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Chapter 1

A Brief Introduction to
Special Relativity and
Minkowski Space

1.1. The Lorentz Transformations

We begin by discussing some of the physical underpinnings of the Minkowski
space model of physics as developed in the spirit of Einstein. From a math-
ematical point of view, we make the assumption that events in space and
time form a four-dimensional continuum M , which for now we take to be
R4 topologically. We discuss how Einstein identified preferred sets of co-
ordinate charts which correspond to a certain class of physical observers.
The transformations between such charts form a group of diffeomorphisms
of R4, and from the Kleinian perspective, the invariants of this group yield
geometric quantities of interest.

1.1.1. Galilean transformations. Inertial frames of reference (inertial
observers) are those in which Newton’s first law, the law of inertia, holds.
The law states that objects will move with constant velocity unless acted
upon by a force. This overturned the Aristotelian law, which stated that
objects which are not acted upon by a force should naturally come to rest.
Now, it is clear that an observer in uniform motion with respect to an inertial
observer is also an inertial observer, and trajectories which correspond to
constant-velocity paths move in straight lines in both space and space-time.

The principle of Galilean/Newtonian relativity is that one cannot de-
tect absolute motion of any inertial reference frame, only relative motion:
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2 1. A Brief Introduction to Special Relativity and Minkowski Space

physics should “look the same” to all inertial observers. In other words, all
inertial systems are equivalent for the formulation of physical laws; there is
no preferred inertial frame. As a reference frame is a coordinate chart for
space-time, we look for those coordinate changes that correspond to com-
parison of measurements made by two inertial observers. It was assumed
that the universe is endowed with some Newtonian time function that mea-
sures absolute time intervals between events. If we translate the times for
two inertial observers, we can arrange that the time functions agree. We
can write the transformation that relates the coordinates (t,x) of an event

(point in space-time) in one frame O to the coordinates (t̃, x̃) in a frame Õ
moving at constant velocity v with respect to O:

t̃ = t(1.1)

x̃ = x− vt.(1.2)

If we also arrange the relative velocity to lie along the x-axis, then the
transformation becomes, with v = v ∂

∂x ,

t̃ = t

x̃ = x− vt
ỹ = y

z̃ = z.

Note that the for two points E1 and E2 with respective coordinates (t1,x1)

and (t2,x2) in O, and correspondingly labeled coordinates in Õ, the Eu-
clidean spatial separation is preserved: ‖x1 − x2‖ = ‖x̃2 − x̃1‖. Moreover,

if Ô is an inertial observer moving with constant velocity w with respect to
Õ, then it is elementary to obtain the Galilean law of addition of velocities:

(1.3) x = x̃− vt = x̂−wt− vt = x̂− (v + w)t.

We see that relative velocities satisfy a very simple addition rule.

Suppose one has a curve γ : I ⊂ R → M parametrized by Newtonian
time. If we let x(t) be the spatial components of γ(t) in O, and x̃(t) be the

components in Õ, then x̃(t) = x(t) − vt. Therefore, if a prime denotes a
time derivative, x̃′(t) = x′(t)−v, and x̃′′(t) = x′′(t). Hence the acceleration
a(t) of the path γ is the same as measured in either frame. Moreover, if γ is
the path of an object of mass m (which we take here to be independent of t),
then ma(t) is the same in either frame. In many classical systems the force
F between objects depends on the relative separation of the bodies, which
is observer-independent, so that Newton’s Second Law of Motion takes the
same form in both frames.

Einstein’s foundational 1905 paper is entitled On the Electrodynamics
of Moving Bodies. Indeed the incompatibility of electromagnetism and the
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Galilean transformations led to the reformulation of mechanics. There are of
course very fundamental issues in interpreting electromagnetism. Nineteenth-
century experiments revealed that a magnetic field is generated by charges
in motion. The Lorentz force law F = q(E + v

c ×B) (written in Gaussian
or cgs units (centimeters-grams-seconds)) determines the force on a charge
q moving at velocity v in an electromagnetic field. How do we interpret the
physics if instead we switch to a frame moving with the charges generating
the magnetic field, or to a frame in which the charge q in the Lorentz law
is stationary? Consider a circular wire loop which moving past a stationary
magnet whose field lines move through the loop. The moving charges expe-
rience a force from the Lorentz force law. If instead we view the wire as sta-
tionary, but the magnet as moving, then the charges experience a force from
as electric force induced (Faraday’s Law) by the changing magnetic field.
In the end, of course, the physical predictions are the same in each case,
it is only the interpretation that differs. Einstein looked for a fundamental
explanation of this in terms of relativity, that the laws of electromagnetism
should have the same form in all inertial frames.

A consequence of Maxwell’s equations for electromagnetism is that light
travels according to a wave equation, the speed of which can be determined.
Of course, this begs the question: the speed relative to what? And what was
the medium capable of transmitting electromagnetic disturbances at such a
great speed, while seeming transparent to the motion of the earth through
it? Experiments such as the Michelson-Morley experiment in the late nine-
teenth century failed to find the medium, a preferred reference frame (which
was called the ether frame), with respect to which light in vacuum travels
at, well, the speed of light—roughly 3 × 108 meters per second. Under the
Galilean transformations, inertial observers in relative motion with respect
to the ether frame would have different measurements of the value of the
speed of light. That this was not observed in experiments caused quite a
quandary. Other experiments demonstrated that hypotheses which were
proposed to explain the result of Michelson-Morley did not hold, such as
the Kennedy-Thorndike experiment for the Lorentz contraction hypothesis,
and the classical results on stellar aberration and the Fizeau experiment,
which supplied evidence against a theory that the earth moved along with
the ether. The ether theory embraced the notion that the principle of rela-
tivity did not apply to electromagnetism, in the sense that the ether frame
is a preferred frame of reference for the theory. That there were problems
with this led Einstein to postulate that relativity does apply to electromag-
netism. Thus, although Newtonian dynamics works well with the Galilean
transformations, for relativity to apply to electromagnetism, the Galilean
transformations required modification.
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For some foreshadowing, consider a function ψ : M → R which satisfies
the wave equation (with wave speed c) in O, in the sense that

1

c2

∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
.

Let’s suppose the relative velocity is aligned along the x-axis. Then since

∂

∂t
=
∂t̃

∂t

∂

∂t̃
+
∂x̃

∂t

∂

∂x̃
=

∂

∂t̃
− v ∂

∂x̃

∂

∂x
=
∂t̃

∂x

∂

∂t̃
+
∂x̃

∂x

∂

∂x̃
=

∂

∂x̃
,

we see that Ψ(t̃, x̃) := ψ(t,x) satisfies

1

c2

(
∂

∂t̃
− v ∂

∂x̃

)2

(Ψ) =
∂2Ψ

∂x̃2
+
∂2Ψ

∂ỹ2
+
∂2Ψ

∂z̃2
.

This can be re-written as

1

c2

∂2Ψ

∂t̃2
− 2

v

c2

∂2Ψ

∂t̃∂x̃
=

(
1− v2

c2

)
∂2Ψ

∂x̃2
+
∂2Ψ

∂ỹ2
+
∂2Ψ

∂z̃2
.

We see that the wave equation is not invariant under Galilean transforma-
tions. This is perfectly reasonable for mechanical waves, but the homoge-
neous wave equation governing light propagation in vacuum is a consequence
of Maxwell’s equations, and we have seen that experiments indicate that
light travels at the same speed in vacuum for all inertial observers.

