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Mathematical Relativity: 99 Years of General Relativity

Problems from Constraint Equations Mini-course

Basic facts and conventions
•We use the Einstein summation convention: sum over a pair of upper and lower repeated indices.
• A comma in a subscript denotes partial differentiation, whereas a semicolon in a subscript denotes
covariant differentiation. For example, if h is a (1, 2)-tensor with components in a coordinate chart
hijk, then the covariant derivative ∇h is a (1, 3)-tensor with components

hijk;` := ∇h
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• The Christoffel symbols for the connection compatible with a metric g (Riemannian or pseudo-
Riemannian) are given by the rule (where gi`g`j = δij)

Γkij =
1

2
gkm(gmj,i + gim,j − gij,m).

• In normal coordinates (xi) about a point p ∈ M , we have gij,k(p) = 0 for all i, j and k, so that

at p, Γkij(p) = 0 and gij,k(p) = (−gi`g`m,kgmj)(p) = 0.
• Our convention for the Riemann curvature tensor is as follows:

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

R
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• In our convention the Ricci tensor is then given by

Ric(X,Y ) = dxi(R
( ∂
∂xi

, X, Y
)
) = gk`g

(
R
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∂xk
, X, Y

)
,
∂

∂x`

)
Rij = Ric

(
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)
= R``ij .

• The scalar curvature is R(g) = gijRij . The Einstein tensor is G = G(g) = Ric(g)− 1
2R(g)g.

• Let gE be the Euclidean metric on Rn, with Cartesian coordinates x = (x1, . . . , xn) so that

gE = δijdx
idxj , and let |x| =

√
n∑
i=1

(xi)2. If r = |x|, gE = dr2 +r2 gSn−1 , where gSn−1 is the standard

round unit metric on the sphere Sn−1. We recall the notation gS2 = dΩ2 = dφ2 + sin2(φ) dθ2. Note
that the angle convention is the mathematics convention, as opposed to the physics convention,
• If ḡ is a Lorentzian or Riemannian metric on S = I × M , we let t be a global coordinate
for I, and suppose in the Lorentzian case that ∂

∂t is everywhere time-like, so that in any case,
each slice Mt = {t} × M is Riemannian, with induced metric g(t). Let X be the orthogonal
projection of ∂

∂t onto the tangent space of Mt at each (t, p). Then for each Y tangent to Mt,

〈 ∂∂t , Y 〉 = 〈X,Y 〉. If n is a unit normal field in the direction of ∂
∂t , then there is a function N > 0

so that ∂
∂t = Nn + X. Thus ḡ( ∂∂t ,

∂
∂t) = 〈n, n〉N2 + |X|2g. Then in local coordinates xi for M ,

ḡ = 〈n, n〉N2dt2 + gij(dx
i +Xjdt)⊗ (dxj +Xjdt).



Problems.

I. Mainardi and ADM equations and applications

1. Let S = I × R3, with ḡ = −dt2 + (a(t))2gEucl. On the slices {t} × R3, g(t) = (a(t))2gEucl, and
n = ∂

∂t is a global unit normal field along the slices. Let a zero index denote the ∂
∂t -component

direction.

a. Use the ADM equations to compute the second fundamental form K, as well as the components
of Ric(ḡ) in directions tangent to the slices.

b. Use the relation between g and K and Gµ0 discovered when we proved the constraint equations
to compute Gµ0, and hence Gµν .

2. Consider S = I ×M and ḡ = 〈n, n〉N2dt2 + gij(dx
i +Xidt)⊗ (dxj +Xjdt), as above.

a. For a vector field Y tangent to the slices Mt, show that [n, Y ] = (n[Y i] + N−1Y [Xi]) ∂
∂xi

+
N−1Y [N ]n.

b. Let Ŝ(X,Y ) = 〈∇Xn, Y ) = −〈∇XY, n〉 = −K(X,Y ). We recall ∇XY = ∇XY + K̂(X,Y )n, and
that Ŝ = −〈n, n〉K̂. The equation ∂tgij = 2nŜij + (LXg)ij holds as in lecture. Recall that if T is a
(0, 2)-tensor, then T 2

ij = TikT`jg
k`.

