2014 ESI SUMMER SCHOOL

MATHEMATICAL RELATIVITY: 99 YEARS OF GENERAL RELATIVITY PROBLEMS FROM CONSTRAINT EQUATIONS MINI-COURSE

Basic facts and conventions

- We use the Einstein summation convention: sum over a pair of upper and lower repeated indices.
- A comma in a subscript denotes partial differentiation, whereas a semicolon in a subscript denotes covariant differentiation. For example, if h is a (1,2)-tensor with components in a coordinate chart h_{jk}^i , then the covariant derivative ∇h is a (1,3)-tensor with components

$$h^i_{jk;\ell} := \nabla h \Big(dx^i, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^\ell} \Big) = (\nabla_{\frac{\partial}{\partial x^\ell}} h) \Big(dx^i, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \Big) = h^i_{jk,\ell} + \Gamma^i_{m\ell} h^m_{jk} - \Gamma^m_{j\ell} h^i_{mk} - \Gamma^m_{k\ell} h^i_{jm}.$$

• The Christoffel symbols for the connection compatible with a metric g (Riemannian or pseudo-Riemannian) are given by the rule (where $g^{i\ell}g_{\ell j}=\delta^i_{\ j}$)

$$\Gamma_{ij}^k = \frac{1}{2}g^{km}(g_{mj,i} + g_{im,j} - g_{ij,m}).$$

- In normal coordinates (x^i) about a point $p \in M$, we have $g_{ij,k}(p) = 0$ for all i, j and k, so that at p, $\Gamma_{ij}^k(p) = 0$ and $g_{,k}^{ij}(p) = (-g^{i\ell}g_{\ell m,k}g^{mj})(p) = 0$.
- Our convention for the Riemann curvature tensor is as follows:

$$R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

$$R\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}\right) = R_{ijk}^{\ell} \frac{\partial}{\partial x^{\ell}}$$

$$R_{ijk\ell} = g_{m\ell} R_{ijk}^m.$$

• In our convention the Ricci tensor is then given by

$$\operatorname{Ric}(X,Y) = dx^{i}(R(\frac{\partial}{\partial x^{i}}, X, Y)) = g^{k\ell}g\left(R(\frac{\partial}{\partial x^{k}}, X, Y), \frac{\partial}{\partial x^{\ell}}\right)$$
$$R_{ij} = \operatorname{Ric}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) = R_{\ell ij}^{\ell}.$$

- The scalar curvature is $R(g) = g^{ij}R_{ij}$. The Einstein tensor is $G = G(g) = \text{Ric}(g) \frac{1}{2}R(g)g$.
- Let $g_{\rm E}$ be the Euclidean metric on \mathbb{R}^n , with Cartesian coordinates $x=(x^1,\ldots,x^n)$ so that

$$g_{\rm E} = \delta_{ij} dx^i dx^j$$
, and let $|x| = \sqrt{\sum_{i=1}^n (x^i)^2}$. If $r = |x|$, $g_{\rm E} = dr^2 + r^2 g_{\mathbb{S}^{n-1}}$, where $g_{\mathbb{S}^{n-1}}$ is the standard

round unit metric on the sphere \mathbb{S}^{n-1} . We recall the notation $g_{\mathbb{S}^2} = d\Omega^2 = d\phi^2 + \sin^2(\phi) d\theta^2$. Note that the angle convention is the mathematics convention, as opposed to the physics convention,

• If \bar{g} is a Lorentzian or Riemannian metric on $\mathcal{S}=I\times M$, we let t be a global coordinate for I, and suppose in the Lorentzian case that $\frac{\partial}{\partial t}$ is everywhere time-like, so that in any case, each slice $M_t=\{t\}\times M$ is Riemannian, with induced metric g(t). Let X be the orthogonal projection of $\frac{\partial}{\partial t}$ onto the tangent space of M_t at each (t,p). Then for each Y tangent to M_t , $\langle \frac{\partial}{\partial t}, Y \rangle = \langle X, Y \rangle$. If n is a unit normal field in the direction of $\frac{\partial}{\partial t}$, then there is a function N>0 so that $\frac{\partial}{\partial t}=Nn+X$. Thus $\bar{g}(\frac{\partial}{\partial t},\frac{\partial}{\partial t})=\langle n,n\rangle N^2+|X|_g^2$. Then in local coordinates x^i for M, $\bar{g}=\langle n,n\rangle N^2dt^2+g_{ij}(dx^i+X^jdt)\otimes (dx^j+X^jdt)$.