However, it is not too hard to play around with the transformation so
as to coax the preceding equation into the standard wave equation form.
Namely, let

t̃ =
1√

1− (v/c)2
(t− v

c2
x)

x̃ =
1√

1− (v/c)2
(x− vt)

replace the Galilean coordinate change. Then as we did above, we obtain

∂

∂t
=
∂t̃

∂t

∂

∂t̃
+
∂x̃

∂t

∂

∂x̃
=

1√
1− (v/c)2

(
∂

∂t̃
− v ∂

∂x̃

)
∂

∂x
=
∂t̃

∂x

∂

∂t̃
+
∂x̃

∂x

∂

∂x̃
=

1√
1− (v/c)2

(
∂

∂x̃
− v

c2

∂

∂t̃

)
.

Thus

1

c2

∂2

∂t2
=

1

c2
· 1

(1− (v/c)2)

(
∂2

∂t̃2
− 2v

∂2

∂t̃∂x̃
+ v2 ∂

2

∂x̃2

)
∂2

∂x2
=

1

(1− (v/c)2)

(
∂2

∂x̃2
− 2

v

c2

∂2

∂t̃∂x̃
+

1

c2

(v
c

)2 ∂2

∂x̃2

)
.
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Therefore,

1

c2

∂2

∂t2
− ∂2

∂x2
=

1

c2

∂2

∂t̃2
− ∂2

∂x̃2
.

We found a coordinate change for which the wave equation is preserved,
but at what cost? Especially disturbing is that t̃ depends not only on t, but
on x and v as well! In fact, we will derive these equations from applying
a few simple fundamental principles, as Einstein did. Namely, we combine
the Galilean/Newtonian principle that physics should have the same form
in all inertial frames along with Einstein’s postulate that the speed of light
in a vacuum is a physical law, and thus the same for all inertial observers.
This immediately mitigates the need for an ether, and is consistent with the
results of Michelson and Morley.

1.1.2. Deriving the Lorentz Transformations. We will now derive the
Lorentz transformation of coordinates between inertial observers, as well as
the transformation for electromagnetic fields, which allows one to deduce
that Maxwell’s equations constitute a physical law as well. We suppose that
the origins in each coordinate system correspond to the same point in M .
Straight line paths in one coordinate system represent uniform motion, and
should therefore be straight lines in the other coordinate system (by the
Law of Inertia and the Principle of Relativity). Since the origins match
up, and if we assume the coordinate transformation is continuous, then we
can conclude with a little work that the transformation must be linear.
Another way to argue for linearity is based on the principle that space-time
should be isotropic, i.e. there should be no preferred directions or points.
A nonlinear change of coordinates would not preserve displacements along
some line parallel to an axis (space or time), which would violate isotropy.
Other points of view are to postulate linearity either for simplicity’s sake,
or in the sense of a Taylor approximation, and see what happens. As we are
about to see, linear maps exist which do the job!

The paths of light rays emanating from the origin comprise the light
cone, which can be represented in coordinates as Σ := {(t,x) : (ct)2 = ‖x‖2}.
Applying the Einstein postulate that the speed of light in vacuum is the same
for all inertial observers, we require that this linear transformation preserve
the light cones. It is reasonable to propose, based on the assumption that
there is no preferred direction orthogonal to the direction of motion, that in
directions orthogonal to the direction of motion the coordinates are the same
for both observers, i.e. we can set up axes so that the direction of relative
motion is along the x-axes in each coordinate system, and moreover ỹ = y
and z̃ = z. Indeed, you don’t expect to lose the orthogonality of spatial
vectors, since if the angles change one way in a moving frame, then they
ought to change the same way if we reverse the direction of motion. But if
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Tv represents the linear map we are looking for, the Principle of Relativity
suggests T−1

v = T−v. Actually one might more generally argue that the
transformation in these directions could be a dilation, but this would also
not be compatible the Principle of Relativity. Indeed, consider two points
that differ by a spatial displacement of unit size in one frame of reference O.
If an observer Õ moving orthogonally to this displacement would measure
the spatial displacement of the points to be different than one, let’s say less
than one, for example, then by now reversing the roles, we should have that
O, which is moving with respect to Õ, should measure the displacement to
be less than that measured by Õ—obviously this cannot be the case.

We can in fact then reduce the problem to a two-dimensional problem,
since by considerations as above, a vector along the light cone in the (t, x)-
plane should map to the (t̃, x̃) plane. We let the reduced mapping be Tv.
Using standard bases we represent the linear transformation by a matrix

[Tv] =

[
α β
γ δ

]
, so that

t = αt̃+ βx̃

x = γt̃+ δx̃.

Now x̃ = 0 is the path of the observer moving with respect to O with
velocity v, and is given by t = αt̃, x = γt̃, so that v = γ/α. Now we apply

the invariance of the light cone, which implies that the vectors

[
1
c

]
and[

1
−c

]
are eigenvectors of Tv. In fact since the path x = ct should map

to x̃ = c̃t (positive directions correspond by orientation), the eigenvalues
should be positive. This implies there are respective eigenvalues λ± > 0 so
that

α± cβ = λ±

γ ± cδ = ±cλ±.

Thus cα+c2β = γ+cδ, and cα−c2β = −γ+cδ. Solving these two equations
yields α = δ, γ = c2β. Using v = γ/α we then see the matrix has the form

[Tv] =

[
α β
c2β α

]
= α(v)

[
1 v

c2

v 1

]
.

Now 0 < λ+λ− = det[Tv] = (α(v))2(1 − (v/c)2), so that we have |v| < c—
note that the relative speed of two inertial observers is less than that of
light. We also see α(v) > 0, because 2α(v) = tr[Tv] = λ+ + λ− > 0.

Consider the parity operator P (t, x) = (t,−x). Suppose one applies the
parity operation to a frame of reference, then considers this frame moving
with velocity −v with respect to a second frame. If one now applied the
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parity operator to the second frame, one sees that this situation is physically
equivalent to the original situation of moving the first frame with velocity v
relative to the second frame. Thus we can see that the map P ◦T−v ◦P must
be equal to Tv. Since detP = −1, detT−v = detTv, But since Tv ◦ T−v = I,
we see detTv = ±1, and thus detTv = 1 since we know the determinant is
positive.

Together with the result of the last paragraph we see α(v) = 1√
1−(v/c)2

,

and we note then that α(v) = α(−v). Thus we have

[Tv] =
1√

1− (v/c)2

[
1 v

c2

v 1

]
, [T−v] =

1√
1− (v/c)2

[
1 − v

c2

−v 1

]
.

Hence we have arrived at the Lorentz transformation

t =
1√

1− (v/c)2

(
t̃+

v

c2
x̃
)
, x =

1√
1− (v/c)2

(
vt̃+ x̃

)
(1.4)

t̃ =
1√

1− (v/c)2

(
t− v

c2
x
)
, x̃ =

1√
1− (v/c)2

(−vt+ x) .(1.5)

Note that if we change the first variable to x0 := ct, so that the coordinates
have the same units, we have

x0 =
1√

1− (v/c)2

(
x̃0 +

v

c
x̃
)
, x =

1√
1− (v/c)2

(v
c
x̃0 + x̃

)
(1.6)

x̃0 =
1√

1− (v/c)2

(
x0 − v

c
x
)
, x̃ =

1√
1− (v/c)2

(
−v
c
x0 + x

)
.(1.7)

Let β = v/c (where β is not to be confused with the “β” used in the

derivation above), so that the matrix for Tv relative to the bases
{
c ∂
∂t̃
, ∂∂x̃

}
and {c ∂∂t ,

∂
∂x} is then just [Tv] = 1√

1−β2

[
1 β
β 1

]
, and likewise [T−v] =

1√
1−β2

[
1 −β
−β 1

]
. For −1 < β = v/c < 1, there is a unique θ so that

sinh θ = β√
1−β2

= v/c√
1−(v/c)2

. Then cosh θ = 1√
1−β2

= 1√
1−(v/c)2

(since

cosh θ > 0 and cosh2 θ − sinh2 θ = 1). Thus we can write from the above

[T−v] =

[
cosh θ − sinh θ
− sinh θ cosh θ

]
, so that if θ corresponds to v, −θ corresponds

to −v.