Prove the Mainardi equation: for Y and Z vector fields tangent to the slices Mt,

〈R̄(Y, n, n), Z〉 = −(∇nŜ)(Y,Z)− Ŝ2(Y, Z)− 〈n, n〉N−1HessgN(Y, Z).

c. Suppose ν is a smooth unit normal field to a hypersurface Σ ⊂ (Σ̂n, h), and that Sp(X) =
(∇Xν)p ∈ TpΣ is the corresponding shape operator, the (1, 1)-tensor associated to the second fun-
damental form Ŝ of Σ. For each p in Σ, let γp be the geodesic with γ′p(0) = ν(p). We note that
given coordinates x′ = (x1, . . . , xn−1) for the hypersurface Σ, we let (x1, . . . , xn) 7→ γp(x′)(x

n) =
expp(x′)(x

nν) ∈ M . It’s not hard to show that this map gives local coordinates for M , and that

along Σ, ∂
∂xn = ν.

Prove the Riccati equation ∇νS + S2 = −R(·, ν, ν), where (∇νS)(X) = ∇ν(S(X))− S(∇νX).

d. Recall that the mean curvature vector field H along Σ is independent of (local) orientation, and
is given as the normal vector H = trΣ(II). Note that 〈H, n〉 = −trΣ(S). Consider now a variation
F : I×Σ→M given by ∂F

∂t

∣∣
(t,p)

= ν(t, p), where ν(t, p) is a unit normal to the surface Σt = F (t,Σ).

Show that the variation in the mean curvature is given by ∂t(trΣ(S)) = −‖A‖2 − Ric(ν, ν), where
K(X,Y ) = g(X,−∇Xν) = g(∇XY, ν) is the second fundamental form of Σ. Let A(t) = Area(Σt).
Compute A′(t), and assuming A′(0) = 0, compute A′′(0).

II. Linearization of the scalar curvature map and static potentials.

3. Let R(g) = gijRij be the scalar curvature of a metric (not necessarily Riemannian). Consider
a variation g(ε) = g + εh of g in the direction of a symmetric (0, 2)-tensor field h (more generally,
note that all you will use is that g(ε) is a metric smooth in t, with g(0) = g and g′(0) = h).



Assume that for small |ε|, g(ε) is a metric, as would be the case for h compactly supported. Define

Lg(h) := DRg(h) = d
dε

∣∣∣
ε=0

R(g(ε)).

a. Derive the scalar curvature formula

R(g) = gijRij = gij
(

Γkij,k − Γkik,j + Γkk`Γ
`
ij − Γkj`Γ

`
ik

)
.

b. Verify that the difference S(X,Y ) := ∇XY − ∇̃XY defines a vector-valued (0, 2)-tensor (i.e.

a (1, 2) tensor Ŝ(θ,X, Y ) = θ(S(X,Y ))). Thus Γ̇kij := d
dε

∣∣∣
ε=0

Γkij form the components (δΓ)kij of a

(1, 2)-tensor (δΓ). Argue that Γ̇kij = 1
2g
km(hmj;i + him;j − hij.m), where the covariant derivative is

taken with respect to g(0). (Hint: use g(0)-normal coordinates at p.)

c. Use the preceding part to aid in verifying the identities d
dε

∣∣∣
ε=0

Rij = (δΓ)kij;k − (δΓ)kik;j , and then

Lg(h) = −∆g(trg(h)) + divg(divg(h))− 〈h,Ric(g)〉g

where the inner product of two (0, 2)-tensors S and T is given by 〈S, T 〉 = SijTk`g
ikgj`, for example

trg(S) = 〈g, S〉.

d. Suppose that (M, g, π = 0) solves the time-symmetric vacuum constraints Φ(g, π) = 0, where
Φ(g, π) = (R(g)− ‖π‖2g + 1

2(trg(π))2,divg(π)). Here πij is a (2, 0)-tensor, whose divergence defines
a vector field.

