
The Einstein Constraint Equations:
An Introduction

Justin Corvino

Lafayette College
Easton, PA, U.S.A.

ESI-EMS-IAMP Summer School on Mathematical Relativity
July 28-August 1, 2014

Justin Corvino (Lafayette) The Einstein Constraint Equations July 28-August 1, 2014 1 / 71



Overview

Goals

• Understand how to derive the Einstein Constraint Equations.

• Explore the role of the constraints in the initial-value problem for
Einstein’s equation, and thus appreciate why it is of interest to
constraint solutions to the constraint equations.

• Introduce (one or more, as time permits) approaches for solving the
Einstein Constraint Equations.

• As time permits, explore the geometry of solutions of the constraints.
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Outline

Part I: The basics.

Introduction

• Derive the Einstein constraint equations.

• Initial data for the Einstein equation.

• Hamiltonian formulation; dynamics.

• Constraints operator and its linearization.

Modeling Isolated Systems

• Asymptotically flat solutions (AF) of the constraints.

• The energy and momenta of AF solutions, and the relation to the
constraints operator.

• Statement of Positive Mass Theorem.
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Outline

Part I: The basics (continued)

Constructing Solutions: Conformal Techniques.

• Conformal deformations; applications to AF solutions.

• The basic framework of the conformal method of Lichnerowicz and
York: goal is to effectively parametrize the moduli space of solutions.

• CMC case.

Part II. Topics, as time permits.

• Discussion of non-CMC case, recent works.

• Constructing New Solutions from Old: Gluing methods and a variety
of applications.

• Geometry of the constraints: Riemannian case of Positive Mass
Theorem.
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Curvature conventions

We define the curvature for an affine connection ∇ as
R(X ,Y ,Z ) = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z .

We use the index convections (and the Einstein summation convention)

R = R`ijk
∂

∂x`
⊗ dx i ⊗ dx j ⊗ dxk

and with metric g = 〈·, ·〉, Rijk` = 〈R( ∂
∂x i
, ∂
∂x j
, ∂
∂xk

), ∂
∂x`
〉 = Rm

ijkgm`.

Ricci curvature: Rjk = R``jk .

Scalar curvature: R(g) = g ijRij .
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The Second Fundamental Form

We will study the geometry of space-like hypersurfaces M inside a
space-time (S, ḡ), of dimension dim(S) = m + 1, where we will for
simplicity often take m = 3.

For the moment, let M ⊂ (S, ḡ) be an embedded submanifold, where
ḡ = 〈·, ·〉 is non-degenerate (Riemannian or Lorentzian, say).

We assume the metric ḡ induces a non-degenerate metric g (the First
Fundamental Form) on M. For the induced metric g , the Levi-Civita
connection ∇ is related to the connection ∇ of ḡ by

∇XY = (∇XY )Tan + (∇XY )Nor = ∇XY + II(X ,Y ).

For X and Y tangent to M, so that ∇XY −∇YX = [X ,Y ] is also
tangent to M, so that II(X ,Y ) = II(Y ,X ).
From this we can then see that II(X ,Y ) is tensorial in X and Y . The
symmetric tensor II is called the vector-valued second fundamental form.
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The Second Fundamental Form

In the case M is a hypersurface (dim(M) = m = dim(S)− 1), we let n be
a (local) unit normal field to M.
From 〈∇Xn, n〉 = 0, we see ∇Xn is tangent to M.

We also note that for X and Y tangent to M, 〈∇XY , n〉 = −〈Y ,∇Xn〉.

Scalar-valued second fundamental form

We define K̂ by
K̂ (X ,Y )n = II(X ,Y ) = 〈n, n〉〈II(X ,Y ), n〉n = 〈n, n〉〈∇XY , n〉n.
We let K (X ,Y ) = 〈−∇Xn,Y 〉 = 〈∇XY , n〉 = 〈n, n〉K̂ (X ,Y ).

We refer to K or K̂ as the scalar-valued second fundamental form.

In case (S, ḡ) is Lorentzian, 〈n, n〉 = −1 and so

K̂ (X ,Y ) = 〈∇Xn,Y 〉.
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The Gauss Equation

There are fundamental equations related the curvature tensor R̄ of ḡ , R of
g and the second fundamental form II (or K̂ = 〈n, n〉K ).
The Gauss equation relates the curvature tensor on the submanifold M to
that of the ambient manifold, with the difference measured using the
second fundamental form.

The Gauss Equation

For X ,Y ,Z ,W tangent to M,

〈R(X ,Y ,Z ),W 〉 = 〈R̄(X ,Y ,Z ),W 〉
+ 〈II(X ,W ), II(Y ,Z )〉 − 〈II(X ,Z ), II(Y ,W )〉

Hypersurface case:

〈R(X ,Y ,Z ),W 〉 = 〈R̄(X ,Y ,Z ),W 〉

+ 〈n, n〉
[
K (X ,W )K (Y ,Z )− K (X ,Z )K (Y ,W )

]
Justin Corvino (Lafayette) The Einstein Constraint Equations July 28-August 1, 2014 8 / 71



The Gauss Equation

Proof: The proof proceeds by decomposing terms in R̄(X ,Y ,Z ) into
tangential and normal components, and discarding normal terms that
disappear in the inner product with vectors tangent to M:

〈R̄(X ,Y ,Z ),W 〉 = 〈∇X (∇YZ + II(Y ,Z )),W 〉
− 〈∇Y (∇XZ + II(X ,Z )),W 〉 − 〈∇[X ,Y ]Z ,W 〉

and then again (similarly for the other term)

∇X (∇YZ + II(Y ,Z )) = ∇X∇YZ + II(X ,∇YZ ) +∇X (II(Y ,Z )).

Upon inner product with W (tangent to M), we obtain

〈∇X (∇YZ + II(Y ,Z )),W 〉 = 〈∇X∇YZ ,W 〉+ 〈∇X (II(Y ,Z )),W 〉
= 〈∇X∇YZ ,W 〉 − 〈II(Y ,Z ),∇XW 〉
= 〈∇X∇YZ ,W 〉 − 〈II(Y ,Z ), II(X ,W )〉.
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The Codazzi Equation

The Codazzi equation involves the normal component R̄⊥(X ,Y ,Z ) of
R̄(X ,Y ,Z ), whereas the Gauss equation involved the tangential
component of this vector.
For simplicity, we derive it only in the hypersurface case. Now,

R̄(X ,Y ,Z ) = ∇X (∇YZ + K̂ (Y ,Z )n)−∇Y (∇XZ + K̂ (X ,Z )n)−∇[X ,Y ]Z ,

the normal component is just (using ∇Xn is tangential to M)

R̄⊥(X ,Y ,Z ) = II(X ,∇YZ ) +
[
∇X (K̂ (Y ,Z ))

]
n − II(Y ,∇XZ )

−
[
∇Y (K̂ (X ,Z ))

]
n −

(
∇∇XYZ −∇∇YXZ

)⊥
=
[
K̂ (X ,∇YZ ) +∇X (K̂ (Y ,Z ))− K̂ (Y ,∇XZ )

−∇Y (K̂ (X ,Z ))− K̂ (∇XY ,Z ) + K̂ (∇YX ,Z )
]
n

since (∇∇XYZ )⊥ = II(∇XY ,Z ). By inspection, we see we have obtained
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The Codazzi Equation

The Codazzi Equation

For X ,Y ,Z tangent to M,

〈R̄(X ,Y ,Z ), n〉 = 〈n, n〉
(

(∇X K̂ )(Y ,Z )− (∇Y K̂ )(X ,Z )
)
.

