely by using DIO Pin 3
PacMan Breakout Board - Watchdog IC

- Watchdog Feed by DIO Pin 7
- 3.3->5V level shifter for DIO pin to watchdog input
- Upon timeout, SL opens
PacMan Breakout Board - Comm Isolation

- RS232 Port used on TS-8160-4200 side
- Feed into Isolated RS-485 driver
- Powered by GLV on isolated side
- TX_EN driven by DIO Pin 11
Top-level State Diagram

- **Cell Depleted**
 - CR Open
 - SL Open
 - Supply Voltage Present

- **Boot-Up**
 - CR Open
 - SL Open

- **Active**
 - CR Open
 - SL Closed
 - Charger Connected

- **Charging**
 - CR Closed
 - SL Open

- **Charge Complete**
 - CR Open
 - SL Open

- **Fault**

- **Critical**
 - CR Open
 - SL Open

- **Fault Corrected**

- **Back to Previous State**
PacMan States - Boot-up

- Process
- Conditional Action
- Decision

Flowchart:
- Process Startup
- Config file present?
 - Y: Load config and set parameters
 - N: Print Message to display and set default parameters
- Search for I2C devices
 - All 7 devices found?
 - Y: Print number (X) of I2C devices found
 - N: Search for Data Inquiry Serial Communication
 - Y: Serial Communication required?
 - Y: Proceed to CRITICAL STATE
 - N: Proceed to CRITICAL STATE
 - N: Print Warning Message
- Proceed to ACTIVE STATE

* indicates parameter (not finalized)
PacMan States - Active

Active State

After Boot-up

Set up Threads (Main, Request, Serial, etc.)

S0

From Charging, Charge Complete, Critical States

IDLE

Charger Detected?

N

Request Received or time over threshold?

N

Poll data and return results

SOC < 80%

Y

Charging State

Charge Complete

Y
PacMan States - Charging

Charging State

- From Active State
- Safety Poll Check
 - Safety Poll Check OK?
 - Y: Enable Charging Algorithm
 - N: Proceed to Critical Error State
 - CRITICAL STATE
 - Safety Poll Check
 - Safety Poll Check OK?
 - Y: Pack fully charged?
 - Y: CHARGING COMPLETE
 - N: Proceed to Critical Error State
 - N: Calculate current charge
 - S0

- N: Proceed to Critical Error State
PacMan LCD Display

System Parameters

- **PacMan - LFEV 2014**
- **V=2.3V**
- **I = 1.0A**
- **S.O.C = 20%**
- **E06 : Battery Low**

Status Message or Error Message
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
CHARGER

- "Smart Pack, Dumb Charger" model
 - Support Plug 'n Forget operation
 - No manual configuration
- Charge algorithm integrated into PacMan
Charger - TDK-Lambda GENH30-25

- Better not to build a "box"
 - Size
 - UL listing (EV8.2.11)
- 25A charge current
 - Manuf. recommended 0.3-0.8C charge current
 - 2.5 hours for full charge
- Programmable via serial link
 - Pack can adjust parameters
- Pigtail connection (Anderson PowerPole)
 - Combine signals into one cable/connector
 - Eliminate hassle of bolted terminals
Charging Algorithm

- Constant-current, voltage termination
- Li Cells Require Balancing
 - Dissipative balancing
 - Charging cycle only
- Activating bypass
 - delta-V threshold between cells
 - Absolute voltage depends on many things
 - Varies widely across cells
 - delta-derivative threshold per cell
 - Does not rely on absolute voltage
 - More consistent across cells
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
Motor - HPEVS AC 5X 27.28

Weight: 85 lbs.
Horsepower: 71 hp
Torque: 120 ft.-lbs.
Voltage: 72-108 V
Current: 550-650 A
Max RPM: 6500 rpm
Motor Mechanical Drawings
Motor Power Graphs

HPEVS AC-50 Imperial Continuous Graph
96 volt
NON Vented No Fan Cooling

HPEVS AC-50 Imperial Peak Graph
96 Volts/650 Amps

LAFCOM
ELECTRICAL & COMPUTER
ENGINEERING
Motor Simulation

• Motor model designed in Simulink.
• Simulation derived from Kevin Schmid’s model during the 2013 project.
• Adapted for use with HPEVS AC-50 Induction motor.
• Used lookup tables along with graphs from manufacturer to derive motor behavior.
SIMULINK DIAGRAM
Simulink Diagram

[Diagram showing a Simulink model with various blocks and connections.]