Find DΦ(g,0)(h, σ), where h is a symmetric (0, 2) tensor and σ is a symmetric (2, 0) tensor,
each of compact support, and then find DΦ∗(g,0)(N,X) by integration by parts. Since π = 0, the
linearization simplifies dramatically from the general case. Compare your answer to that derived
in class. If you want to try your hand at the general case, find a Starbucks and see if they serve a
coffee larger than a Venti (sometimes they have a Trenta!).

4. Suppose (M, g) is Riemannian.

a. Suppose that L∗gN = 0, and that γ is a unit-speed geodesic in (Mn, g). Let h(t) = N(γ(t)).
Prove that h(t) satisfies a second-order linear ODE. What does this say about the dimension of the
kernel of L∗g?

b. Suppose that L∗gN = 0, but that f is not identically zero. Show that Σ = N−1(0) is a reg-
ular hypersurface, which is totally geodesic (zero second fundamental form). Hint: If p ∈ Σ and
dNp = 0, what does part a. have to say about things?

c. Suppose that (Mn, g) is a closed manifold with negative scalar curvature. Find the kernel of L∗g.

d. Consider the metric g = (n− 2)−1gS1 ⊕ gSn−1 on S1× Sn−1. Show that N(t, ω) = sin t is a static
potential for g.

e. Does every Ricci-flat metric have a static potential? What can you say in case a metric (M, g)
on a closed manifold with zero scalar curvature has a static potential?

f. Let N : M → R be a smooth function. Define the Lorentzian metric ḡ = −N2dt2 ⊕ g on the
space S = I × {p ∈M : f(p) 6= 0}. Prove that for X,Y tangent to M at p with N(p) 6= 0, we have



Ric(ḡ)(X,Y ) = Ric(g)(X,Y )− 1
N(p)HessgN(p), Ric(ḡ)(X, ∂∂t) = 0, and Ric(ḡ)( ∂∂t ,

∂
∂t) = N∆gN .

g. Conclude from part a. that a function N on M is a nontrivial element of the kernel of L∗g if and
only if the metric ḡ as above is an Einstein metric. (Note that in the preceding problem you said
something about the set {p ∈M : N(p) = 0} where the metric ḡ may have issues.)

III. Conformal changes of metric.

5. a. Suppose (Mn, g) is a Riemannian metric and g̃ = eϕg. Show that

R(g̃) = e−ϕ
(
R(g)− (n− 1)∆gϕ−

1

4
(n− 1)(n− 2)|∇ϕ|2g

)
.

b. In case n ≥ 3, if we write eϕ = u
4

n−2 for u > 0, then

R(g̃) = u−
n+2
n−2

(
R(g)u− 4(n− 1)

(n− 2)
∆gu

)
.

c. Suppose M is compact with empty boundary. Let c(n) = n−2
4(n−1) . Let Lgu = ∆gu− c(n)R(g)u,

the conformal Laplacian. Show that the total scalar curvature of g̃ = u
4

n−2 g is given by∫
M
R(g̃) dvg̃ = c(n)−1

∫
M

(
|∇u|2g + c(n)R(g)u2

)
dvg.

Hint: Show that dvg̃ = u
2n
n−2 dvg.

6. Recall the conformal Killing operator L is related to the Lie derivative L by the relationship
LgW = LW g − 2

ndivgWg.
a. Suppose (M, g0) is three-dimensional. If φ > 0 on M and g = φ4g0, show that for any trace-free
symmetric (2, 0)-tensor Ξab,

(divg(φ
−10Ξ))a = φ−10(divg0Ξ)a

and
(LgW )ab = φ−4(Lg0W )ab.