Index notation

In index notation, we might write the Gauss and Codazzi equations as
follows, where i , j , k and ` indices are for components tangential to M,
and the n index indicates that the vector n is placed in the indicated slot
of the tensor. Gauss:
Rijk` = R̄ijk` + 〈n, n〉(K̂i`K̂jk − K̂ik K̂j`) = R̄ijk` + 〈n, n〉(Ki`Kjk − KikKj`).

Codazzi:
R̄ijkn = 〈n, n〉(K̂jk;i − K̂ik;j) = Kjk;i − Kik;j
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The Einstein Constraint Equations

Consider a hypersurface M in a space-time (S, ḡ), so that the induced
metric g on M is Riemannian. Let n be a (local) time-like unit normal
field.

We suppose that ḡ satisfies an Einstein equation (κ = 8πG
c4 )

GΛ(ḡ) = Ric(ḡ)− 1

2
R(ḡ)ḡ + Λḡ = κT .

The Einstein constraint equations relate the first and second fundamental
forms g and K on M.

They are obtained using the Gauss and Codazzi equations, together with
the information about the ambient curvature contained in the Einstein
equation.
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The Einstein Constraint Equations

Let J̃ν = −Tµνnµ = −Tµνnβ ḡµβ; we write J̃ = ρn + ~J, with 〈 ~J, n〉 = 0.

We let J be the one-form dual to ~J using the metric g on M.
If we let E1, . . . ,Em be a basis for TpM, with dual basis θ1, . . . , θm,

then we can write ~J = J`E` and J = Jiθ
i , with Ji = J`gi`. We let E0 = n

to give a basis {Eµ} of TpS.

It’s not hard to see (watch minus signs!) that ρ = T (n, n); this is the
energy density of matter fields as measured by an observed with
four-velocity cn.

Furthemore, J is (±c times) the corresponding observed momentum
density one-form: since n0 = 1, ḡ00 = −1, we have n0 = −1, and so

J i = −Tµinµ = T 0i , and
Jj = gj`J

` = ḡjµT
0µ = T 0

j = −ḡ00T
0
j = −ḡ0µT

µ
j = −T0j = −Tj0.

Dominant energy condition: J̃ is future-pointing causal: ρ ≥ |J|g =
√
J iJi .
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The Einstein Constraint Equations

The Einstein Constraint Equations

R(g)− ‖K‖2
g + (trgK )2 = 2κρ+ 2Λ

divg (K − (trgK )g) = divgK − d(trg (K )) = κJ.

In case m = 3, say, this is locally a system of four equations for (g ,K ),
forming an underdetermined elliptic system.

Let Λ = 0 for now. Vacuum case would be ρ = 0, J = 0.

Maximal case: trg (K ) = 0: R(g) = 2κρ+ ‖K‖2
g ≥ 0 (under DEC).

Time-symmetric case: K = 0: R(g) = 2κρ ≥ 0 (under DEC) .

In this case, the scalar curvature is proportional to the observed local
energy density.

Time-symmetric vacuum case: R(g) = 0.
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Deriving the Einstein Constraint Equations

We give the proof of the first constraint, the Hamiltonian constraint.

Proof: Let Ei be an orthonormal frame for TpM. We use the Gauss
equation (careful with the signs: 〈n, n〉 = −1):

m∑
i ,j=1

〈R̄(Ei ,Ej ,Ej),Ei 〉 =
m∑

i ,j=1

[
〈R(Ei ,Ej ,Ej),Ei 〉+ K (Ej ,Ej)K (Ei ,Ei )

− (K (Ei ,Ej))2
]

= R(g)− ‖K‖2
g + (trg (K ))2.

Again, 〈n, n〉 = −1, so that

Ric(Ej ,Ej) = −〈R̄(n,Ej ,Ej), n〉+
m∑
i=1
〈R̄(Ei ,Ej ,Ej),Ei 〉. Thus

m∑
i ,j=1

〈R̄(Ei ,Ej ,Ej),Ei 〉 = Ric(n, n) +
m∑
j=1

Ric(Ej ,Ej).
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Deriving the Einstein Constraint Equations

Recall the Einstein tensor: G = Ric(ḡ)− 1
2R(ḡ)ḡ .

m∑
i ,j=1

〈R̄(Ei ,Ej ,Ej),Ei 〉 = Ric(n, n) +
m∑
j=1

Ric(Ej ,Ej).

= 2Ric(n, n) + (−Ric(n, n) +
m∑
j=1

Ric(Ej ,Ej))

= 2Ric(n, n) + R(ḡ)

= 2G (n, n)

= 2(−Λḡ + κT )(n, n)

= 2Λ + 2κρ

Emphasis: 2G (n, n) = R(g)− ‖K‖2
g + (trg (K ))2.
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Deriving the Einstein Constraint Equations

As for the momentum constraint, we employ the Codazzi equation, which
we recall in index form: R̄ijkn = Kjk;i − Kik;j .

Proof: Since R̄jinn = 0, we have

Gin = R̄in =
m∑
j=1
〈R̄(ej , ei , n), ej) = −

m∑
j=1

R̄jijn = −
m∑
j=1

(Kij ;j − Kjj ;i )

Emphasis: Gin = −(divg (K )− d(trg (K ))i = −divg (K − (trg (K ))g)i .

Now, by the Einstein equation, Gin = κTin = −κJi , which finishes the
proof.
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Discussion

There are lots of solutions to the Einstein Constraint Equations. In fact, if
we don’t restrict T in any way, then any space-like hypersurface in any
Lorentzian manifold will satisfy the constraints.

If we impose restrictions on T , like the dominant energy condition, or the
vacuum condition T = 0, then that restricts the geometry of (S, ḡ) in
some way, but still, of course, any Riemannian hypersurface yields a
solution to the constraints.

Keep in mind the constraints form an underdetermined system, so in fact
we might expect there to be a wide variety of solutions. In fact, from the
point of view of the initial value formulation, this variety is useful for
attempting to model a variety of physical situations.
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Examples

Example

(S, ḡ) = (Rm+1, η), Minkowski space-time, η = −dt2 +
m∑
i=1

(dx i )2.

• M = {t = 0}. With the induced metric g , (M, g) ∼= (Rm, geucl) and
clearly ∇Xn = 0, so that K = 0. The constraints are trivial to verify.