We can use this to find the velocity addition rule in special relativity: if
θ1 and θ2 correspond to v1 and v2, then we note that if we consider frame
Õ moving along the x-axis of O at velocity v1, and Ô moving along the x̃
axis of Õ at velocity v2, then Ô is moving along the x-axis relative to O at
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velocity v which satisfies the following:[
cosh θ − sinh θ
− sinh θ cosh θ

]
= [T−v] = [T−v1 ][T−v2 ]

=

[
cosh θ1 − sinh θ1

− sinh θ1 cosh θ1

] [
cosh θ2 − sinh θ2

− sinh θ2 cosh θ2

]
=

[
cosh(θ1 + θ2) − sinh(θ1 + θ2)
− sinh(θ1 + θ2) cosh(θ1 + θ2)

]
Thus we see that the set of Lorentz transformations corresponding to inertial
observers in relative motion along a common axis form a group. Moreover,
we also have from the above,

v

c
= tanh θ = tanh(θ1 + θ2) =

tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2
=

v1
c + v2

c

1 + v1v2
c2

.

Thus the Galilean rule for the addition of velocities, v = v1 + v2, is replaced
by v = v1+v2

1+
v1v2
c2

. It is easy to show that for |v1|, |v2| < c, it follows that(
1± v1

c

) (
1± v2

c

)
> 0, so that again |v| < c.

1.2. Minkowski space

1.2.1. The Minkowski metric. We note that if we consider the matrix

Λ =

[
cosh θ − sinh θ
− sinh θ cosh θ

]
, then it follows easily that

ΛT
[
−1 0

0 1

]
Λ =

[
−1 0

0 1

]
Thus we see that each element of the group of Lorentz transformations
preserves the bilinear form −(dx0)2 + dx2 = −c2dt2 + dx2. Thus from the
Kleinian perspective, the Lorentz transformations give rise to a geometry,
and the geometric quantities are those objects, such as the above bilinear
form, which are preserved by the group of transformations.

If we return to higher dimensions, such as three spatial dimensions, then
the relevant bilinear form is

η = −(dx0)2 + dx2 + dy2 + dz2 = −c2dt2 + dx2 + dy2 + dz2.

The relevant group of Lorentz transformations is given by the connected
component of the identity in the group of η-preserving linear transforma-
tions. We also obtain the Poincaré group of η-preserving affine transforma-
tions as a semi-direct product of the group of Lorentz transformations with
the set of space-time translations.

We note that we will often let 〈v,w〉 := η(v,w).
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1.2.2. Causal nature of vectors. Vectors w = (c∆t,∆x) with η(w,w) <

0 are called time-like, since ‖∆x‖ < c|∆t|. Then |v| = ‖∆x‖
|∆t| < c. Such

vectors may thus represent the tangents to space-time paths of material
particles. We note in (1.8) below how such vectors represent the space-time
displacements between pairs of events that in some inertial coordinates share
the same spatial coordinates. Similarly, null vectors w satisfy η(w,w) = 0;
these are tangent to the light-cone and represent paths of light rays. Finally,
vectors with η(w,w) > 0 are called space-like, and represent displacements
between pairs of events which are simultaneous (i.e. share the same time
coordinate) in some inertial coordinate system, see (1.9) below.

Suppose that w = (c∆t,∆x, 0, 0) is time-like, and let v = ∆x
∆t , so that

|v| < c. The Lorentz transformation T−v satisfies

(1.8) [T−v]

[
c∆t
∆x

]
=

1√
1− (v/c)2

[
1 −v

c
−v
c 1

] [
c∆t
∆x

]
=

[
∗
0

]
.

Similarly if |∆x| > c|∆t|, then let v
c = c∆t

∆x , so that |v| < c. Then

(1.9) [T−v]

[
c∆t
∆x

]
=

1√
1− (v/c)2

[
1 −v

c
−v
c 1

] [
c∆t
∆x

]
=

[
0
∗

]
.

1.2.2.1. Twin paradox. It turns out that the familiar triangle inequality for
vectors in Euclidean geometry is reversed for time-like vectors in Minkowski
space. Given a smooth time-like curve γ(λ), we define the proper time ∆τ
along a portion of γ as

∆τ = c−1

λ1∫
λ0

√
−〈γ′(λ), γ′(λ)〉 dλ,

and the proper time function as

τ(λ) = c−1

λ∫
λ0

√
−〈γ′(λ̂), γ′(λ̂)〉 dλ̂.

If we re-parametrize γ by proper time τ by inverting to get λ = λ(τ), so
that γ̃(τ) := γ(λ(τ)), we have

γ̃′(τ) = γ′(λ(τ))
dλ

dτ
=

c√
−〈γ′(λ(τ)), γ′(λ(τ))〉

γ′(λ(τ)).

Thus we see the tangent vector has constant length
√
−〈γ̃′(τ), γ̃′(τ)〉 = c.

This means that the parameter τ − τ(λ0) is indeed the proper time elapsed
along γ from λ0 to λ(τ).
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We begin with the reversed triangle inequality. If
−→
OB is time-like, let

|
−→
OB | =

√
−〈
−→
OB,

−→
OB〉.

Definition 1.1. A vector is causal if it is time-like or null. A path is causal
if at each point, its tangent vector is a time-like or null vector.

Proposition 1.2. If
−→
OB future-pointing and time-like, and

−→
OA and

−→
AB

are future-pointing and causal, then |
−→
OB | ≥ |

−→
OA |+ |

−→
AB |, with equality

only in case O, A and B are collinear.

Proof. By applying a Lorentz transformation as in (1.8), we may assume
as above that B has coordinates (tB, 0, 0, 0), for tB > 0, and that A has

coordinates (tA, xA, 0, 0), with |xA| ≤ ctA. Then
−→
AB has components 〈tB −

tA,−xA, 0, 0〉, with |xA| ≤ c(tB − tA). Then |
−→
OA |2 = (ctA)2 − x2

A, and

|
−→
AB |2 = c(tB − tA)2 − x2

A. Then

|
−→
OA |+ |

−→
AB | =

√
(ctA)2 − x2

A +
√
c(tB − tA)2 − x2

A

≤ ctA + c(tB − tA)

= ctB = |
−→
OB |.

The only way equality holds is if xA = 0. �

The reversed triangle inequality has the following analogue for piece-wise
smooth paths.

Proposition 1.3. Suppose O and B are two points in Minkowski space

so that the displacement vector
−→
OB is future-pointing and time-like. Then

amongst all piecewise smooth future-pointing causal paths from O to B, the
one of maximal proper time interval is the straight-line path from O to B.

Proof. By applying a Lorentz transformation as in (1.8), we may choose
inertial coordinates that O is the origin and B lies on the positive t-axis.
If γ is a time-like curve from O to B parametrized by proper time τ , with
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coordinates (t(τ), x(τ), y(τ), z(τ)), then along γ,

∆τ = c−1

∆τ∫
0

√
−〈γ′(τ), γ′(τ)〉 dτ

= c−1

∆τ∫
0

√
c2
( dt
dτ

)2 − (dx
dτ

)2 − (dy
dτ

)2 − (dz
dτ

)2
dτ

≤
∆τ∫
0

dt

dτ
dτ = ∆t.