Can you figure out what the analogous statements would be in higher dimensions?

b. Suppose (M, g0) is three-dimensional, that φ > 0 on M and that g = φ4g0. If σ is TT for g0, let
Kcd = φ−10(σcd + (Lg0W )cd) + 1

3φ
−4gcd0 τ . Show the following:

R(g)− |K|2g + (trgK)2 = −8φ−5(∆g0φ−
1

8
R(g0)φ)− φ−12|σ + Lg0W |2g0 +

2

3
τ2

(divgK − d(trg(K)))a = φ−6divg0(Lg0W )a −
2

3
dτa.

7. a. Show directly (and in one line) that if h is symmetric with compact support, and if LgEh ≥ 0,
then LgEh = 0.

b. Show by elementary methods that there exists an infinite-dimensional space of TT tensors on
(R3, gE) with compact support. Such tensors automatically satisfy LgEh = 0.



c. (Open problem): If you can construct a non-trivial symmetric TT tensor h on R3 with compact
support and so that |h|2gE depends only on |x|, please let me know—a nice paper would come out
of it.

8. Recall the operator (L̃g(X))ij = Xi;j +Xj;i −Xk
;kgij .

a. If γ is a metric on M3, let g = u4γ and πij = u2(L̃γ(X))ij for u > 0. Compute the constraints
map Φ(g, π) = (R(g)− |π|2g + (trgπ)2, divgπ).

b. If γ = gE, show that the vacuum constraints can be written, in a Cartesian coordinate system
for the background gE, as follows:

8∆u = u
(
− |L̃X|2 +

1

2
(tr(L̃X))2

)
∆Xi+4u−1u,j(L̃X)ji − 2u−1u,itr(L̃X) = 0

c. If the above equations in part b. hold on an asymptotic end, one can show that u and X
have partial expansions u(x) = 1 + A

|x| + O(|x|−2), Xi(x) = Bi

|x| + O(|x|−2), along with fall off for

derivatives. Show that πij = −Bixj+Bjxi

|x|3 +
∑
k

Bkxk

|x|3 δij +O(|x|−3), and that P i = −Bi

2 is the ADM

linear momentum.

d. (Open problem): Give some geometric framework for the operator L̂g. What is the “best”
Ansatz for the asymptotic form of πij?

IV. Schwarzschild Geometry Basics Recall the spatial Schwarzschild metric gS =
(

1 + m
2|x|

)4
gE,

defined on the manifold M given by M = R3 \ {0} for m > 0, M = R3 for m = 0, and
M = {x ∈ R3 : |x| > −m

2 } for m < 0.

9. a. We saw that R(gS) = 0. Find Ric(gS), which doesn’t vanish.

b. Show that

m =
1

16π
lim

r→+∞

∫
|x|=r

3∑
i,j=1

((gS)ij,i − (gS)ii,j) ν
j
e dσe

where the computation is done in the coordinates (x1, x2, x3), and where νe is the Euclidean out-
ward unit normal, and dσe is the Euclidean area measure (where (xi) are Cartesian coordinates for
the Euclidean metric).

c. When m < 0, A(r) → 0 as r → −(m2 )+. Show that a radial geodesic from r = r0 > −m
2 to

r = −m
2 has finite length. Can the Schwarzschild metric with m < 0 be completed by adding in a

point?

d. Let gS be a Schwarzschild metric of non-zero mass m. Show that there is a one-dimensional
kernel for L∗gS . Do this by showing first that for any function in the kernel, HessgS (f) = fRic(gS).