• M = {−t2 + ‖x‖2 = −1}. (M, g) is congruent to hyperbolic space
Hm ∼= (Rm, gHm) of curvature −1. Moreover, since n = xµ ∂

∂xµ

(x0 := t), for Y tangent to M, ∇Y n = Y , so K = −g . One can
easily verify the vacuum constraints.
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Examples

If one imposes rotational symmetry on a solution to the Einstein vacuum
equation Ric(ḡ) = 0, one obtains the following solutions (G = 1, c = 1,
m = 3), with coordinates (t, x i ), r̃ = |x |, and gS2 = dΩ2 is the round unit
sphere metric:

The Schwarzschild solution

ḡS = −
(
1− 2m

r̃

)
dt2 +

(
1− 2m

r̃

)−1
dr̃2 + r̃2gS2 .

m is a constant of integration in one of the second-order ODE obtained; a
second constant has been re-scaled to 1.

m is called the mass.

Note that the space-time is asymptotically Minkowksian as r̃ → +∞.
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Examples

Example (Schwarzschild)

M = {t = 0} with induced metric gS = (1− 2m
r̃ )−1dr̃2 + r̃2gS2 .

gS must solve the vacuum Einstein constraint equation.

In fact, the second fundamental form vanishes:
〈∇ ∂

∂xi

∂
∂x j
, ∂∂t 〉 = 〈Γ0

ij
∂
∂t ,

∂
∂t 〉 = 0. (Easy exercise)

So K = 0 (time-symmetric), and the vacuum constraint equations reduce
to the vanishing of the scalar curvature: R(gS) = 0.
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Examples

We can re-write gS in a convenient form: gS = (u(r))4(dr2 + r2gS2)
Make a radial change of coordinate, using a positive increasing function r
of r̃ . We get

gS = (1− 2m
r̃ )−1

(
dr̃
dr

)2
dr2 +

(
r̃
r

)2
r2gS2 .

We arrange (
1− 2m

r̃

)−1/2 dr̃

dr
=

r̃

r

so that we can factor out of the metric gS to obtain the proposed
conformally flat representation of gS .

We can solve the ODE (by separation, and the substitution
r̃ = m + m coshw , and imposing r̃

r → 1 as r̃ → +∞) to get
r̃
r =

(
1 + m

2r

)2
.
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Examples

We thus obtain the following form of the Schwarzschild metric:

ḡS = −
(
1− m

2r

)2(
1 + m

2r

)2
dt2 +

(
1 +

m

2r

)4 (
dr2 + r2gS2

)
gS =

(
1 + m

2r

)4
gEucl is conformally flat, with R(gS) = 0, which

corresponds to the fact that
(

1 + m
2|x |

)
is harmonic in R3 \ {0}.

There is a higher-dimensional analogue too!

Example (Schwarzschild m > 0)

(Rn \ {0}, gS ,K = 0) with

gS =
(

1 + m
2|x |n−2

)4/(n−2)
gEucl.

Question: What if m < 0? Compare the area profile A(r) := Area(Σr ),
where Σr = {|x | = r} in the case m > 0 to the case m < 0.
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Initial Value Formulation

Note that the constraints come from imposing GΛ(ḡ)(n, ·) = κT (n, ·), and
as we saw above, this does not involve time derivatives of the space-time
metric, but can be expressed in terms of g and K on the slice. This is
qualitatively similar to Maxwell’s equations, where the divergence
equations must be satisfied at t = 0; this restricts the allowable initial data
for the electromagnetic fields.

The Einstein constraint equations are necessary for (M, g ,K ) to be a
space-like slice of a space-time (S, ḡ) satisfying the Einstein equation.
Question: Are the equations also sufficient, say in the vacuum case, or
with suitable matter models? We remark that we are not imposing the full
Gauss and Codazzi equations; in fact, we haven’t imposed the space-time
(S, ḡ) into which we are embedding (M, g ,K ) either!

Answer: Yes! Y. Choquet-Bruhat, 1952. (M, g ,K ) can be interpreted as
initial data for a Cauchy problem for Einstein’s equation, which in suitable
coordinates say, can be represented as a nonlinear hyperbolic system (cf.
Hans Ringström’s lectures).
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Initial value formulation

With the initial-value problem in mind, we proceed to describe space-times
split into a (3 + 1) product structure.
Consider a Lorentzian manifold (S = I ×M, ḡ), where I 3 0 is an interval,
and where the slices Mt = {t} ×M are space-like. We let g = g(t) be the
induced metric on Mt . Let n be time-like unit normal to the slices, parallel
to the space-time gradient of t, pointing in the same time direction as
∂
∂t = Nn + X , where 〈X , n〉 ≡ 0, and N > 0. N is the lapse function, and
X is the shift vector field. We can write the metric in local coordinates x i

for M, with X = X i ∂
∂x i

,

ḡ = −N2 dt2 + gij(dx
i + X i dt)⊗ (dx j + X j dt) (1)

Note that ḡ00 := ḡ( ∂∂t ,
∂
∂t ) = −(N2 − |X |2g ).

Also note that the Einstein summation convention here and in this section
will be over the spatial indices.
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Initial value formulation

If (S, ḡ) satisfies a certain form of the Einstein equation, say vacuum for
example, then the first and second fundamental forms (g(t),K (t)) of the
slices Mt form a family of solutions to the Einstein constraint equations.

We can seek to turn this around a bit: what if we prescribed (suitable) N
and X on I ×M (e.g. N = 1, X = 0 would be a simple suitable choice),
and seek to solve for g = g(t) so that

ḡ = −N2 dt2 + gij(dx
i + X i dt)⊗ (dx j + X j dt) satisfies the Einstein

equation (in vacuum, say) on S ⊂ I ×M, where S ⊃ {0} ×M?

What equation would this impose on g(t)? K (t)?
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Evolution of g and K

With our convention on K , we have
∇XY = ∇XY − K (X ,Y )n = ∇XY + K̂ (X ,Y )n, where X and Y are
tangent to a slice. We suppress the “t” subscript on Mt .
We will compute the time derivative of the induced metric and second
fundamental form.
Recall that the Lie derivative of a tensor field is given by the product rule;
for example, with connection D with [X ,Y ] = DXY − DYX ,

(LXT )(Y ,Z ) = X [T (Y ,Z )]− T (LXY ,Z )− T (Y ,LXZ )

= X [T (Y ,Z )]− T ([X ,Y ],Z )− T (Y , [X ,Z ])

= (DXT )(Y ,Z ) + T (DYX ,Z ) + T (Y ,DZX )

For example, for D = ∇ compatible with g (∇g = 0),
(LXg)ij = Xi ;j + Xj ;i , where a semi-colon indicates covariant
differentiation (whereas as a comma denotes a partial derivative):
Xi ;j = ∇X (∂i , ∂j) = (∇∂jX )i = ∂jXi − Γk

ijXk .
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Evolution of g and K

Let ∂i = ∂
∂x i

be a coordinate frame for M, and let ∂t = ∂
∂t . Using metric

compatibility, the torsion-free property of the connection, and the fact that
all the ∂µ commute, we have

∂gij
∂t

= ∇∂t 〈∂i , ∂j〉

= 〈∇∂i∂t , ∂j〉+ 〈∂i ,∇∂j∂t〉
= 〈∇∂i (Nn + X ), ∂j〉+ 〈∂i ,∇∂j (Nn + X )〉
= N〈∇∂in, ∂j〉+ N〈∂i ,∇∂jn) + 〈∇∂iX , ∂j〉+ 〈∂i ,∇∂jX 〉
= −2NKij + 〈∇∂iX , ∂j〉+ 〈∂i ,∇∂jX 〉
= −2NKij + X k

;igkj + X k
;jgik

= −2NKij + (LXg)ij = 2NK̂ij + (LXg)ij

where the semi-colon indicates covariant differentiation for the Levi-Civita
connection ∇ of g .
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Evolution of g and K

Evolution of g
∂gij
∂t = 2NK̂ij + (LXg)ij

Note that the evolution of g is basically the definition of the second
fundamental form, for which we can solve:

Kij = −K̂ij = −1
2N
−1
(
∂gij
∂t − (LXg)ij

)
.