We used the fact that dt
dτ > 0. Also, if the curve were piecewise smooth, we

could break it up into finitely many intervals and apply the above analysis on
each interval. The inequality is clearly strict unless x, y and z are constant
(equal to 0), so that the curve is along the straight line path. �

The title of the subsection refers to the following physical interpretation
of the reversed triangle inequality. Suppose two twins are together at O,
and both are at that time inertial observers moving relative to each other
along their x-axes at velocity 80% of the speed of light. Suppose that from
the point of view of one of the twins who maintains an inertial frame O,
the other twin travels for five years to arrive at space-time point A, quickly
turns around and returns to join the other twin at space-time point B after
a total travel time of ten years as determined in O. In other words, the

proper time |
−→
OB | elapsed from O to B is ten years. On the other hand,

the proper time that elapses on the other twin’s path from O to A to B
is strictly less than ten years, by the previous corollary: the other twin is
younger ! How can this be if both are moving relative to each other, aren’t
the situations symmetric? Well, no: physically, the twin moving to point A
“and back” must accelerate to turn around. This acceleration means that
this twin does not remain in an inertial frame the entire time. In other
words, the two frames of reference (coordinate charts for Minkowksi space)
do not overlap as a simple Lorentz transformation.

Before we move on, let’s compute how much time passes for the other
twin. Suppose the twins mark each passing year by sending a light signal
to each other. From the point of view of O, a signal sent at year t = k will
be received by the other twin on the outgoing part of the journey at time
tk determined by vtk = c(tk − k), which determines how long it will take
the light to catch up to the moving twin. Now, v

c = 0.8, so tk = 5k. Thus
we see that the first signal (k = 1) will be received just as the second twin
turns around to begin the return trip. Thus only one signal from O will be
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received on the outgoing portion of the trip, and so the other nine signals
will be received by the other twin on the return portion of the journey. What
about signals sent from the twin moving relative to O? The first signal is
sent after one unit of proper time has passed along the path from O to A,
which is at time t = 1√

1−(v/c)2
as measure in O. The distance between the

twins at this instant, as measured in O is just v√
1−(v/c)2

. Thus the time at

which the signal will arrive at x = 0 is

1√
1− (v/c)2

+
1

c

v√
1− (v/c)2

=

√
1 + v/c√
1− v/c

.

Similarly the signal sent after ` years of proper time have elapsed on the

outward journey from O to A will arrive at x = 0 at t =

√
1+v/c√
1−v/c

`. Note

that the time interval between the reception of successive signals is

√
1+v/c√
1−v/c

,

which thus marks the relative frequency between the emission of signals (as
measured by the emitter), and the reception of signals (as measured by the
receiver). This difference in relative frequency is known as the Doppler shift.

Now for v
c = 0.8,

√
1+v/c√
1−v/c

= 3. The numerology works out so that the third

signal sent along the path from O to A occurs at t = 3√
1−(0.8)2

= 5, so three

signals are sent along the outward journey, and the third signal arrives at
x = 0 at t = 9. The twin at A has sent three signals back to his twin,
but has received only one signal. On the “homeward” journey, the twin will
send three more signals (the last just as the twins are back together again),
and we receive a total of nine signals from the other twin.

1.2.3. Simultaneity. The world-lines of inertial observers are special paths,
namely time-like geodesics. Moreover, inertial observers observers corre-
spond to certain coordinate charts on Minkowski space-time M. Mathemat-
ically it is not a big deal a points in M has two different sets of coordinates in
two different charts. However, interpreting the coordinates in the physical
model yields some interesting results—the coordinates are not merely labels,
but rather they are supposed to be the results of physical measurements.

The first observation is that simultaneity is relative: two different ob-
servers O and Õ moving relative to each other will not agree in general on
whether two events occur at the same time. Imagine we synchronize the
observers at the origin at an initial time, and that they are moving along
their respective x-axes. The Lorentz transformations tell us that the events
that Õ chart as occurring simultaneously at t̃ = 0 correspond to t = v

c2
x in

O. Different points in this set have different t-coordinates, and so O will
not agree that they occur at the same time.
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Though simultaneity is relative, both observers will calculate the same
value of −(ct)2 + x2 = −(x0)2 + x2 = −(x̃0)2 + (x̃)2 = −(ct̃)2 + (x̃)2. This
observation can be used to obtain two interesting conclusions that can be
verified experimentally: time dilation and Lorentz contraction.

Consider the event A which has coordinates t̃ = 1, x̃ = 0 (we suppress
the other spatial dimensions, whose coordinates we take to be 0). The
Lorentz transformations give us the coordinates for A in O, and in particular

t =
t̃+ v

c2
x̃√

1−(v/c)2
= 1√

1−(v/c)2
> 1. O measures more time to have elapsed,

and so concludes that the moving clock in Õ’s frame runs slow. Another
way to see this from the invariant hyperbola is to note that since at A,
−(ct̃)2 + x̃2 = −c2, but x = vt 6= 0, then for (−ct)2 + x2 = −c2 at A, t > t̃!
You can see this with a simple picture: draw the hyperbola through A, and
it intersects the t axis at a coordinate lower than t(A). In general, if time
∆t̃ is measured between events at a fixed x̃ value, then the time between

the events as measure in O will be ∆t = ∆t̃√
1−(v/c)2

> ∆t̃.

Similarly, moving objects contract along the direction of motion. To be
precise, consider a rod along the x̃-axis, whose rest length measured in Õ is
L, and which is moving with velocity v > 0 along the x-axis. This means
that the ends of the rod are measured simultaneously in Õ at, say, O given
by (t̃, x̃) = (0, 0) and A given by (t̃, x̃) = (0, L). The ends of the rod make
paths in space-time, one given by x̃ = 0, the other by x̃ = L. We need to find
the coordinates of the point B where x̃ = L intersects t = 0, since then both
O and B will be simultaneous with respect to O. By the Lorentz transfor-
mations, the event B will have t̃ = − v

c2
L, so that x =

√
1− (v/c)2 L < L.

In O, the rod is measured to have length
√

1− (v/c)2 L, since determining
the length of the rod amounts to finding the spatial separation between the
ends at a fixed time. It is this last issue that is relative. Note also that this
length contraction can also be seen geometrically in terms of the invariant
hyperbolae. Indeed, the hyperbola −(ct̃)2 + x̃2 = L2 through the point A
lies to the right of the line x̃ = L, touching only at the point of tangency
at A. As such, the event B which occurs on x̃ = L is between the origin O
and the point C along the line t = 0 which intersects the hyperbola. Thus
C must have coordinate (t, x) = (0, L), since it lies on the hyperbola. Hence
the point B must have x-coordinate less than L.

1.2.3.1. Pole and Barn Paradox. Consider a barn of rest length 10, and a
pole of rest length 20. Suppose they are in inertial frames moving along the

x-axis with respect to each other with relative velocity v, v
c =

√
3

2 , so that√
1− (v/c)2 = 1

2 . From the point of view of the barn, the pole contracts
along the direction of motion to half its rest length, so that it can fit entirely
in the barn as it moves through. From the point of view of the pole, the barn
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is moving toward it, and thus it contracts to length 5; thus in the rest frame
of the pole, it can never fit entirely inside the barn. Can both viewpoints of
reality be correct?

The answer of course is Yes! Let’s analyze this first from the point of
view of the barn frame O, in which the one end of the barn has world-line
x = 0, and the other end x = 10. The pole is moving in the positive x-
direction, and at time t = 0 in O, the ends of the pole are at x = 0 (front)
and x = −10 (back). The world-lines for the front and back ends of the pole

are respectively x = v
c t =

√
3

2 t and x = −10 +
√

3
2 t. At time t = 20√

3
, the

front end of the pole is at x = 10 (let’s call this point in space-time A, and
the back end at x = 0 (this point in space-time is B).

From the pole frame Õ, the barn never contains the pole. That the two
observers disagree is not a paradox, since simultaneity is relative. Indeed, the
issue is simply that in Õ, the events A and B are not simultaneous like they
are in O. This is easy to compute by using the Lorentz transformations on
the points with coordinates (t, x) = ( 20√

3
, 10) (point A) and (t, x) = ( 20√

3
, 0)

(point B).