PROBLEMS.

- I. MAINARDI AND ADM EQUATIONS AND APPLICATIONS
- 1. Let $S = I \times \mathbb{R}^3$, with $\bar{g} = -dt^2 + (a(t))^2 g_{\text{Eucl}}$. On the slices $\{t\} \times \mathbb{R}^3$, $g(t) = (a(t))^2 g_{\text{Eucl}}$, and $n = \frac{\partial}{\partial t}$ is a global unit normal field along the slices. Let a zero index denote the $\frac{\partial}{\partial t}$ -component direction.
- a. Use the ADM equations to compute the second fundamental form K, as well as the components of $\text{Ric}(\bar{g})$ in directions tangent to the slices.
- b. Use the relation between g and K and $G_{\mu 0}$ discovered when we proved the constraint equations to compute $G_{\mu 0}$, and hence $G_{\mu \nu}$.
- 2. Consider $S = I \times M$ and $\bar{g} = \langle n, n \rangle N^2 dt^2 + g_{ij} (dx^i + X^i dt) \otimes (dx^j + X^j dt)$, as above.
- a. For a vector field Y tangent to the slices M_t , show that $[n,Y] = (n[Y^i] + N^{-1}Y[X^i])\frac{\partial}{\partial x^i} + N^{-1}Y[N]n$.
- b. Let $\hat{S}(X,Y) = \langle \overline{\nabla}_X n, Y \rangle = -\langle \overline{\nabla}_X Y, n \rangle = -K(X,Y)$. We recall $\overline{\nabla}_X Y = \nabla_X Y + \hat{K}(X,Y)n$, and that $\hat{S} = -\langle n, n \rangle \hat{K}$. The equation $\partial_t g_{ij} = 2n\hat{S}_{ij} + (\mathcal{L}_X g)_{ij}$ holds as in lecture. Recall that if T is a (0,2)-tensor, then $T_{ij}^2 = T_{ik} T_{\ell j} g^{k\ell}$.

Prove the Mainardi equation: for Y and Z vector fields tangent to the slices M_t ,

$$\langle \bar{R}(Y,n,n),Z\rangle = -(\overline{\nabla}_n \hat{S})(Y,Z) - \hat{S}^2(Y,Z) - \langle n,n\rangle N^{-1} \mathrm{Hess}_g N(Y,Z).$$

c. Suppose ν is a smooth unit normal field to a hypersurface $\Sigma \subset (\widehat{\Sigma}^n, h)$, and that $S_p(X) = (\nabla_X \nu)_p \in T_p \Sigma$ is the corresponding shape operator, the (1,1)-tensor associated to the second fundamental form \widehat{S} of Σ . For each p in Σ , let γ_p be the geodesic with $\gamma'_p(0) = \nu(p)$. We note that given coordinates $x' = (x^1, \dots, x^{n-1})$ for the hypersurface Σ , we let $(x^1, \dots, x^n) \mapsto \gamma_{p(x')}(x^n) = \exp_{p(x')}(x^n\nu) \in M$. It's not hard to show that this map gives local coordinates for M, and that along Σ , $\frac{\partial}{\partial x^n} = \nu$.

Prove the Riccati equation $\nabla_{\nu}S + S^2 = -R(\cdot, \nu, \nu)$, where $(\nabla_{\nu}S)(X) = \nabla_{\nu}(S(X)) - S(\nabla_{\nu}X)$.