Note: If we choose N = 1 and X = 0, we see ∂tgij = 2K̂ij .

A more laborious exercise determines the time evolution of K .

Evolution of K

∂K̂ij

∂t = N;ij + (LX K̂ )ij + N(R̄ij − Rij + 2K̂ `
i K̂j` − K̂ `

`K̂ij)
where R̄ij are components of Ric(ḡ), and Rij are components of Ric(g).
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Evolution of g and K

We indicate how to start the proof of the evolution of K̂ . We recall
∂
∂t = Nn + X .

Lemma

For Y = Y i ∂
∂x i

,

[n,Y ] = (n[Y i ] + N−1Y [X i ])
∂

∂x i
+ N−1Y [N]n.

In particular, then, [n, ∂
∂x`

]Tan = −N−1[X , ∂
∂x`

].

For future use, we also define K̂ 2
ij = K̂ik K̂`jg

k` = K̂ `
i K̂`j and

Hessg (N)ij = N;ij , ∆gN = trg (Hessg (N)) = g ijN;ij .
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Evolution of g and K

Proof: We just start computing. We extend K̂ to TpS by
K̂ (v ,w) = K̂ (vTan,wTan), where the tangential projection is given by
vTan = v + 〈v , n〉n, and recall that ∇∂in is tangent to M; in fact
∇∂in = K̂ikg

k`∂`:

∂tK̂ij = ∇Nn+X [K̂ (∂i , ∂j)]

= N(∇nK̂ )ij + NK̂ (∇n∂i , ∂j) + NK̂ (∂i ,∇n∂j) + X [K̂ij ]

=N(∇nK̂ )ij + NK̂ (∇∂in + [n, ∂i ], ∂j) + NK̂ (∂i ,∇∂jn + [n, ∂j ]) + X [K̂ij ]

= N(∇nK̂ )ij + NK̂ (∇∂in, ∂j) + NK̂ (∂i ,∇∂jn)

+ NK̂ (−N−1[X , ∂i ], ∂j) + NK̂ (∂i ,−N−1[X , ∂j ]) + X [K̂ij ]

= N(∇nK̂ )ij + NK̂ (K̂ikg
k`∂`, ∂j) + NK̂ (∂i , K̂jkg

k`∂`) + (LX K̂ )ij

= N(∇nK̂ )ij + 2NK̂ik K̂`jg
k` + (LX K̂ )ij

where in the last step we use the symmetry of K̂ .
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Evolution of g and K

It remains to relate ∇nK̂ to the curvature. Such a relation is given by a
Mainardi equation, computing an (n, n) component of the curvature,
applied to ḡ = −N2dt2 + gij(dx

i + X idt)⊗ (dx j + X jdt).

Mainardi equation

For 〈Y , n〉 ≡ 0 ≡ 〈Z , n〉,

〈R̄(Y , n, n),Z 〉 = −(∇nK̂ )(Y ,Z )− K̂ 2(Y ,Z ) + N−1Hessg (N)(Y ,Z )

The proof is a great exercise to see if you’ve digested all the various
relationships! To start you off:
(∇nK̂ )(Y ,Z ) = ∇n(K̂ (Y ,Z ))− K̂ (∇nY ,Z )− K̂ (Y ,∇nZ ). Write
K̂ (Y ,Z ) = 〈∇Y n,Z 〉 in the first term, and in the second and third term,
switch the order of covariant differentiation, which brings in commutator
terms. Remember to take tangential components inside K̂ . Turn the crank
and enjoy the ride.
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Evolution of g and K

From here and above, we conclude the evolution of K̂ with the following
elementary lemma, which is proved in a manner similar to the Hamiltonian
constraint, using the Gauss equation (Exercise!):

Lemma

〈R̄(Y , n, n),Z 〉 = −Ric(Y ,Z ) + Ric(Y ,Z ) + (trg K̂ )K̂ (Y ,Z )− K̂ 2(Y ,Z ).

To summarize, in index form: from the above and Mainardi

〈R̄(Y , n, n),Z 〉 = −(∇nK̂ )(Y ,Z )− K̂ 2(Y ,Z ) + N−1Hessg (N)(Y ,Z )

we obtain

(∇nK̂ )ij = R̄ij − Rij − (trg K̂ )K̂ij + N−1N;ij .

Justin Corvino (Lafayette) The Einstein Constraint Equations July 28-August 1, 2014 33 / 71



Evolution of g and K

We have thus arrived at the following system:

ADM equations

∂gij
∂t

= 2NK̂ij + (LXg)ij

∂K̂ij

∂t
= N;ij + (LX K̂ )ij + N(R̄ij − Rij + 2K̂ `

i K̂j` − K̂ `
`K̂ij)

The space-time Ricci term R̄ij in the evolution equation above can be
expressed in terms of the Einstein tensor: for dim(S) = 4,
R̄µν = Gµν − 1

2 (trḡG )ḡµν .
In particular, in the vacuum case (T = 0, and take Λ = 0), R̄ij = 0 gives
six components of the vacuum Einstein equation Gµν = 0 (R̄µν = 0). The
other four components are given by the Einstein constraint equations,
which we saw encode Gnn and Gin.
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Evolution of g and K

If we specify the lapse N > 0 and shift X , and with an eye toward the
vacuum equations we insert R̄ij = 0 into the system, if we can solve the

system for g = g(t), the first equation guarantees that K̂ = −K is the
second fundamental form of Mt inside the space-time
(S, ḡ = −N2dt2 + gij(dx

i + X idt)⊗ (dx j + X jdt)).

In so doing, we have R̄ij = 0. As for the other components of the vacuum
Einstein equation, we need to specify initial conditions (g(0),K (0). If we
specify these so that they above the vacuum constraint equations, then
Gµn = 0 at t = 0.

What we would like, then, is as follows:

• PDE framework allowing to solve the system and estimate quantities
related to the solution.

• Evolution equations for the constraint functions (which encode Gµn),
from which we can conclude the constraint equations are conserved in
time.
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Conservation of the constraints

We could compute the time evolution of the constraint functions
R(g)− ‖K 2‖g + (trgK )2 and divg (K − (trgK )), and show that they
satisfy a system of PDE, of a form in which should they vanish at t = 0
(the vacuum constraints imposed), then they vanish for all t.
In any case, the conservation of the constraints comes from the Bianchi
identity: ḡνβGµν;β = 0. For convenience to illustrate, take N = 1, X = 0,
so that n = ∂

∂t , so that ḡ00 = −1 = ḡ00, and so we get (sign!)