1.2.4. Acceleration. If γ(τ) is a future-pointing time-like curve which is
parametrized by proper time τ , then for any τ , there is an inertial frame
(coordinate chart) for Minkowski space for which γ(τ) corresponds to the
origin, and γ′(τ) = ∂

∂t . Such a coordinate chart is called a momentarily
co-moving rest frame. Since 〈γ′(τ), γ′(τ)〉 is constant, then the (covariant)
acceleration γ′′(τ) = D

dτ α
′(τ) is orthogonal to γ′(τ). In a co-moving rest

frame, then, γ′′(τ) is purely spatial. Thus 〈γ′′(τ), γ′′(τ)〉 ≥ 0.

1.2.4.1. Constant acceleration. Suppose γ(τ) is a future-pointing time-like
curve parametrized by proper time τ , so that 〈γ′′(τ), γ′′(τ)〉 equals a con-
stant a2 for some a > 0. Then in fact we can specify γ(τ) by finding its
parametrization (t(τ), x(τ)) in an inertial frame in which γ′(0) ∈ span

{
∂
∂t ,

∂
∂x

}
.

In this case, y′(0) = z′(0) = 0, and since the acceleration condition implies
y′′(τ) = 0 = z′′(τ), we thus have that y(τ) and z(τ) are constant. As for the
t and x coordinates, we have the two conditions

c2

(
dt

dτ

)2

−
(
dx

dτ

)2

= c2

−c2

(
d2t

dτ2

)2

+

(
d2x

dτ2

)2

= a2.

Since dt
dτ > 0 (γ is future-pointing), we can find a smooth function f(τ) so

that dt
dτ = cosh(f(τ)) and then dx

dτ = c sinh(f(τ)). Inserting into the second
equation, we obtain

c2(f ′(τ))2 = a2.
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Therefore f(τ) = ±(ac τ + τ0). Hence by integration we obtain

x0(τ) := ct(τ) =
c2

a
sinh(

a

c
τ + τ0) + t0

x(τ) = ±c
2

a
cosh(

a

c
τ + τ0) + x0.

Thus the curve is given in the x0x-plane (equivalently tx-plane) as a hyper-
bola.

1.2.4.2. Trying to catch up to light. We finish this section with an interest-
ing example. Built into Special Relativity is the feature that all inertial
observers measure the same speed of light in vacuum. However, one might
wonder if by accelerating one’s motion, one could do better and catch up
with light, at least to some extent. So, consider for b > 0 a curve γ(τ) with
uniform acceleration a = bc, whose components in an inertial frame are given
by t(τ) = 1

b sinh(bτ), x(τ) = c
b cosh(bτ). In the tx-plane the path forms a

hyperbola, and as one can infer from a sketch of the trajectory, any light sig-
nal sent from along γ will reach the inertial observer at x = 0 at some time
t > 0, but if reflected, will never reach γ. Moreover, suppose that at γ(0), a
photon of light is emitted. γ is accelerating and moving in the positive x di-
rection for τ > 0, so what speed does γ measure for the photon? Well, since
γ(τ) is orthogonal to γ′(τ), the ray from the origin through γ(τ) is comprised
of events which γ will measure as simultaneous with γ(τ). If we consider
the path of the photon as parametrized by (t(s), x(s)) = (s, ca + cs), then it

intersects this ray at some point Aτ = h(τ)γ(τ). Thus s = h(τ)
b sinh(bτ), so

that
c

a
+ c

h(τ)

b
sinh(bτ) =

c

b
cosh(bτ),

from which we see h(τ) = ebτ . The displacement vector from γ(τ) to Aτ is
space-like, and its length is the distance from γ(τ) to the photon as measured
after τ units of time have elapsed as measured along γ. This displacement

has length |(ebτ − 1)
−→

Oγ(τ) | = c
b(e

bτ − 1). This is the distance from γ(τ)

to the photon, the derivative with respect to τ of which is cebτ . So, not
only is the acceleration not helping the observer γ make any progress on
catching the photon, but as measured along γ, the photon is accelerating
away from γ. This is counterintuitive, but is a consequence of how γ makes
measurements along its world-line, and furthermore, keep in mind that in
any momentarily co-moving rest frame, the photon has speed c.

1.2.5. Electromagnetism. We briefly consider how the electromagnetic
fields transform under a Lorentz transformation. As we saw earlier, we
expect the electric and magnetic fields to somehow transform together, since
charges in motion induce and are affected by a magnetic field, but motion
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is relative. In fact the fields transform together as an anti-symmetric two-
tensor called the Faraday tensor. In an inertial systemO (and using x0 = ct),
where the electric field has components Ei and the magnetic field Bi, the
Faraday tensor has a component matrix

(Fµν) =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 .

We can write F as a two-form (with components down) as (where we take
Ei = Ei, Bi = Bi in inertial coordinates)

F [ = (E1dx
1+E2dx

2+E3dx
3)∧dx0+(B1dx

2∧dx3+B2dx
3∧dx1+B3dx

1∧dx2).

How do the fields transform exactly? For example, let’s compute the
magnetic field component B̃3 in another inertial frame Õ moving along the
x-axis at velocity v relative to O. If we let the Lorentz transformation have
matrix Λµν given by

[Λµν ] =


1√

1−(v/c)2
− v/c√

1−(v/c)2
0 0

− v/c√
1−(v/c)2

1√
1−(v/c)2

0 0

0 0 1 0
0 0 0 1

 ,

then (using the Einstein convention of summing over repeated upper and
lower indices)

B̃3 = F̃ 12 = Λ1
µF

µνΛ3
ν = Λ1

0F
02Λ2

2 + Λ1
1F

12Λ2
2

= − v/c√
1− (v/c)2

E2 +
1√

1− (v/c)2
B3

=
1√

1− (v/c)2

(
B3 − v

c
E2
)
.

Ẽ1 = F̃ 01 = Λ0
µF

µνΛ1
ν = Λ0

0F
01Λ1

1 + Λ0
1F

10Λ1
0 = E1.

One can check the other transformation rules:

B̃1 = B1

B̃2 =
1√

1− (v/c)2

(
B2 +

v

c
E3
)

Ẽ2 =
1√

1− (v/c)2

(
E2 − v

c
B3
)

Ẽ3 =
1√

1− (v/c)2

(
E3 +

v

c
B2
)
.
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In a region with electromagnetic fields but free of charges and hence
current (for simplicity), two of Maxwell’s four equations are captured by
divF = 0, i.e. Fµν;ν = 0. In inertial coordinates, the covariant derivative is
just a partial derivative, and we see for µ = 0, we get Gauss’ Law div E = 0
(spatial divergence used here), while the other components give 1

c
∂E
∂t =

curl B.

Where do the other two Maxwell equations come from? Well, compute
dF [ = 0, and you find this is equivalent to div B = 0 and 1

c
∂B
∂t = −curl E

(note ∂
∂x0

= 1
c
∂
∂t).

Maxwell’s equations in any inertial frame will take the same form—in
any inertial frame the Christoffel symbols vanish and the metric has the
same components. As tensorial equations, we can compute the form of
Maxwell’s equations in any non-inertial coordinate system too, of course.

1.3. Energy and Momentum

We begin by a thought experiment due to Einstein. Imagine a box (and its
contents) of total massM and length L, at rest. Suddenly from inside the left
side of the box some photons of total energy E are emitted in the direction
toward the right side of the box. The formula for photon momentum p is
E = cp. By conservation of momentum, then, the box should acquire a
net momentum −p = Mv (to the left). For |v| << c, the time ∆t for the
photons to get to the right side of the box is about ∆t ≈ L

c . In this time,

the box moves to the left, and ∆x = v∆t ≈ vL
c . When the photons reach

the right side of the box and stop, the motion ceases.