- **Current** block with an arrow pointing to the 'Peak Torque' block.
- **Peak Torque** block with an input and output.
- **Test Torque** block with an arrow pointing to the 'If' block.
- **If** block with conditions: 'Then', 'Out', 'Else'.
- **Produced Torque** block with an input and output.
- **Load Torque** block with an input and output.
- **Mechanical System** block with inputs and outputs.
- **60/(2^p)** block with an output.
- **Scope** block with an input.
SIMULATION GRAPHS
SIMULATION GRAPHS
Motor Controller - Curtis 1238R

Max Power Rating (2 min): 73.6 kVA\textsubscript{RMS}
Voltage: 72-96 V
Max Current: 650 A\textsubscript{RMS}
Torque: 115 ft. lbs.
Motor and Controller Wiring Diagram
THROTTLE WIRING DIAGRAM

CURTIS PB8 THROTTLE ASSEMBLY

BLACK / WHITE POT HIGH

YELLOW / WHITE

PURPLE / WHITE POT LOW

RED / BLUE

GREEN

NORMALLY CLOSED INTERLOCK SWITCH**

COM

NC

WIRED TO

THROTTLE ASSEMBLY

RED

BLACK
THROTTLE

CONNECT GREEN WIRE

COMMON RED WIRE

NC

COM
Dynamometer - Huff HTH-100

Power: 120 VAC @ 10 A (standard wall outlet)
Torque Capacity: 150 ft. lbs.
Max RPM: 11250 rpm
Water Use: Self Contained
POWER SUPPLY – MAGNA POWER TSD100-250/208

- DC programmable power supply
- Output: 0-100 Vdc; 0-250 Adc; 25kW
- Digital front panel for ease of use
- Can use outlet already installed in room 401
- Provides necessary ranges to operate motor at realistic power
MCS and Test Stand Test Plan:

MCS and Test Stand Verification - This test will verify correct operation of motor while connected to a dynamometer on a test bench. It will verify the motor, motor controller and dynamometer are all functional.

Preconditions:
• Motor and dynamometer are each securely mounted to test bench. Motor and dynamometer are connected (if test requires dynamometer).
• Motor is connected to motor controller, which is plugged into a power supply.
• Area is prepared for safe operation of motor - all loose items are out of 15 safety area.
• Expected results from test are read aloud including maximum expectations for RPacMan and Torque so everyone knows when safe conditions have been exceeded.

Test Procedure:
• Turn on power supply to motor controller.
• Set-up any necessary configuration parameters on motor controller.
• Apply acceleration signal to motor and observe motor turning.
• Read data from display of dynamometer for more details.
• Turn off power supply and unhook from motor controller.
Estimated Cost

HPEVS AC 50 Motor Kit w/ Curtis 1238R Controller = $4,150
Huff HTH-100 Dynamometer = $9,975
TSD100-250/208 PSU = $15,115

Total = $29,240

Budget Request: $35,000

Other possible costs:

- Water pump for extensive testing
- Dedicated 120VAC main circuit
- Pipes for dynamometer
- Installation / Maintenance costs
Where it will go / Who is responsible

- Room 401 has existing 208 Vdc 3-phase outlet required for power supply.
- Dynamometer is self-contained and does not require external cooling.
- Can be stored in Room 401 when not in use. No student access.
- The ECE department has agreed to take responsibility for the assembly.
Why We Need It

- Proper pack testing requires realistic load (i.e. the proposed motor).
- To further along the LFEV progress must be made. Purchasing the motor is a large milestone.
- Next year's team has a lot of work to do. Purchasing the motor assures they will have time to test it and design the car around it.
- This project proposes many obstacles towards its completion. We’d like to eliminate this one.
WHY WE CAN’T WAIT

• Time is of the essence. As soon as the pack is ready, it needs to be tested under realistic load.