∂tGµ0 − Γ̄βµ0Gβ0 − Γ̄β00Gµβ = ḡνkGµν;k = ḡ jkGµj ;k .

Since we arrange Gij = 0 for all t through solving the system, we can
remove Gij and Gij ,k from the above equation. So, if I did this right,

∂tGi0 = Γ̄βi0Gβ0 − ḡ jk Γ̄0
ikG0j − ḡ jk Γ̄0

jkG0i

∂tG00 = ḡ ij∂iG0j + Γ̄β00Gβ0 + Γ̄i
00G0i − ḡ ij Γ̄0

0iG0j − ḡ ij Γ̄βijG0β

Linear and homogeneous for Gµ0, which vanish at t = 0 by the constraints.
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Hamiltonian formulation

In classical mechanics, one often re-casts the Lagrangian L in the form

L =
t2∫
t1

(pq̇ − H(p, q)) dt, where q are the state variables and p are the

conjugate momenta. Stationarity of the action L then gives Hamilton’s
equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

We can recast the Einstein-Hilbert action
∫
S
R̄(ḡ) dµḡ on (S = I ×M, ḡ)

in an analogous fashion. Indeed, we want to consider stationary points of
the EH action, so when we re-write the action, we will discard boundary
terms which we can take to vanish when deriving the Euler-Lagrange
equations. The result can be written as follows.
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Hamiltonian formulation

We consider S = I ×M, ḡ = −N2dt2 + gij(dx
i + X idt)⊗ (dx j + X jdt).

We express the scalar curvature R(ḡ) using the Gauss and Mainardi
equations, as follows, using an orthonormal frame {n, ei} adapted to M.

R(ḡ) = ḡµνR̄µν = −R̄nn +
∑
j

R̄jj

= −R̄nn +
∑
j

[
− 〈R̄(n, ej , ej), n〉+

∑
i

〈R̄(ei , ej , ej), ei 〉
]

= −2
∑
j

R̄jnnj +
∑
i ,j

R̄ijji

= −2
∑
j

[
− (∇nK̂ )jj − K `

j K`j + N−1N jj

]
+
∑
i ,j

[
Rijji + KiiKjj − K 2

ij

]
= 2∇n(trg K̂ )− 2N−1∆gN + 2‖K‖2

g + (R(g)− ‖K‖2
g + (trgK )2)

We note that ∇n(trg (K̂ )) = N−1
(
∂t(trg (K̂ ))−∇X (trg K̂ )

)
.
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Hamiltonian formulation

Let the constraints operator Φ = (Φ0,Φi ) be given by
Φ(g ,K ) = (R(g)− ‖K‖2

g + (trgK )2, divg (K − (trg )K )), let

Φ̂ = (Φ0(g ,K ),−2Φi (g ,K )). Let ξ0 = N, ξi = X i .
Then, modulo boundary terms,

∫
S=I×M

R̄(ḡ) dµḡ =
∫
I

∫
M

R(ḡ)Ndµgdt, is

given by (Exercise! Integrate by parts, use d
dt log det(g) = trg (∂tg)...)∫

I

∫
M

[
(K̂ ij − (trg K̂ )g ij)∂tgij + ξµΦ̂µ

]
dµg dt.

This is then re-written as
∫
I

[ ∫
M

π̂ij∂tgij dµg − HADM

]
dt. Note that often

the conjugate momentum π̂ is written as a density,
π̃ij =

√
det g(K̂ ij − (trg K̂ )g ij).

Note that the lapse ξ0 = N and shift ξi = X i appear as Lagrange
multipliers for a constrained optimization problem: stationarity of the
action with respect to variations of lapse give the Hamiltonian constraint
Φ0 = 0, and similarly for the shift.
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Hamiltonian formulation

Let Htot = −ξµΦ̂µ, so that HADM =
∫
M

Htot. Varying the action by

π̂ij 7→ π̂ij + εσ̂ij and applying d
dε

∣∣∣
ε=0

we obtain by definition∫
I

∫
M

σ̂ij
[
∂tgij − ∂Htot

∂πij

]
dµg dt.

We formally arrive at one of Hamilton’s equations
∂gij
∂t = ∂Htot

∂πij . To figure
out what this means, we must compute∫

M

∂Htot

∂πij
σ̂ij dµg :=

∫
M

d

dε

∣∣∣
ε=0
Htotdµg .

An easy exercise (integrate by parts!) shows this is just∫
M

σ̂ij
(

2NK̂ij + Xi ;j + Xj ;i

)
dµg .

We thus recover the first of the ADM equations ∂tgij = 2NK̂ij + (LXg)ij .
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Evolution and the linearization of the constraints map

We let Φ̃(g , π̃) =
√

det g(Φ0, 2Φi ). Then

d

dt

[
g
π̃

]
=

[
0 1
−1 0

]
DΦ̃|∗(g ,π̃)(N,X )

where if we let d µ̃g = (det g)−1/2dµg , then (assuming I sorted out all the
square roots)∫

M

(N,X ) ·g DΦ̃|(g ,π̃)(h, σ̃)d µ̃g =

∫
M

DΦ̃|∗(g ,π̃)(N,X ) ·g (h, σ̃)d µ̃g .

In this sense, the constraints determine the evolution. Furthermore, the
symplectic form of the system above points us to consider the kernel of
the operator DΦ∗ (defined in a similar way without the densitized fields
and measures, etc.).
The operator admits kernel only in certain special situations, and this
kernel is important for understanding the properties of the nonlinear
constraints map, in terms of deformations (implicit function theorem).
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Constraints operator and its linearization

We write Φ(g ,K ) = (R(g)− ‖K‖2
g + (trgK )2, divg (K − (trgK )g)). If we

use the momentum tensor πij = K ij − (trgK )g ij instead, the constraints
operator can be replaced by Φ(g , π) = (R(g)− ‖π|2g + 1

2 (trgπ)2, divgπ),
where the output is now a function and a vector field.
We can linearize with respect to variations in g and π, and then define the
formal adjoint DΦ∗ analogously to the above (remove the tilde’s):∫

M

(N,X ) ·g DΦ|(g ,π)(h, σ)dµg =

∫
M

DΦ|∗(g ,π)(N,X ) ·g (h, σ)dµg .

The general formula is a bit cumbersome, but let’s look at a special case:

DΦ∗|(gEucl,0)(N,X ) = (L∗gEucl
N,−1

2
(LXgEucl)])

where L∗g is the formal adjoint of Lg , Lg (h) = d
dε

∣∣∣
ε=0

R(g + εh).
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Constraints operator and its linearization

Exercise: Lg (h) = −∆g (trgh) + divg (divgh)− hijRij .

Thus by integration by parts, L∗gN = −(∆gN)g + HessgN − NRic(g).
Note that trg (L∗gN) = −(n − 1)∆gN − NR(g).

Example (Kernel of L∗g )

• Euclidean space Rn, with L∗gEN = 0 if and only if HessgEN = 0, so
the kernel is spanned by constant and linear functions of Cartesian
coordinates.

• The flat torus Tn with one-dimensional kernel given by constant
functions.