Einstein argues that there is no reason why in this closed system the
center of mass should have changed from the start to the end of the process.
He suggests that the photons must have carried a mass m to the right side
of the box to balance out the center, i.e. m(L−∆x) +M∆x = 0. Thus we

obtain m = −M∆x
L−∆x = −M∆x

L +O(|∆x|2) ≈ −Mv
c = E/c

c , or

E = mc2.

This is the famous formula relating (rest) mass m to energy.

1.3.1. Energy-momentum four-vector. Associated to any massive par-
ticle is a quantity m called its rest mass. The rest mass is a measure of iner-
tia, and one can imagine measuring the inertial mass by applying Newton’s
laws in a frame of reference (coordinate chart) in which the massive particle
is (momentarily) at rest. A detailed discussion of the technicalities involved
in the physical concept would take us too far afield for now. We just note
that the rest mass corresponds to the mass one uses in Newton’s Second
Law F = ma in classical mechanics. Of course, special relativity re-writes
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the kinematical and dynamical laws, but there is still an analogous concept
of mass. The term rest mass indicates that in relativity, the quantity mass
may itself be relative. However, the rest mass is by definition an invariant,
since it is associated to the object itself, as measured in a frame adapted to
the object.

If γ(τ) is a time-like curve parametrized by proper-time which represents
the word-line of the particle, then the energy-momentum four-vector is P =
mγ′(τ). In a momentarily co-moving rest-frame Õ at a point on γ (i.e.
γ′(τ) = ∂

∂t̃
at this point in this frame), P = m ∂

∂t̃
= mc ∂

∂x̃0
, where x̃0 = ct̃.

Note that −〈P,P〉 = (mc)2 = (E0/c)
2, where E0 = mc2 is the rest energy.

If instead we now use an inertial frame O in which the particle is moving
with velocity v along the x-axis, then by (1.4),

P =
m√

1− (v/c)2

∂

∂t
+

mv√
1− (v/c)2

∂

∂x
=

mc√
1− (v/c)2

∂

∂x0
+

mv√
1− (v/c)2

∂

∂x
.

We identify m√
1−(v/c)2

c2 = E as the energy of the particle as measured

by the inertial frame O in which the particle is moving, and we identity
p = mv√

1−(v/c)2
∂
∂x as the spatial momentum. Since the spatial velocity is

v = v ∂
∂x , from the point of view of the inertial frame with respect to which

the particle is moving, the mass is given by m(v) = m√
1−(v/c)2

. Note that

lim
v↗c

m(v) = +∞, which indicates that inertia increases with speed; this is

consistent with the fact that a constant force cannot accelerate any particle
to or above the speed of light. Furthermore, note that by Taylor (binomial)
expansion,

E = m(v)c2 = mc2(1 +
1

2
(v/c)2 +O((v/c)4)) = mc2 +

1

2
mv2 +O(v4/c2).

The first two terms are the rest energy and the kinetic energy. Furthermore
if Uobs is a time-like unit vector tangent to the path of an observer, then the
observed energy of the particle with momentum P is just Eobs = −〈P,Uobs〉.
Finally, we note

E2
0 = −c2〈P,P〉 = (m(v)c2)2 − c2‖p‖2 = E2 − c2‖p‖2.

Note that in units where c = 1, we have P = E ∂
∂x0

+p, and m2 = E2−‖p‖2.

1.3.2. The stress-energy tensor. One of the constituents of the Einstein
equation in general relativity is the stress-energy, or energy-momentum ten-
sor, which encodes the energy and momentum fluxes associated to the phys-
ical matter or fields in the space-time. This is a generalization to space-time
of the spatial stress tensor of classical mechanics. We introduce it here, just
enough to motivate its place in the formulation of general relativity.
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We define the stress-energy tensor as a (2, 0)-tensor. Consider a one-form
θ at a point P in space-time (which we take to be four-dimensional here, as
usual, though of course we can generalize to other dimensions). We assume
that θ is dual to either a time-like future pointing vector, or a space-like
vector. In particular, it has a non-zero metric norm, which we normalize
to be 〈θ, θ〉 = ±1. For example, θ = dx0 = c dt, or θ = dxi, i = 1, 2, 3.
In a region of space-time, we imagine there is a collection of particles, or
a physical field, possessing an energy-momentum four-vector field at each
point. We consider θ 6= 0 as a linear functional operating on the tangent
space at P . Its nullspace W is three-dimensional, and by assumption on the
causal nature of θ, we see it is either space-like, or time-like (Lorentzian) as a
subspace. Let B ⊂W be a region about P , and consider the net vector sum
(integral) ∆P of all the energy-momentum four-vectors associated to the
particles/fields at points in the space-time region B; in the space-like case,

when forming the sum, the contribution of any term P̃ must be modified for

direction to sgn(θ(P̃)) · P̃. This accounts for flow across the corresponding
spatial boundary determining the box B. Let ∆V be the volume of B with
respect to the metric. Then we define the vector field T (θ, ·)|P = lim

B→{P}
c∆P
∆V .

If η is another one-form at P , we define T (θ, η) = η(T (θ, ·)). Now we extend
the definition of T by allowing scaling in θ; given θ which is time-like or
space-like, we define θ̂ by θ = bθ̂, where |b| =

√
±〈θ, θ〉 and the sign of b

is positive unless θ is past time-like, in which case b < 0. We then define
T (θ, η) as bT (θ̂, η), where the latter quantity has been defined above.

Clearly, T (θ, η) is linear in η. Physical reasoning as in classical mechanics
may be used to argue that T should also be linear in θ. What may be more
surprising is that when η is also either time-like or space-like, we can argue
that T (θ, η) = T (η, θ). We then see that T can be extended to all forms,
and yields a symmetric (2, 0)-tensor.

Let us interpret the components of this tensor in some inertial frame.
T (dx0, ·) is c times the spatial density of the energy-momentum four-vectors
of the physical particles/fields at P . Then T 00 = T (dx0, dx0) = dx0(T (dx0, ·))
is precisely the energy density ρ at P as measured in this frame. Similarly,
for i = 1, 2, 3, T 0i = cT (dt, dxi) is c times the xi-component of the momen-
tum density (momentum per unit spatial volume) at P . Similarly, consider
T (dx1, ·). The space-time box B is now determined by a rectangle R of
area ∆A in the x2x3-plane, as well as a side of length ∆x0 = c∆t. Thus
∆V = c∆t∆A. Thus T 10 ∼ ∆E

c∆t∆A equals 1
c times the rate of flux of the

energy (units of energy per unit area per unit time) in the x1-direction. Note
that by symmetry, T 10 = T 01, which reflects the equivalence of mass and

energy (note how the units work out). T 11 ∼ ∆p1

∆t∆A , and as the force is given

by F = dp
dt , we have that T 11 is the normal stress in the x1-direction, that is,
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the force per unit area normal to the x2x3-direction. On the other hand the
component T 12 is then a shear, the force per unit area on the x2x3-plane
acting in the x2-direction—this is a component of force tangential to the
relevant area element. The normal stress is sometimes called the pressure
when it is independent of direction.

Another key property of a stress-energy tensor is that it is divergence-
free. To motivate this, we compute a component of the divergence in
inertial coordinates, in which the Christoffel symbols vanish. In such a
coordinate system, c times the zero-component of the divergence is then
c(T 00

,0 + T i0,i ) = ∂ρ
∂t + cT i0,i where i = 1, 2, 3, and recall we use the Einstein

summation convention. As discussed above, cT i0 ∂
∂xi

is the vector field mea-
suring the rate of spatial flux of the energy. Applying the divergence theorem
to a spatial region R, we obtain the time rate of change of the energy in the
region is

∂

∂t

∫
R
ρ dV =

∫
R

∂ρ

∂t
dV =

∫
R
cT 00

,0 dV.