- d. Recall that the mean curvature vector field \mathbf{H} along Σ is independent of (local) orientation, and is given as the normal vector $\mathbf{H} = \operatorname{tr}_{\Sigma}(\mathbb{II})$. Note that $\langle \mathbf{H}, n \rangle = -\operatorname{tr}_{\Sigma}(S)$. Consider now a variation $F: I \times \Sigma \to M$ given by $\frac{\partial F}{\partial t}\big|_{(t,p)} = \nu(t,p)$, where $\nu(t,p)$ is a unit normal to the surface $\Sigma_t = F(t,\Sigma)$. Show that the variation in the mean curvature is given by $\partial_t(\operatorname{tr}_{\Sigma}(S)) = -\|A\|^2 \operatorname{Ric}(\nu,\nu)$, where $K(X,Y) = g(X,-\nabla_X\nu) = g(\nabla_XY,\nu)$ is the second fundamental form of Σ . Let $A(t) = \operatorname{Area}(\Sigma_t)$. Compute A'(t), and assuming A'(0) = 0, compute A''(0).
- II. LINEARIZATION OF THE SCALAR CURVATURE MAP AND STATIC POTENTIALS.
- 3. Let $R(g) = g^{ij}R_{ij}$ be the scalar curvature of a metric (not necessarily Riemannian). Consider a variation $g(\epsilon) = g + \epsilon h$ of g in the direction of a symmetric (0,2)-tensor field h (more generally, note that all you will use is that $g(\epsilon)$ is a metric smooth in t, with g(0) = g and g'(0) = h).

Assume that for small $|\epsilon|$, $g(\epsilon)$ is a metric, as would be the case for h compactly supported. Define $L_g(h) := DR_g(h) = \frac{d}{d\epsilon} \Big|_{\epsilon=0} R(g(\epsilon))$.

a. Derive the scalar curvature formula

$$R(g) = g^{ij}R_{ij} = g^{ij} \left(\Gamma^k_{ij,k} - \Gamma^k_{ik,j} + \Gamma^k_{k\ell}\Gamma^\ell_{ij} - \Gamma^k_{j\ell}\Gamma^\ell_{ik} \right).$$

b. Verify that the difference $S(X,Y) := \nabla_X Y - \widetilde{\nabla}_X Y$ defines a vector-valued (0,2)-tensor (i.e. a (1,2) tensor $\widehat{S}(\theta,X,Y) = \theta(S(X,Y))$). Thus $\dot{\Gamma}_{ij}^k := \frac{d}{d\epsilon}\Big|_{\epsilon=0} \Gamma_{ij}^k$ form the components $(\delta\Gamma)_{ij}^k$ of a (1,2)-tensor $(\delta\Gamma)$. Argue that $\dot{\Gamma}_{ij}^k = \frac{1}{2}g^{km}(h_{mj;i} + h_{im;j} - h_{ij,m})$, where the covariant derivative is taken with respect to g(0). (Hint: use g(0)-normal coordinates at p.)

c. Use the preceding part to aid in verifying the identities $\frac{d}{d\epsilon}\Big|_{\epsilon=0}R_{ij}=(\delta\Gamma)_{ij;k}^k-(\delta\Gamma)_{ik;j}^k$, and then

$$L_g(h) = -\Delta_g(\operatorname{tr}_g(h)) + \operatorname{div}_g(\operatorname{div}_g(h)) - \langle h, \operatorname{Ric}(g) \rangle_g$$

where the inner product of two (0,2)-tensors S and T is given by $\langle S,T\rangle = S_{ij}T_{k\ell}g^{ik}g^{j\ell}$, for example $\operatorname{tr}_{q}(S) = \langle g,S\rangle$.

d. Suppose that $(M, g, \pi = 0)$ solves the time-symmetric vacuum constraints $\Phi(g, \pi) = 0$, where $\Phi(g, \pi) = (R(g) - \|\pi\|_g^2 + \frac{1}{2}(\operatorname{tr}_g(\pi))^2, \operatorname{div}_g(\pi))$. Here π^{ij} is a (2, 0)-tensor, whose divergence defines a vector field.