• The round sphere Sn ⊂ Rn+1, with basis for the kernel given by

restriction of the coordinate functions x j
∣∣∣
Sn

, j = 1, . . . , n + 1.
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Constraints operator and its linearization

Definition

A nontrivial element in the kernel of L∗g is called a static potential

If L∗gN = 0, then ḡ = −N2dt2 + g is Einstein: Ric(ḡ) = R(g)
n−1 ḡ , where

n = dim(M) (note the change—“m” will be the mass anyway...). In
particular, we can conclude that R(g) is (locally) constant.

Example (Schwarzschild)

ḡS = −

(
1− m

2|x |

)2

(
1 + m

2|x |

)2
dt2 +

(
1 +

m

2|x |

)4

gEucl

N =

(
1− m

2|x|

)
(

1+ m
2|x|

) is in the kernel of L∗gS .

Remark: what is special about {N = 0} in terms of the geometry of gS?
(Hint: area profile A(r) = A({|x | = r}).)
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Constraints operator and its linearization

The scalar curvature operator is the constraints operator in the
time-symmetric case K = 0.
As for the full constraint operator, we note an example:

Example (Minkowski)

DΦ∗|(gEucl,0)(N,X ) = (L∗gEucl
N,−1

2 (LXgEucl)])
Thus the kernel is the direct sum of the span of linear and constant
functions, together with the Killing fields of the Euclidean metric, spanned
by generators of translations and rotations.

The presence of kernel again marks something special about (g , π). Note
above how the kernel elements generate Killing vector fields in the
space-time: N ∂

∂t + X . Recalling the formula

d

dt

[
g
π̃

]
=

[
0 1
−1 0

]
DΦ̃|∗(g ,π̃)(N,X )

the following theorem may not be a surprise:
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Constraints operator and its linearization

Theorem (Moncrief, ’75)

Suppose (M, g , π) solve the vacuum constraints. If (N,X ) is in the kernel
of DΦ∗(g ,π), the vacuum space-time determined by (M, g , π) admits a
Killing field, whose normal and tangential projections along M yield N and
X , respectively.

Such space-times are called stationary (if the Killing field is time-like).
As such, (N,X ) in the kernel is called a KID—Killing Initial Data. In the
time-symmetric case, an element in the kernel of L∗g is called a static KID.
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Asymptotically Euclidean metrics

We now discuss a class of solutions to the constraints, often used to model
isolated systems.

Definition

A complete Riemannian manifold (Mn, g), with an associated symmetric
(0, 2) tensor K (or π = K − (trgK )g) is called asymptotically flat (or
asymptotically Euclidean) if there is a compact set K ⊂ M so that M \ K

equals a disjoint union of asymptotic ends
k⋃

j=1
Ej , where each asymptotic

end Ej is diffeomorphic to Rn \ {|x | ≤ 1}, with asymptotically flat
coordinates x i in which the following decay estimates hold for
multi-indices α and β, for |α| ≤ `+ 1, |β| ≤ `, q > n−2

2

|∂αx (gij − δij)(x)| = O(|x |−|α|−q)∣∣∣∂βx Kij(x)
∣∣∣ = O(|x |−|β|−1−q)
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Asymptotically Euclidean metrics

Let’s parse this in case n = 3, q = 1 > 3−2
2 :

|∂αx (gij − δij)(x)| = O(|x |−|α|−1)∣∣∣∂βx Kij(x)
∣∣∣ = O(|x |−|β|−2)

So, gij(x) = δij + O(|x |−1), |∂xgij(x)| = O(|x |−2),
∣∣∂2

xgij(x)
∣∣ = O(|x |−3)

etc., Kij(x) = O(|x |−2), |∂xKij(x)| = O(|x |−3), etc.

Example (Schwarzschild)

(gS)ij =
(

1 + m
2|x |

)4
δij = (1 + 2m

|x | + 3m2

2|x |2 + m3

2|x |3 + m4

16|x |4 )δij

K = 0

In dimensions n ≥ 3, gS =
(

1 + m
2|x |n−2

)4/(n−2)
gE gives examples with

q = n − 2.
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Energy-momentum four vector

• We’d like to define a quantity to measure the energy-momentum content
of an isolated gravitational system. In terms of the data on a space-like
slice, we do know that the energy density is related to the scalar curvature.
• Note that the vacuum constraint equations impose added decay to the
scalar curvature than just the asymptotic conditions alone: if n = 3 and
q = 1, say, R(g) involves two derivatives of the metric (and quadratic
terms in Christoffel symbols), so that R(g) = O(|x |−3) on any end E .
• If the vacuum constraints are satisfied, then R(g) is quadratic in
K = O(|x |−2), so that R(g) = O(|x |−4). This means that R(g) ∈ L1(E ),
and similarly if ρ is integrable: R(g)− ‖K‖2

g + (trgK )2 = 2κρ.
•In case K = 0, then, one might try to define the total energy as
proportional to

∫
M R(g)dµg .

• This doesn’t pick up the energy due to the gravitational field, which can
have energy in vacuum—cf. Schwarzschild gS for example.
This means the definition must be a bit more subtle.
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Newtonian analogue

In Newtonian theory, we can measure the total mass in an isolated system
through a flux integral of the gravitational potential: if φ is the
gravitational potential, then φ solves Poisson’s equation ∆φ = 4πρ
(G = 1).
If the matter density ρ is compactly supported, φ is harmonic near infinity,
and we can take φ(x)→ 0 as |x | → ∞
We can expand φ in spherical harmonics near infinity:

φ(x) = − m

|x |
− β · x
|x |3

+ O(|x |−3).

Then we compute∫
R3

ρ dx =
1

4π

∫
R3

∆φ dx =
1

4π
lim

r→+∞

∫
{|x |=r}

∂φ

∂r
dσe = m.

Exercise:
∫
R3

xkρ dx = βk . The center of mass ck would then be defined by

mck = βk .
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Expansion of scalar curvature

In GR, the potential is replaced by the metric, so maybe appropriate flux
integrals should be used to pick up the total mass/energy content of the
system.
Let’s just start with an asymptotically flat metric g , without imposing the
constraints yet. We have gij − δij = O(|x |−q), so that
g ij − δij = O(|x |−q), ∂gij = O(|x |−q−1) and ∂2gij = O(|x |−q−2).

Now Γk
ij = 1

2g
km(gim,j + gmj ,i − gij ,m) = O(|x |−q−1).

Γk
ij ,` =

1

2
gkm
,` (gim,j + gmj ,i − gij ,m) +

1

2
gkm(gim,j` + gmj ,i` − gij ,m`)

= O(|x |−2q−2) +
1

2
δkm(gim,j` + gmj ,i` − gij ,m`)

+
1

2
(gkm − δkm)(gim,j` + gmj ,i` − gij ,m`)

=
1

2
(gik,j` + gkj ,i` − gij ,k`) + O(|x |−2q−2).
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Expansion of scalar curvature

Recall R(g) = g ij
(

Γk
ij ,k − Γk

ik,j + Γk
k`Γ

`
ij − Γk

j`Γ
`
ik

)
. Thus

R(g) = g ij
(

Γk
ij ,k − Γk

ik,j

)
+O(|x |−2q−2) = δij

(
Γk
ij ,k − Γk

ik,j

)
+O(|x |−2q−2)

because g − δ ∼ |x |−q and ∂Γ ∼ |x |−q−2.