• Last year's team picked out a motor and controller. If we don’t make the purchase this semester, next year's team will have to waste valuable time doing work that has already been done.

• The LFEV would like to compete in 2015. This motor has to be purchased now if that will become a reality.
Why It’s In Our Scope

• Both the motor and controller are electrical components. Knowledge about both of those things are gained in ECE classes.

• Testing the motor requires an electrical input which can be best provided within the ECE department.

• As much as possible should be studied about the motor before integration with the chassis, especially the electrical parameters.
WHAT WE’RE ASKING FOR

$35,000 to cover the full cost of:

• Motor and Controller
• Test stand and dynamometer
• Power Supply
• Parts required for assembly and upkeep
• Potential Installation costs
• PC dedicated to test stand (data acquisition)
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
Issues with 2013 AMS design

1) AMS goes down once about every 5 messages

2) AMS returns corrupted data

3) AMS randomly sets its board address or bypass without being told to
Two noticed issues :-
1) AMS does not ask the master to wait after every I2C message.
2) Concurrent use of shared resources (or Read/Write Problems)
Suggested Solutions

- AMS or the slave holds the clock line, preventing the master to transmit additional bytes until the slave finishes processing the request

- Read/Write problems are prevented by making sure shared data cannot be read and written at the same time
Software Design

Environment

- single-board computer
- Debian Linux Kernel
- Programming Language C
Software Design

Functions of the software
The PacMan Program has 4 main functions. They are:-
1) Poll the data from Accumulator Management System (AMS)
2) Relay data gathered from AMS to Central System Control and Data Acquisition (SCADA)
3) Oversee charging the battery pack using cell balancing algorithm
4) Check if system parameters are within safe range

Goals
The key goals of the design are to:-
1) be as self-sufficient as possible with little human interaction
2) recover automatically from errors if certain conditions are fulfilled
3) perform multiple functions as the same time.
Use Cases

1. **Boot-up and configuration**
 1.1 - Auto-bootup PM program
 1.2 - Auto-configure system parameters, alarms, shut down rules and safety rules from config file
 1.3 - Set alarms, shut down rules and configuration parameters
 1.4 - Check for safety and follow safety rules

2. **Active State**
 2.1 - Auto-detects devices
 2.2 - Poll data from AMS boards through I2C
 2.3 - Relay data to the Central SCADA
 2.4 - Display battery pack information via LCD display
 2.5 - Log events, faults and exceptions

3. **Charging State**
 3.1 - Enter charging state automatically
 3.2 - Charge the battery pack by balancing individual cell charge levels
 3.3 - Display charging information via LCD display
 3.4 - Log charging information
Multi-threaded, Object-Oriented Design

Threads
- Main Controller
- Safety Checker
- Charger
- Data Relay

Interfaces/Functions
- AMS Data Poller
- Logger
- LCD display
Main Controller

- Setup program
- Start the threads
- Manage the threads
Config file

- Important System Parameters

 # I2C board addresses
 # Usage : AMSAddresses n1 n2 n3 n4 n5....
 # n1, n2 , n3,... etc are board addresses. If more cells are connected, their board addresses
 # should be separated by space
 AMSAddresses 01 02 03 04 05 06 07

- Shutdown Rules

 # Shutdown if system values are in unsafe condition
 # Usage: ShutdownSafety n
 # n is either true or false
 ShutdownSafety false

- Safety Rules

 # Temperature Upper Limit
 # Usage : UpperTempLimit n
 # n is the value in degree C
 UpperTempLimit 65
Loading Config

1. Load Config
 - Config file present?
 - Yes: Parse the config file
 - No: Prints Message that config file is not present