Find $D\Phi_{(g,0)}(h,\sigma)$, where h is a symmetric (0,2) tensor and σ is a symmetric (2,0) tensor, each of compact support, and then find $D\Phi_{(g,0)}^*(N,X)$ by integration by parts. Since $\pi=0$, the linearization simplifies dramatically from the general case. Compare your answer to that derived in class. If you want to try your hand at the general case, find a Starbucks and see if they serve a coffee larger than a Venti (sometimes they have a Trenta!).

- 4. Suppose (M, g) is Riemannian.
- a. Suppose that $L_g^*N=0$, and that γ is a unit-speed geodesic in (M^n,g) . Let $h(t)=N(\gamma(t))$. Prove that h(t) satisfies a second-order linear ODE. What does this say about the dimension of the kernel of L_g^* ?
- b. Suppose that $L_g^*N=0$, but that f is not identically zero. Show that $\Sigma=N^{-1}(0)$ is a regular hypersurface, which is totally geodesic (zero second fundamental form). Hint: If $p \in \Sigma$ and $dN_p=0$, what does part a. have to say about things?
- c. Suppose that (M^n, g) is a closed manifold with negative scalar curvature. Find the kernel of L_q^*
- d. Consider the metric $g = (n-2)^{-1}g_{\mathbb{S}^1} \oplus g_{\mathbb{S}^{n-1}}$ on $\mathbb{S}^1 \times \mathbb{S}^{n-1}$. Show that $N(t,\omega) = \sin t$ is a static potential for g.
- e. Does every Ricci-flat metric have a static potential? What can you say in case a metric (M, g) on a closed manifold with zero scalar curvature has a static potential?
- f. Let $N: M \to \mathbb{R}$ be a smooth function. Define the Lorentzian metric $\bar{g} = -N^2 dt^2 \oplus g$ on the space $S = I \times \{p \in M : f(p) \neq 0\}$. Prove that for X, Y tangent to M at p with $N(p) \neq 0$, we have

$$\mathrm{Ric}(\bar{g})(X,Y) = \mathrm{Ric}(g)(X,Y) - \tfrac{1}{N(p)}\mathrm{Hess}_g N(p), \ \mathrm{Ric}(\bar{g})(X,\tfrac{\partial}{\partial t}) = 0, \ \mathrm{and} \ \mathrm{Ric}(\bar{g})(\tfrac{\partial}{\partial t},\tfrac{\partial}{\partial t}) = N\Delta_g N.$$

g. Conclude from part a. that a function N on M is a nontrivial element of the kernel of L_g^* if and only if the metric \bar{g} as above is an Einstein metric. (Note that in the preceding problem you said something about the set $\{p \in M : N(p) = 0\}$ where the metric \bar{g} may have issues.)

III. CONFORMAL CHANGES OF METRIC.

5. a. Suppose (M^n, g) is a Riemannian metric and $\tilde{g} = e^{\varphi}g$. Show that

$$R(\tilde{g}) = e^{-\varphi} \left(R(g) - (n-1)\Delta_g \varphi - \frac{1}{4}(n-1)(n-2)|\nabla \varphi|_g^2 \right).$$

b. In case $n \geq 3$, if we write $e^{\varphi} = u^{\frac{4}{n-2}}$ for u > 0, then

$$R(\tilde{g}) = u^{-\frac{n+2}{n-2}} \left(R(g)u - \frac{4(n-1)}{(n-2)} \Delta_g u \right).$$

c. Suppose M is compact with empty boundary. Let $c(n) = \frac{n-2}{4(n-1)}$. Let $L_g u = \Delta_g u - c(n) R(g) u$, the conformal Laplacian. Show that the total scalar curvature of $\tilde{g} = u^{\frac{4}{n-2}}g$ is given by

$$\int_M R(\tilde{g}) dv_{\tilde{g}} = c(n)^{-1} \int_M \left(|\nabla u|_g^2 + c(n)R(g)u^2 \right) dv_g.$$

HINT: Show that $dv_{\tilde{g}} = u^{\frac{2n}{n-2}} dv_g$.