Proposition

Thus using previous expansions,

R(g) =
∑
i ,j

(gij ,ij − gii ,jj) + O(|x |−2q−2).

Note that the error term is in L1(E ): for q > (n − 2)/2, 2q + 2 > n.
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Expansion of scalar curvature

If we write gij = δij + hij , then

R(g) =
∑
i ,j

(hij ,ij − hii ,jj) + O(|x |−2q−2)

= −
∑
j

(∑
i

hii
)
, jj

+
∑
j

(∑
i

hij ,i
)
, j

+ O(|x |−2q−2)

= −∆gE(trgEh) + divgE(divgEh) + O(|x |−2q−2)

= LgE(h) + O(|x |−2q−2).

Of course!
Note that L∗gE(1) = 0, so the integral below is a flux integral:∫
{r1≤|x |≤r2}

LgE(h) dx =
[ ∫
{|x |=r2}

−
∫

{|x |=r1}

]∑
i ,j

(hij ,i − hii ,j) ν
j
e dσe .
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The mass (energy) integral

Energy

The mass (energy) integral is given by

1

2(n − 1)ωn−1
lim

r→+∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
e dσe .

Note ν je = x j

|x | .

In case n = 3, ω2 = 4π, and this is 1
16π lim

r→+∞

∫
|x |=r

3∑
i ,j=1

(gij ,i − gii ,j)ν
j
e dσe .

Does the limit exist?
Exercise: For gS =

(
1 + m

2|x |
)4
gE, show this limit is precisely m.
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The mass (energy) integral

More generally, by the divergence theorem,[ ∫
|x |=r

−
∫
|x |=r0

] n∑
i ,j=1

(gij ,i − gii ,j)ν
j
e dσe =

∫
r0≤|x |≤r

n∑
i ,j=1

(gij ,ij − gii ,jj) dx

=

∫
r0≤|x |≤r

n∑
i ,j=1

(R(g) + O(|x |−2q−2) dx .

Constraints

So if R(g) ∈ L1, then the limit exists.

From the constraint R(g)− ‖K‖2
g + (trg (K ))2 = 2κρ, with

Kij = O(|x |−q−1), we see R(g) ∈ L1(E ) if and only if ρ ∈ L1(E ), e.g.
vacuum case ρ = 0.
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The energy-momentum four-vector

Remarks

• The limit can be non-zero even if R(g) = 0 (vacuum), e.g.
Schwarzschild.

• One can show (Bartnik, CPAM, 1986) that the mass/energy is
independent of AF coordinates.

Now recall the second constraint equation divg (π) = κJ. Now

(divgπ)i = g jk(πij ,k − Γm
ikπmj − Γm

kjπim) = divgE(π) + O(|x |−2q−2)

So for |J| ∈ L1(E ), e.g. J = 0, the following limit exists:

Pi =
1

(n − 1)ωn−1
lim

r→+∞

∫
|x |=r

πijν
j
e dσe .

Remark: DΦ∗(gE,0)(1, ∂
∂x i

) = (0, 0), DΦ(gE,0)(h, π) = (LgE(h), divgE(π))
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The energy-momentum four-vector

If we let E = 1
2(n−1)ωn−1

lim
r→+∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
e dσe , then E and P

fit together to given the ADM energy-momentum four-vector of the
asymptotically flat end.

What do we expect?

For reasonable matter, say corresponding to T satisfying an energy
condition, we expect E ≥ 0, and in E ≥ |P|, i.e. the energy-momentum
vector is future-pointing causal.

This is the content of the Positive Mass Theorem.
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Positive Mass Theorem

Recall that the dominant energy condition (DEC) implies on the initial
data that ρ ≥ |J|, i.e.

1

2
(R(g)− ‖K‖2

g + (trg (K ))2) ≥ |divgπ|.

PMT

(M, g ,K ) is an asymptotically flat initial data set satisfying DEC.
Then E ≥ |P|.

PET

(M, g ,K ) is an asymptotically flat initial data set satisfying DEC.
Then E ≥ 0.
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Positive Mass Theorem

Riemannian case

(M, g) is an asymptotically flat initial data set satisfying R(g) ≥ 0. Then
E ≥ 0. E = 0 implies (M, g) isometric to (Rn, gE ).

Notes

• Riemannian case: Schoen-Yau, 1979 (3 ≤ n ≤ 7), Witten 1981 (spin
manifolds).

• PET: Schoen-Yau, 1981 (n = 3), Witten (spin); Eichmair
(4 ≤ n ≤ 7).

• PMT: Witten, 1981 (spin); Eichmair, Huang, Lee, Schoen, 2011
(3 ≤ n ≤ 7).

The rigidity statement in the PMT is: E = |P| only in case Mn is a
space-like hypersurface in Minkowski space-time Mn+1 with induced
metric and second fundamental form g and K . This is established in the
spin case. Also, in case E = 0: Schoen-Yau, Eichmair.
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Positive Mass Theorem

Please see arXiv preprint of Eichmair, Huang, Lee and Schoen (2011), and
Eichmair (2012) for references and history.

If time permits we will sketch a proof the Riemannian case of the PET, at
least in case n = 3. This involves a careful understanding of the scalar
curvature and topology.

Remark: There is negative mass Schwarzschild gS with m < 0, which does
satisfy R(gS) = 0. What’s wrong with it?

There is a study of negative mass singularities initiated by Hugh Bray and
students Nick Robbins, Jeff Jauregui.
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Solving the constraints

• We’d like to have ways to generate solutions to the vacuum constraints
(apart from taking slices in known space-times).
• We remark that the constraint system is undetermined, and we have lots
of freedom. But the system is nonlinear and is non-trivial.
• Note, too, that the rigidity case of the PET tells us we cannot ask for AE
solutions to fall off too fast—e.g. in dimension n = 3, we cannot ask the
solution to satisfy gij − δij = O(|x |−2), say, since then E = 0, and by the
PET, the metric is isometric to Euclidean. The system dictates something
about the asymptotics, cf. the Newtonian analogue/Poisson equation.
• Remark: Once we’ve solved the vacuum constraints with AE data, a
natural question is: to what extent is the space-time development
asymptotically Minkowskian? How “big” of a neighborhood of spatial
infinity does the space-time include? Cf. Boost Theorem of Christodoulou
and Ó Murchadha, Nonlinear Stability of Minkowski Space by
Christodoulou and Klainerman, etc.
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Solving the constraints

Let’s focus on the time-symmetric vacuum constraint R(g) = 0 on R3 for
the moment.
If h were compactly supported, then g = gE + h can’t be a nontrivial
solution by the PMT.
Note, however, that the linearized equation
LgE(h) = −∆gE(trgEh) + divgE(divgEh) does admit nontrivial compactly
supported solutions!
Exercise: Show that there are nontrivial compactly supported symmetric
tensors h on R3 which are divergence-free and trace-free (with respect to
gE). Such tensors are called transverse-traceless (TT).
Remark: The method we’ll discuss shortly also gives a way to construct
TT tensors which decay suitably at infinity to use in this method to
construct AE solutions.
Now what? Well, we look for a conformal factor u > 0 to try to help us
solve R(g) = 0 with g = u4(gE + h). Since we want the solution to be
AE, we want u → 1 at infinity.
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Solving the constraints

For Riemannian manifolds (M, g) of dimension n ≥ 3, we have the
following formula for the scalar curvature under a conformal change
(Exercise):

R(u4/(n−2)g) = −4(n−1)
n−2 u−

n+2
n−2 (∆gu − n−2

4(n−1)R(g)u).