Write this out in coordinates for which gS = (1 − 2m
r )−1dr2 + r2(dϕ2 + sin2 ϕ dθ2). Show that

∂θf = 0 and ∂ϕf = 0, and then solve the remaining ODE for f .



e. Let m > 0. Find an isometric embedding of (M, gS) into Euclidean space E4, identified in
Cartesian coordinates (x, y, z, w) with (R4, dx2 + dy2 + dz2 + dw2). It might be easiest to use the
other coordinates we introduced for the Schwarzschild metric: (1 − 2m

r )−1dr2 + r2 gS2 , r > 2m.
(This corresponds to “half” of (M, gS). The map you get will then extend by reflection to the other
“half.”) For ω ∈ S2, look for an embedding of the form x = rω 7→ (rω, ξ(r)) ∈ R4. Explain how
this justifies the picture we’ve drawn of the Schwarzschild spatial slice.

f. When m < 0 the argument breaks in part e. down. Instead, look for an isometric embedding
into Minkowski space M4, which is identified with R4 with the metric dx2 + dy2 + dx2 − dw2.

10. Let ∇ be the connection on (M, gS), and for vector fields X and Y tangent to a surface Σ ⊂M ,
let II(X,Y ) = (∇XY )Nor, and let H = trΣ(II)

a. For m > 0, show that r 7→ m2

4r induces an isometry of gS which fixes Σ0 = {r = m
2 }.

b. For m > 0, show that Σ0 is totally geodesic in M . Express m in terms of the area of Σ0.

c. Find the area A(r) of Sr = {x : |x| = r} of Sr in the metric gS . For m > 0, show that A(r) has
a global minimum at r = m

2 .

d. Fix r and find the second fundamental form and the mean curvature vector H of Sr = {x : |x| =
r} in the metric gS .

e. Compare A′(r) to
∫
Sr

H ·X dσ, where X = ∂
∂r and dσ is the area measure induced by gS .

f. The Hawking mass of a surface Σ is given by

mH(Σ) =

√
A(Σ)

16π

1− 1

16π

∫
Σ

H2 dσ

 .

Find mH(Sr).

V. Mass and Center of Mass.

11. Suppose (R3\Br0(0), g) is harmonically flat: g = u4gE , R(g) = 0, i.e. ∆gEu = 0, with u(x)→ 1

as |x| → +∞. We saw the expansion u(x) = 1 + A
|x| + βix

i

|x|3 +O(|x|−3) via spherical harmonics.

a. Let y = x+ c, for c ∈ Rn. For |y − c| > r0, find the asymptotic expansion of u as a function of
y. Show that there is a chose of c ∈ R3 for which u(y) = 1 + A

|y| +O(|y|−3).

b. Compute lim
r→+∞

∫
|x|=r

xk
3∑

i,j=1
(gij,i − gii,j) νje dAe where νje = xj

r . (Warning: this gives the center

of mass, but the flux integral isn’t the right form for more general asymptotically flat metrics.)

c. For r1 > r0, express
∫

r1≤|x|≤r
xk

3∑
i,j=1

(gij,ij − gii,jj) dx as a difference of two flux integrals, plus

an “error term”—be careful—why is it an “error term”? More generally, for g asymptotically flat,



with R(g) ∈ L1(M, g), what additional condition might you impose on g to show that this term is
of smaller magnitude than the flux integrals?

12. Assume that h is a (smooth) transverse-traceless tensor at the Euclidean metric on R3. Let’s
use Cartesian coordinates x, so that covariant derivative components are computed via partial

derivatives (the Christoffel symbols vanish). So 0 = trgEh =
3∑
i=1

hii, and 0 = (divgEh)j =
3∑
i=1

hij,j .

Now, assume that h has compact support. Let γε = gE +εh, and for |ε| sufficiently small, let uε > 0
be the associated conformal factor so that with gε = u4

εγε, R(gε) = 0, and uε tends to 1 at infinity.

Near infinity each uε is harmonic, and as such has an asymptotic expansion uε = 1+m(ε)
2|x| +O(|x|−2).

a. Show that 16πm(ε) = −
∫
R3

R(γε)uε dµgε .

b. Show that m′(0) = 0 and that 16πm′′(0) = 1
2

∫
R3

|∇gEh|2 dx.