6. Recall the conformal Killing operator L is related to the Lie derivative \mathcal{L} by the relationship $L_gW = \mathcal{L}_W g - \frac{2}{n} \text{div}_g W g$.

a. Suppose (M, g_0) is three-dimensional. If $\phi > 0$ on M and $g = \phi^4 g_0$, show that for any trace-free symmetric (2, 0)-tensor Ξ^{ab} ,

$$(\operatorname{div}_g(\phi^{-10}\Xi))^a = \phi^{-10}(\operatorname{div}_{g_0}\Xi)^a$$

and

$$(L_q W)^{ab} = \phi^{-4} (L_{q_0} W)^{ab}.$$

Can you figure out what the analogous statements would be in higher dimensions?

b. Suppose (M, g_0) is three-dimensional, that $\phi > 0$ on M and that $g = \phi^4 g_0$. If σ is TT for g_0 , let $K^{cd} = \phi^{-10}(\sigma^{cd} + (L_{g_0}W)^{cd}) + \frac{1}{3}\phi^{-4}g_0^{cd}\tau$. Show the following:

$$R(g) - |K|_g^2 + (\operatorname{tr}_g K)^2 = -8\phi^{-5}(\Delta_{g_0}\phi - \frac{1}{8}R(g_0)\phi) - \phi^{-12}|\sigma + L_{g_0}W|_{g_0}^2 + \frac{2}{3}\tau^2$$
$$(\operatorname{div}_g K - d(\operatorname{tr}_g(K)))_a = \phi^{-6}\operatorname{div}_{g_0}(L_{g_0}W)_a - \frac{2}{3}d\tau_a.$$

7. a. Show directly (and in one line) that if h is symmetric with compact support, and if $L_{g_E}h \ge 0$, then $L_{g_E}h = 0$.

b. Show by elementary methods that there exists an infinite-dimensional space of TT tensors on $(\mathbb{R}^3, g_{\rm E})$ with compact support. Such tensors automatically satisfy $L_{g_{\rm E}}h=0$.

- c. (Open problem): If you can construct a non-trivial symmetric TT tensor h on \mathbb{R}^3 with compact support and so that $|h|_{g_{\mathbb{E}}}^2$ depends only on |x|, please let me know—a nice paper would come out of it.
- 8. Recall the operator $(\widetilde{\mathcal{L}}_g(X))_{ij} = X_{i;j} + X_{j;i} X_{:k}^k g_{ij}$.
- a. If γ is a metric on M^3 , let $g = u^4 \gamma$ and $\pi_{ij} = u^2(\widetilde{\mathcal{L}}_{\gamma}(X))_{ij}$ for u > 0. Compute the constraints map $\Phi(g, \pi) = (R(g) |\pi|_g^2 + (\operatorname{tr}_g \pi)^2, \operatorname{div}_g \pi)$.
- b. If $\gamma = g_{\rm E}$, show that the vacuum constraints can be written, in a Cartesian coordinate system for the background $g_{\rm E}$, as follows:

$$\begin{split} &8\Delta u = u \left(- |\widetilde{\mathcal{L}}X|^2 + \frac{1}{2} (\operatorname{tr}(\widetilde{\mathcal{L}}X))^2 \right) \\ &\Delta X^i + 4u^{-1} u_{,j} (\widetilde{\mathcal{L}}X)_i^j - 2u^{-1} u_{,i} \operatorname{tr}(\widetilde{\mathcal{L}}X) = 0 \end{split}$$