2. If config file not found error:
 - Raise E01 Config file not found error
 - Set default config parameters

3. Create config file containing default parameters

4. If config file format is correct:
 - Set config parameters from the file
 - Config loaded

5. If config file has an error:
 - Raises E02 Config file corrupted error
AMS Data Poller
I2C Commands for AMS

<table>
<thead>
<tr>
<th>Command #</th>
<th>Description</th>
<th>#Bytes Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x 10</td>
<td>Gets the cell voltage</td>
<td>2</td>
</tr>
<tr>
<td>0x 11</td>
<td>Gets the cell temperature</td>
<td>2</td>
</tr>
<tr>
<td>0x 12</td>
<td>Gets the pack charging current</td>
<td>2</td>
</tr>
<tr>
<td>0x 13</td>
<td>Gets the pack discharging current</td>
<td>2</td>
</tr>
<tr>
<td>0x 14</td>
<td>Gets the bypass resistor switch state</td>
<td>2</td>
</tr>
<tr>
<td>0x 15</td>
<td>Gets the slave/board address</td>
<td>2</td>
</tr>
<tr>
<td>0x 16</td>
<td>Gets the software version</td>
<td>2</td>
</tr>
<tr>
<td>0x 17</td>
<td>Gets 0x0042(test command)</td>
<td>2</td>
</tr>
<tr>
<td>0x 18</td>
<td>Gets the bypass time in minutes</td>
<td>2</td>
</tr>
<tr>
<td>0x 19</td>
<td>Gets charging coulomb count as well as the number of times the charging</td>
<td>8*</td>
</tr>
<tr>
<td></td>
<td>current was summed</td>
<td></td>
</tr>
<tr>
<td>0x 1A</td>
<td>Gets discharging coulomb count, as well as the number of times the</td>
<td>8*</td>
</tr>
<tr>
<td></td>
<td>discharging current was summed</td>
<td></td>
</tr>
<tr>
<td>0x 1B</td>
<td>Gets cell voltage and temperature</td>
<td>4</td>
</tr>
<tr>
<td>0x 1C</td>
<td>Gets the voltage, temperature and charging current of the cell</td>
<td>6</td>
</tr>
<tr>
<td>0x 1D</td>
<td>Gets the voltage, temperature and discharging current of the cell</td>
<td>6</td>
</tr>
<tr>
<td>0x 1E</td>
<td>Gets the time elapsed since the bypass switch has been set</td>
<td>6**</td>
</tr>
<tr>
<td>0x 00</td>
<td>Sets the bypass switch state</td>
<td>n/a</td>
</tr>
<tr>
<td>0x 01</td>
<td>Sets the board address</td>
<td>n/a</td>
</tr>
<tr>
<td>0x 02</td>
<td>Sets the bypass time in minutes</td>
<td>n/a</td>
</tr>
<tr>
<td>0x 03</td>
<td>Calls the function to test the watchdog timer</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Designed by 2013 Team.
Charger

Charger Started

- Checks State of Charge (SOC)
 - Yes: Raises E06 Battery Low No Charger error
 - No: SOC below threshold?
 - Yes: Checks ECG and E06
 - No: Wait on Condition Variable

- Power Supply Responds?
 - Yes: Enables Charging Power supply
 - No: Close Charge Relays

- Cell Balancing Algorithm
 - Yes: Print and log charging completed
 - No: Power Supply Connected?
 - Yes: Error flags set?
 - Yes: SOC 100%
 - No: Disable Power Supply
 - No: Open Charge relays
Data Relay

Listen to serial port for data request

Yes

Request Received?

Checks if request is in proper format

Request proper format?