By conservation of energy, this must balance with the rate of flux of energy
into the region across the spatial boundary ∂R with outward unit normal
n, which is given by the divergence theorem as

∫
∂R
cT i0

∂

∂xi
· (−n) dA = −

∫
R
cT i0,i dV.

Since the region R may be made arbitrarily small, we obtain a component
of div(T ) = 0. The other components may be derived similarly using con-
servation of momentum.

We now introduce several standard examples of the stress-energy tensor.
Of course, when in vacuum (free of fields or particles), T = 0. The next
simplest example is that of dust. Consider a collection of particles which
are all at rest in some inertial frame Õ. In this frame, the energy density
alone determines the stress-energy tensor: T = c−2ρ ∂

∂t̃
⊗ ∂

∂t̃
= ρ ∂

∂x̃0
⊗ ∂

∂x̃0
.

This can be written invariantly as T = c−2ρU ⊗ U, where U is the four-
velocity of the dust, where ρ is the rest energy density of the dust. Using
the Lorentz transformation, one can determine the energy density in a frame
O with respect to which the dust moves with velocity v, which we align
along the x-axis for simplicity. Indeed in such a frame, we have by (1.4)



1.4. Some geometric aspects of Minkowski space-time 21

U = ∂
∂t̃

= 1√
1−(v/c)2

∂
∂t + v√

1−(v/c)2
∂
∂x = c√

1−(v/c)2
∂
∂x0

+ v√
1−(v/c)2

∂
∂x , so that

T = c−2ρU⊗ U

=
ρ

1− (v/c)2

∂

∂x0
⊗ ∂

∂x0

+
ρv/c

1− (v/c)2

(
∂

∂x0
⊗ ∂

∂x
+

∂

∂x
⊗ ∂

∂x0

)
+

ρ(v/c)2

1− (v/c)2

∂

∂x
⊗ ∂

∂x
.

We note that all the terms include two factors of
√

1− (v/c)2 in the denom-
inator. In particular the energy density as measured in O is ρ

1−(v/c)2
, which

includes one such factor for the transformation of mass, and another one for
the length contraction, which affects the value of the measured density in
O. Similar analysis holds for the other components.

A perfect fluid is a continuum model described by its four-velocity vector
field U, as well as its density ρ and pressure p. In coordinates which are
(momentarily) co-moving with the fluid, there is no shear, and the normal
stresses are the same in all directions, namely the pressure. The requirement
of zero viscosity (shear) should hold in all (momentarily) co-moving reference
frames, and this can only be true if the spatial components of the tensor
are given by a multiple of the identity matrix. Furthermore, we note that
requiring T 0i = 0 in such reference frames amounts to requiring there to be
no heat conduction in these frames. An invariant way to express the perfect
fluid stress-energy tensor is then T = c−2(ρ+ p)U⊗U + pη] where η] is the
contravariant form of the metric tensor η (indices up). In a rest frame of a
fluid element, T = ρ ∂

∂x0
⊗ ∂

∂x0
+pδij ∂

∂xi
⊗ ∂

∂xj
. For comparison, we note that

the dust model is an idealization in which the constituent particles have no
random motion at all (they are all at rest in a certain frame), and thus there
is no pressure.

Finally, we define the electromagnetic stress-energy tensor as

Tµν =
1

4π

(
FµαηαβF

νβ − 1

4
ηµνFαβF

αβ

)
.

Observe that F0i = −F 0i, so that

T 00 =
1

4π

(
F 0αηαβF

0β − 1

4
(−2|E|2 + 2|B|2)

)
=

1

8π
(|E|2 + |B|2),

the familiar formula for the energy density of the electromagnetic field (in
cgs units). For later reference, we also note that T 0i = (E×B)i.

1.4. Some geometric aspects of Minkowski space-time

In this section we again use inertial coordinates (x0, x1, x2, x3) for Minkowski
space M4 = R4

1, so that the metric is just −(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2,
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and analogously for M1+k = R1+k
1 . We will blur the distinction between a

point P and its coordinates xµ(P ). We let D be the connection compatible
with the Minkowski metric.

1.4.1. Hyperquadrics. We consider the level sets of the function F (x) =
−(x0)2 + (x1)2 + (x2)2 + · · · + (xk)2. The level set Σ = F−1(0) is precisely
the set of all points whose position vector from the origin O is null; on other
words, Σ is the light cone from the origin O. Σ\{O} = Σ+∪Σ− is a smooth
null hypersurface: at any point P ∈ Σ \ {O} with coordinates (xµ(P )),
the null vector xµ ∂

∂xµ (summation convention in force!) is both tangent and
normal to Σ at P .

1.4.1.1. Hyperbolic space. We now consider the smooth hypersurface Σ equal
to one of the two components of F−1(−r2), for r > 0, say the component
where x0 > 0. The vector n = r−1xµ ∂

∂xµ is a unit time-like normal vector
to Σ. The induced metric on the hypersurface is thus Riemannian. If Y =
Y µ ∂

∂xµ is tangent to Σ, then

DY n = r−1DY (xµ)
∂

∂xµ
= r−1Y µ ∂

∂xµ
= r−1Y.

Thus the second fundamental form II of Σ is then just

II(Y,Z) = 〈DY Z, n〉〈n, n〉n = 〈DY n,Z〉n = r−1〈Y,Z〉n.

Thus Σ is totally umbilic. We can compute its curvature via the Gauss
equation (see Proposition 3.5): for X,Y, Z,W tangent to Σ,

〈R(X,Y, Z),W 〉 = 〈RΣ(X,Y, Z),W 〉 − 〈II(X,Z), II(Y,W )〉
+〈II(X,W ), II(Y, Z)〉.(1.10)

Thus with R = 0 on Minkowski space, we insert the formula for the second
fundamental form to obtain
(1.11)

〈RΣ(X,Y, Z),W 〉 = r−2 (〈X,Z〉〈Y,W 〉〈n, n〉 − 〈X,W 〉〈Y, Z〉〈n, n〉) .

If E1, E2 is an orthonormal frame on Σ spanning a two-plane Π tangent to
Σ, then

K(Π) = 〈RΣ(E1, E2, E1), E2〉 = −r−2.

Thus Σ has constant negative sectional curvature. Since Σ is simply con-
nected, Σ is isometric to the hyperbolic space of curvature −r−2. For r = 1,
then Σ ⊂ M4 is isometric to H3. In M1+k with k ≥ 2, the set F−1(−1) is
isometric to unit hyperbolic space Hk.
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1.4.1.2. De Sitter space-time. The level set F−1(r2) =: Sk1(r) for r > 0 is
a smooth connected hypersurface which is topologically R × Sk−1, so that
for k ≥ 3, Sk1(r) is simply connected. S4

1(1) is called de Sitter space-time.

In this case the vector n = r−1xµ ∂
∂xµ is a unit space-like normal vector

to the level set. The induced metric on Sk1(r) is Lorentzian: the vector

(r2 + (x0)2) ∂
∂x0

+ x0xi ∂
∂xi

is time-like and tangent to the submanifold at a

point P given by (xµ(P )). If Π is a space-like two-plane tangent to Sk1(r),
then (1.11) implies K(Π) = r−2. Recall that the sectional curvature of a
non-degenerate two-plane Π spanned by V and W is

K(Π) =
〈R(V,W, V ),W 〉

〈V, V 〉〈W,W 〉 − 〈V,W 〉2
.

So even for a plane non-degenerate plane Π spanned by orthonormal vectors
E0 (time-like) and E1 (space-like), we still have K(Π) = r−2.

1.4.2. Conformal Compactification of M4. We now present the classi-
cal compactification of M4. The motivation was to find a way to topologi-
cally compactify the space-time in a way that preserved the causal structure,
and in particular preserved the null cones. In this way, one can faithfully
represent the null geometry on a compact region, whose boundary in part
represents the null paths at infinity. This can be generalized to M1+k, and
has been used to prove the existence of global solutions to quasilinear hy-
perbolic systems with “small” initial data (cf. D. Christodoulou, CPAM 39,
no. 2, 267-282 (1986)).