- c. If the above equations in part b. hold on an asymptotic end, one can show that u and X have partial expansions $u(x) = 1 + \frac{A}{|x|} + O(|x|^{-2})$, $X^i(x) = \frac{B^i}{|x|} + O(|x|^{-2})$, along with fall off for derivatives. Show that $\pi_{ij} = -\frac{B^i x^j + B^j x^i}{|x|^3} + \sum_k \frac{B^k x^k}{|x|^3} \delta_{ij} + O(|x|^{-3})$, and that $P^i = -\frac{B^i}{2}$ is the ADM linear momentum.
- d. (OPEN PROBLEM): Give some geometric framework for the operator $\widehat{\mathcal{L}}_g$. What is the "best" Ansatz for the asymptotic form of π_{ij} ?
- IV. Schwarzschild Geometry Basics Recall the spatial Schwarzschild metric $g_S = \left(1 + \frac{m}{2|x|}\right)^4 g_E$, defined on the manifold M given by $M = \mathbb{R}^3 \setminus \{0\}$ for m > 0, $M = \mathbb{R}^3$ for m = 0, and $M = \{x \in \mathbb{R}^3 : |x| > -\frac{m}{2}\}$ for m < 0.
- 9. a. We saw that $R(g_S) = 0$. Find $Ric(g_S)$, which doesn't vanish.
- b. Show that

$$m = \frac{1}{16\pi} \lim_{r \to +\infty} \int_{|x|=r} \sum_{i,j=1}^{3} ((g_S)_{ij,i} - (g_S)_{ii,j}) \nu_e^j d\sigma_e$$

where the computation is done in the coordinates (x^1, x^2, x^3) , and where ν_e is the Euclidean outward unit normal, and $d\sigma_e$ is the Euclidean area measure (where (x^i) are Cartesian coordinates for the Euclidean metric).

- c. When m < 0, $A(r) \to 0$ as $r \to -(\frac{m}{2})^+$. Show that a radial geodesic from $r = r_0 > -\frac{m}{2}$ to $r = -\frac{m}{2}$ has finite length. Can the Schwarzschild metric with m < 0 be completed by adding in a point?
- d. Let g_S be a Schwarzschild metric of non-zero mass m. Show that there is a one-dimensional kernel for $L_{g_S}^*$. Do this by showing first that for any function in the kernel, $\operatorname{Hess}_{g_S}(f) = f\operatorname{Ric}(g_S)$. Write this out in coordinates for which $g_S = (1 \frac{2m}{r})^{-1}dr^2 + r^2(d\varphi^2 + \sin^2\varphi \ d\theta^2)$. Show that $\partial_{\theta} f = 0$ and $\partial_{\varphi} f = 0$, and then solve the remaining ODE for f.

- e. Let m > 0. Find an isometric embedding of (M, g_S) into Euclidean space \mathbb{E}^4 , identified in Cartesian coordinates (x, y, z, w) with $(\mathbb{R}^4, dx^2 + dy^2 + dz^2 + dw^2)$. It might be easiest to use the other coordinates we introduced for the Schwarzschild metric: $(1 \frac{2m}{r})^{-1}dr^2 + r^2 g_{\mathbb{S}^2}$, r > 2m. (This corresponds to "half" of (M, g_S) . The map you get will then extend by reflection to the other "half.") For $\omega \in \mathbb{S}^2$, look for an embedding of the form $x = r\omega \mapsto (r\omega, \xi(r)) \in \mathbb{R}^4$. Explain how this justifies the picture we've drawn of the Schwarzschild spatial slice.
- f. When m < 0 the argument breaks in part e. down. Instead, look for an isometric embedding into Minkowski space \mathbb{M}^4 , which is identified with \mathbb{R}^4 with the metric $dx^2 + dy^2 + dx^2 dw^2$.
- 10. Let ∇ be the connection on (M, g_S) , and for vector fields X and Y tangent to a surface $\Sigma \subset M$, let $\mathbb{II}(X,Y) = (\nabla_X Y)^{\mathrm{Nor}}$, and let $\mathbf{H} = \mathrm{tr}_{\Sigma}(\mathbb{II})$
- a. For m>0, show that $r\mapsto \frac{m^2}{4r}$ induces an isometry of g_S which fixes $\Sigma_0=\{r=\frac{m}{2}\}$.
- b. For m > 0, show that Σ_0 is totally geodesic in M. Express m in terms of the area of Σ_0 .
- c. Find the area A(r) of $S_r = \{x : |x| = r\}$ of S_r in the metric g_S . For m > 0, show that A(r) has a global minimum at $r = \frac{m}{2}$.
- d. Fix r and find the second fundamental form and the mean curvature vector \mathbf{H} of $S_r = \{x : |x| = r\}$ in the metric g_S .
- e. Compare A'(r) to $\int_{S_r} \mathbf{H} \cdot \mathbf{X} d\sigma$, where $\mathbf{X} = \frac{\partial}{\partial r}$ and $d\sigma$ is the area measure induced by g_S .
- f. The *Hawking mass* of a surface Σ is given by