Case n = 3: R(u4g) = −8u−5(∆gu − 1
8R(g)u)

If g = gE is Euclidean near infinity say, then prescribing R(u
4

n−2 gE) = 0 is

equivalent to ∆u = 0, R(u
4

n−2 gE) ≥ 0 is equivalent to ∆u ≤ 0 (u is
superharmonic). Why did I say g = gE near infinity?.

More generally, prescribing the scalar curvature of the conformal metric
gives a semi-linear elliptic equation; prescribing that it vanish gives the
linear equation ∆gu − n−2

4(n−1)R(g)u = 0.

So it is important to understand the behavior of operators of the form
(∆g − f ).
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Solving the constraints

• If we consider gh = gE + h, R(u4(gE + h)) = 0, for h compactly
supported and small, the equation we have to solve is linear:

∆ghu −
1

8
R(gh)u = 0.

•We want u > 0, and in the AE setting, we want u → 1 at infinity. So let
u = 1 + v . We want v to decay to 0 at infinity, and we set up function
spaces to capture the decay of v .
• We re-write the PDE as ∆ghv − 1

8R(gh)v = 1
8R(gh).

• The operator L = ∆gh − 1
8R(gh) agrees with ∆ outside a compact set.

For small h, L is a small perturbation of ∆, which is an isomorphism on
appropriate weighted spaces. Thus L is an isomorphism, and we can solve
Lv = 1

8R(gh), for v ; because R(gh) is small, v will be small and tending to
0 at infinity.
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Solving the constraints

Such metrics as we’ve just constructed are called harmonically flat:
Consider an asymptotically flat metric with an end E with asymptotically
flat coordinates x = (x i ), so that for |x | > r0, g = u4gE, u → 1 at infinity,
and R(g) = 0, i.e. ∆u = 0.

Such u admits an expansion:

u(x) = 1 +
A

|x |
+
β · x
|x |3

+ · · ·

where A is a constant and β is a vector. .

Note also that derivatives fall off one order faster: ∂|x |−1

∂x i
= −|x |−3x i , etc.

Exercise: A = m
2 .

Such metrics are then asymptotic to Schwarzschild of mass m:
g − gS = O(|x |−2).
If A 6= 0, we define c = β/A: a straightforward computation shows

ũ(y) := u(y + c) = 1 + A
|y | + O(|y |−3).

It makes sense then to identify c as the center of mass.
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Solving the constraints

Now that we have some nice solutions (more on the way), let’s get greedy,
and start talking about the space of solutions.
For instance, suppose g is an AE solution to R(g) = 0 on R3. Is is close in
some sense to a harmonically flat solution? (Density question) Yes!
(Schoen-Yau 1980)
• Idea: For large θ, let χθ be a cutoff function that is 1 near |x | = θ and
vanishes near |x | = 2θ. Let gθ = χθg + (1− χθ)gE.
• Then R(gθ) is supported in θ ≤ |x | ≤ 2θ, and in case n = 3 (and q = 1,
say), R(gθ) = O(|θ|−3), which is small for θ large.
• Want: 0 < u → 1 at ∞, with 0 = R(u4gθ) = −8u−5(∆gθu − 1

8R(gθ)u).
• A similar analysis on the linear operator ∆gθ − 1

8R(gθ) as above allows
us to conclude, for θ large enough, we can solve for u > 0, u → 1 at
infinity, which thus admits an expansion u(x) = 1 + m

2|x | + · · · .
• It can be shown that the total mass does not change much under such
approximation, and the metrics g and u4gθ are close in a suitable topology
for large θ.
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Solving the constraints

For the full constraints, harmonically flat asymptotics are replaced by more
general harmonic asymptotics. Let let L̃gX = LXg − divg (X )g . Then
outside a compact set in any end, we require g = u4gE, while

πij = u2(L̃gEX )ij = Xi ,j + Xj ,i − (
∑
k

Xk,k)δij

in Cartesian coordinates for gE. Here are virtues of this form:

• The vacuum constraints outside a compact set in components are

8∆u = u
(
− |L̃X |2 +

1

2
(tr(L̃X ))2

)
∆X i+4u−1u,j(L̃X )ji − 2u−1u,i tr(L̃X ) = 0

• πij = −B ix j+B jx i

|x |3 +
∑
k

Bkxk

|x |3 δij + O(|x |−3), where P i = −B i

2 is the ADM

linear momentum.
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Solving the constraints

AE solutions to the vacuum constraints with harmonic asymptotics are
dense in the space of all AE solutions, in a topology in which the ADM
energy-momentum (E ,P) is continuous.

On the other hand, it has been only very recently shown by F. C. Marques
that the space of AE metrics of zero scalar curvature on R3 (and other
topologies too) is connected, using Ricci flow with surgery.

Earlier results of Fischer and Marsden (cf. Bartnik, Chruściel-Delay)
establish certain manifold structures on the space of solutions to the
constraints.
A natural question is whether the space of solutions to the constraints, on
a closed manifold, or on an AE manifold, say, admits an effective
parametrization. An attempt at this is the conformal method of
Lichnerowicz, Choquet-Bruhat, York...
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The Conformal Method

• The ECE forms a system of 4 equations for 12 unknowns (locally, in
dimension three).

• One might try to isolate certain parts of the data as “free” data—freely
specifiable, giving parameters for the space of solutions to the constraints.

• The ECE will then give a system of PDE to determine the other parts of
the data (g ,K ).

• This system of PDE will be a determined elliptic system.
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The Conformal Method

The first step is the TT decomposition of symmetric two-tensors on
(M, g). For simplicity, stick to dimension three, and M closed (or AE, say).
We want to write a symmetric two-tensor Ψ as

Ψ = ΨTT + ΨL + ΨTr

where ΨTT is TT (divergence-free, trace-free w.r.t. g), and ΨL is
trace-free, and ΨTr is a pure trace term:

ΨTr =
1

3
(trgΨ)g .

Ansatz for ΨL (note that by design ΨL is trace-free):

ΨL
ab = (LgW )ab = Wa;b + Wb;a −

2

3
(divgW )ab.

Lg is the conformal Killing operator; vectors in the kernel (CKV’s)
generate conformal isometries.
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The Conformal Method

Therefore for any vector field W used to define ΨL, the tensor

ΨTT := Ψ−ΨL −ΨTr

is symmetric and trace-free.
To deserve the “TT” superscript, then, we choose W to arrange
divg (ΨTT ) = 0, obtaining an equation for W :

divg (LgW ) = divg (Ψ−ΨTr ).

Proposition

Given Ψ, we can solve the above equation for W , uniquely up to the
addition of a CKV. Thus ΨL = LgW is uniquely determined.
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