Polls requested data

Returns requested data

Returns appropriate error message
Data Relay Communication Protocol

- Serial Communication
 8 bit, one start bit and one stop bit, with no parity bit

- End of message by End Of Transmission (ASCII 4)

- Acknowledgement “OK” or error message required for every write

Format
Pack number + Command + Argument(s)

Example
(Central SCADA) : 1 V? 1
(PM Board) : 1 OK
(PM Board) : 1 2.305 (will be in hex)
(Central SCADA) : 1 OK
Command List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V? n</td>
<td>Gets the cell voltage of ‘n’ cell. If ‘n’ is omitted, all cell voltages will be returned in the order of increasing cell numbers.</td>
</tr>
<tr>
<td>T? n</td>
<td>Gets the cell temperature of ‘n’ cell. If ‘n’ is omitted, all cell temperatures will be returned in the order of increasing cell numbers.</td>
</tr>
<tr>
<td>XT? n</td>
<td>Gets the temperature from external sensor ‘n’. If ‘n’ is omitted all external sensor readings will be returned in order of increasing sensor numbers.</td>
</tr>
<tr>
<td>C?</td>
<td>Gets the current in the discharge path of the battery pack.</td>
</tr>
<tr>
<td>BPSS? n</td>
<td>Gets the bypass resistor switch state of ‘n’ cell. If ‘n’ is omitted, all bypass resistor switch states will be returned in the order of increasing cell numbers.</td>
</tr>
<tr>
<td>ADDR?</td>
<td>Gets the PM board address.</td>
</tr>
<tr>
<td>CELLCNT?</td>
<td>List the addresses of I2C devices connected to it.</td>
</tr>
<tr>
<td>TEST?</td>
<td>Returns ‘42’. (Test Command)</td>
</tr>
<tr>
<td>BPST? n</td>
<td>Gets the bypass time in minutes of ‘n’ cell. If ‘n’ is omitted, all times will be returned in the order of increasing cell numbers.</td>
</tr>
<tr>
<td>SAFETY?</td>
<td>Gets the current state of the safety loop relay on the pack manager.</td>
</tr>
<tr>
<td>SOC?</td>
<td>Gets the current state of charge of the battery pack.</td>
</tr>
</tbody>
</table>
Error Message List

Unless the board needs to be reset, PM board will return error messages thus allowing CENTRAL SCADA to know the state of the system.

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBADFRMT</td>
<td>The format of the message is wrong or unknown. Usually happens when the message has missing spaces.</td>
</tr>
<tr>
<td>EBADCMD</td>
<td>The command is illegal or unknown.</td>
</tr>
<tr>
<td>EBADARG</td>
<td>The argument is in a bad format or missing.</td>
</tr>
<tr>
<td>ENOCELL</td>
<td>The specified cell is not connected or found. Checks with CELLCNT? command.</td>
</tr>
<tr>
<td>EERROR</td>
<td>This should not happen. This error message is returned when an unexpected error occurs within the PM board. This is the default error message if the none of the errors fits in the above categories. Checks the log file of PM board for more information.</td>
</tr>
</tbody>
</table>
Error Handling

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Safety</th>
<th>Charger</th>
<th>DataRelay</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01 : Config file not found</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E02 : Config file corrupted</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E03 : AMS not found</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>E04 : AMS error</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E05 : Unsafe System</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>E06 : Battery Low and no charger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E07 : Unexpected error</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Error Handling

1. Main Loop Started
2. Check for any error flag
3. Error is?
 - E02, E04, E07
 - Displays and logs appropriate error message
 - Exit all other threads
 - Wait for board reset
 - E03
 - Displays and logs appropriate error message
 - Checks if the flag is clear
 - Flag clear?
 - No
 - Checks if the flag is clear
 - Flag clear?
 - No
 - Checks if the flag is clear
 - Flag clear?
 - Yes
 - Resumes Safety thread and Charger thread
 - E05
 - Displays and logs appropriate error message
 - Checks if the flag is clear
 - Flag clear?
 - Yes
 - Resumes Charger thread
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software

• ATP
• Budget
• Schedule
Acceptance Test Plan Methods

- Verifies Requirements are met through Inspection, Analysis, or Testing
- 9 Specific Tests in ATP
 - Battery Pack Display and Safety Qualification
 - Low Current Discharge Test
 - Charge Cycle Test
 - Drop-Out Charge Test
 - High Current Discharge Test
 - RS-485 Communication with Off-Board Systems
 - MCS and Test Stand Verification
 - Reliability Test
 - Maintainability Test
ATP - Test Descriptions