$$m_H(\Sigma) = \sqrt{\frac{A(\Sigma)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_{\Sigma} H^2 d\sigma \right).$$

Find $m_H(S_r)$.

- V. Mass and Center of Mass.
- 11. Suppose $(\mathbb{R}^3 \setminus \overline{B_{r_0}(0)}, g)$ is harmonically flat: $g = u^4 g_E$, R(g) = 0, i.e. $\Delta_{g_E} u = 0$, with $u(x) \to 1$ as $|x| \to +\infty$. We saw the expansion $u(x) = 1 + \frac{A}{|x|} + \frac{\beta_i x^i}{|x|^3} + O(|x|^{-3})$ via spherical harmonics.
- a. Let y = x + c, for $c \in \mathbb{R}^n$. For $|y c| > r_0$, find the asymptotic expansion of u as a function of y. Show that there is a chose of $c \in \mathbb{R}^3$ for which $u(y) = 1 + \frac{A}{|y|} + O(|y|^{-3})$.
- b. Compute $\lim_{r\to+\infty} \int_{|x|=r} x^k \sum_{i,j=1}^3 (g_{ij,i} g_{ii,j}) \nu_e^j dA_e$ where $\nu_e^j = \frac{x^j}{r}$. (Warning: this gives the center of mass, but the flux integral isn't the right form for more general asymptotically flat metrics.)
- c. For $r_1 > r_0$, express $\int_{r_1 \le |x| \le r} x^k \sum_{i,j=1}^3 (g_{ij,ij} g_{ii,jj}) dx$ as a difference of two flux integrals, plus an "error term"—be careful—why is it an "error term"? More generally, for g asymptotically flat,

with $R(g) \in L^1(M, g)$, what additional condition might you impose on g to show that this term is of smaller magnitude than the flux integrals?

- 12. Assume that h is a (smooth) transverse-traceless tensor at the Euclidean metric on \mathbb{R}^3 . Let's use Cartesian coordinates x, so that covariant derivative components are computed via partial derivatives (the Christoffel symbols vanish). So $0 = \operatorname{tr}_{g_E} h = \sum_{i=1}^3 h_{ii}$, and $0 = (\operatorname{div}_{g_E} h)_j = \sum_{i=1}^3 h_{ij,j}$. Now, assume that h has compact support. Let $\gamma_{\epsilon} = g_E + \epsilon h$, and for $|\epsilon|$ sufficiently small, let $u_{\epsilon} > 0$ be the associated conformal factor so that with $g_{\epsilon} = u_{\epsilon}^4 \gamma_{\epsilon}$, $R(g_{\epsilon}) = 0$, and u_{ϵ} tends to 1 at infinity. Near infinity each u_{ϵ} is harmonic, and as such has an asymptotic expansion $u_{\epsilon} = 1 + \frac{m(\epsilon)}{2|x|} + O(|x|^{-2})$.
- a. Show that $16\pi m(\epsilon) = -\int_{\mathbb{R}^3} R(\gamma_{\epsilon}) u_{\epsilon} d\mu_{g_{\epsilon}}$.
- b. Show that m'(0)=0 and that $16\pi m''(0)=\frac{1}{2}\int\limits_{\mathbb{R}^3}|\nabla_{g_E}h|^2~dx.$