- **T000 - Battery Pack Display and Safety Qualification**: Verifies safety loop can be opened by PM. Shows PM can display battery pack information to the user.
- **T001 - Low Current Discharge Test**: Verifies the battery pack can safely discharge at a low rate.
- **T002 - Charge Cycle Test**: Verifies the battery pack can be charged using the plug and forget charge algorithm.
ATP - Test Descriptions

- **T003 - Drop-Out Charge Test**: Verifies the battery pack can be charged even when the battery voltage is too low to operate the PM.
- **T004 - High current discharge**: Verifies the battery pack can safely discharge at the maximum rate (200A).
- **T005 - RS-485 Communication with Off-Board Systems**: Ensures PM can maintain RS-485 communications with external systems (Central SCADA).
ATP - Test Descriptions

- **T006 - MCS and Test Stand Verification**: Tests the motor, motor controller, and dynamometer together as a complete unit.
- **T007 - Reliability Test**: Ensures our system can run successfully through its various states over a 24-hour period.
- **T008 - Maintainability Test**: Demonstrates our system can be repaired in the event of both minor (blown fuse) and major failure.
ROADMAP

• Introduction
• 2014 Deliverables
• System Design
 ○ Pack Mechanical
 ○ AMS
 ○ PacMan
 ○ Charger
 ○ Motor/MCS
 ○ Software
• ATP
• Budget
• Schedule
Budget

<table>
<thead>
<tr>
<th>Budget</th>
<th>AMS</th>
<th>Wiring and Interconnect</th>
<th>Pack Electrical</th>
<th>Pack Mechanical</th>
<th>PM Board</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Spent</td>
<td>$210.50</td>
<td>$131.76</td>
<td>$633.94</td>
<td>$532.89</td>
<td>$813.43</td>
<td>$2,322.52</td>
</tr>
<tr>
<td>Original</td>
<td>$900.00</td>
<td>$500.00</td>
<td>X</td>
<td>$600.00</td>
<td>$1,000.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Revised</td>
<td>$700.00</td>
<td>$400.00</td>
<td>$700.00</td>
<td>$200.00</td>
<td>$1,000.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Remaining</td>
<td>$489.50</td>
<td>$268.24</td>
<td>$66.06</td>
<td>-$332.89</td>
<td>$186.57</td>
<td>$677.48</td>
</tr>
</tbody>
</table>
Original Budget

- BMS: $900.00
- Wiring and Interconnect: $600.00
- Pack Mechanical: $500.00
- PM Board: $1,000.00
Revised Budget

- BMS: $1,000.00
- Wiring and Interconnect: $700.00
- Pack Electrical: $400.00
- Pack Mechanical: $200.00
- PM Board: $700.00
Total Spent

- PM Board: $813.43
- Pack Mechanical: $633.94
- Pack Electrical: $532.89
- Wiring and Interconnect: $210.50
- BMS: $131.76
Remaining Budget

- BMS: $489.50
- Wiring and Interconnect: $265.24
- Pack Electrical: $66.06
- PM Board: $186.57
- Spent: $2,322.52
ROADMAP

- Introduction
- 2014 Deliverables
- System Design
 - Pack Mechanical
 - AMS
 - PacMan
 - Charger
 - Motor/MCS
 - Software
- ATP
- Budget
- Schedule
Schedule for April

April 2014

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing Mechanical Parts and PCB Prototyping

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>

Software Programming

Software Completed

<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
</table>

Quality Assurance and System Integration

<table>
<thead>
<tr>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
</table>

Acceptance Test Plan

<table>
<thead>
<tr>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>1</th>
<th>2</th>
<th>SDD</th>
</tr>
</thead>
</table>

Final Presentation
Wrap-up

Thank you for attending!
We appreciate your feedback.
QUESTIONS?