We will obtain the compactification by applying two coordinate changes.
The first is to introduce advanced and retarded null coordinates v = x0 + r,
u = x0−r, where r2 = (x1)2 +(x2)2 +(x3)2. The Minkowski metric becomes

−du dv +
1

4
(v − u)2gS2 ,

where du dv = 1
2(du ⊗ dv + dv ⊗ du), and gS2 is the metric on the round

unit sphere. Note that the level sets of u and v are null. If one holds u and
a point ω ∈ S2 fixed, then varying v → +∞ corresponds to going forward
in time along a null geodesic, to infinity. Likewise, with v fixed, u → −∞
corresponds to a path of light going to past infinity. The goal is to represent
“where these null paths go at infinity.” One way to do this is to use the
inverse tangent function to define new coordinates

T = tan−1(v) + tan−1(u)

R = tan−1(v)− tan−1(u).
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Since dT = 1
1+v2

dv + 1
1+u2

du and dR = 1
1+v2

dv − 1
1+u2

du, we can easily
derive the Jacobian determinant

∂(T,R)

∂(u, v)
=

2

(1 + v2)(1 + u2)
> 0.

Moreover,

−dT 2 + dR2 =
4

(1 + v2)(1 + u2)
(−du dv) =: Ω2(−du dv).

Note that Ω2 = 4
(1+t2+r2)2−4t2r2

is smooth on all of M4, and that

sinR = sin(tan−1(v)) cos(tan−1(u))− sin(tan−1 u) cos(tan−1(v))

=
v − u√

(1 + v2
√

1 + u2
.

Thus sin2R = 1
4Ω2(v − u)2. This implies

−dT 2 + dR2 + sin2R gS2 = Ω2

(
−du dv +

1

4
(v − u)2gS2

)
.

In other words, the metric on the left, which is easily identified as a Lorentzian
product metric on R × S3 (called the Einstein static universe), is confor-
mal to the Minkowski metric. In other words, using the coordinate change,
we produce an embedding of Minkowksi space-time into the Einstein static
universe, which is not an isometric, but a conformal isometry. Thus it pre-
serves the causal nature of vectors, in particular the null structure. The
image of the embedding is a bounded set: indeed, note that −π < T < π
and 0 ≤ R < π on Minkowski space-time. The boundary of the set is the
union of two smooth null hypersurfaces J ±, “scri-plus” and “scri-minus”,
where “scri” is short for “script ‘I’.” We note that Ω is a defining function
for J ±, since Ω = 0 here, with dΩ 6= 0.

We now briefly describe some of the features of the boundary. Note that
T + R = 2 tan−1(v) and T − R = 2 tan−1(u). Thus the null rays to the
future end up (v → +∞) at T + R = π, which for 0 < R < π gives J +;
similarly for T −R = π (u→ −∞) and J −. The null vector ∂

∂T ∓
∂
∂R is both

tangent and normal to J ±. The closure of the image of Minkowski space
can be represented by a T -R triangle, bounded by R = 0, and T ±R = ±π.
Every point in this region represents a two-sphere, except where R = 0 or
R = π, each point of which represents a point. One can argue that time-like
geodesics must start at i− in the past, corresponding to (T,R) = (−π, 0)
and must end at i+ corresponding to (T,R) = (π, 0). We let i0 be the
point corresponding to (T,R) = (0, π), which is called space-like infinity.
Space-like curves with r → +∞ have a limit at i0 in the conformal picture.



Chapter 2

The Einstein Equation

The theory of special relativity incorporates a modification of Newtonian
dynamics together with electromagnetism. A natural question to consider
is how gravitation fits into the framework of relativity. Analysis of this ques-
tion will lead us to the Einstein equation. We begin, however, by reviewing
Newton’s Law of Gravitation.

2.1. Newtonian gravity

Newton’s Law of Gravity can be formulated as follows. If two objects are
separated by a spatial distance r, then the magnitude of the gravitational

force between them is given by F =
GmgMg

r2
, where the direction is along

the line from one mass to the other. Here mg and Mg are the gravitational
masses associated to the two objects, and G is Newton’s gravitational con-
stant. If r̂ is the unit vector from the object of mass Mg to the other object,
then the force on the object of mass mg is

(2.1) F = −GmgMg

r2
r̂ = mg∇

(
GMg

r

)
= −mg∇Φ,

where Φ := −GMg

r is the gravitational potential associated to the mass Mg.
In analogy with Coulomb’s Law of electrostatics, namely that the electric
force between charged particles (with charges q1 and q2) has magnitude
F = q1q2

r2
(in cgs units), mg and Mg play the role of gravitational charges.

Of course, there is already the notion of mass, or inertia, as embodied in
Newton’s Second Law F = mia, where mi is the inertial mass. By equating
forces, we solve for the acceleration of an object of gravitational mass mg and
inertial mass mi due to the gravitational force of an object of gravitational

25
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mass Mg:

a = −mi

mg
∇Φ.

From this equation we could discern the ratio of the inertial to the gravi-
tational mass for various objects. It turns out that the acceleration is the
same for all bodies, and hence the mass ratio is constant, a result epito-
mized by the famous experiments by Galileo dropping objects of different
masses from the tower in Pisa. By adjusting G, we may assume, then, that
mi = mg = m: the inertial and gravitational masses agree. The effect of
gravity is universal : it accelerates all objects the same way, independent of
what precisely comprises the mass. In this way gravity is decidedly different
from electromagnetism.

Before we move on, we note that the potential function for Newtonian
gravity satisfies a simple partial differential equation. Indeed, away from
r = 0, Φ = −GM

r is harmonic (with respect to the Euclidean metric), i.e.
∆Φ = 0, as you can easily check. Of course, ∆Φ can be interpreted globally
as a distribution, say T = ∆Φ, and we obtain the equation

∆Φ = 4πGMδ0,

where δ0 is the Dirac measure at the origin (the “location” of the mass M).
Indeed suppose ψ ∈ C∞c (R3) is any smooth function of compact support,
say ψ(x) = 0 for |x| > R. Then since 1

r ∈ L1
loc(R3), we have by Gauss’

Divergence Theorem, Green’s identity div(Φ∇ψ − ψ∇Φ) = Φ∆ψ − ψ∆Φ,
ψ = 0 and ∇ψ = 0 on {|x| = R}, and ∆Φ = 0 on R3 \ {O}, that

T (ψ) :=

∫
R3

Φ∆ψ dV = lim
ε→0+

∫
ε≤|x|≤R

Φ∆ψ dV

= − lim
ε→0+

∫
|x|=ε

(Φ∇ψ − ψ∇Φ) · r̂ dA

= lim
ε→0+

∫
|x|=ε

ψ
GM

r2
r̂ · r̂ dA

= 4πGM lim
ε→0+

1

4πε2

∫
|x|=ε

ψ dA

= 4πGMψ(0)

where the last identity follows by continuity. We note that we used the fact
that |Φ∇ψ| ≤ C

r on R3 \ {O}, so that
∫
|x|=ε

Φ∇ψ · r̂ dA = O(ε).
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In this case the matter density is σ = Mδ0. For a more general matter
distribution of density σ, the gravitational potential solves Poisson’s equa-
tion

(2.2) ∆Φ = 4πGσ.

If σ is compactly supported (or more generally, if σ decays sufficiently at
infinity) then we may choose Φ(x)→ 0 as |x| → ∞.

From the point of view of relativity, however, Newton’s Law of Gravi-
tation has a serious flaw, which Newton himself critiqued. If a mass moves,
then its change in position will instantly effect the gravitational field ev-
erywhere else. This means that gravitational effects have infinite speed of
propagation. This “action at a distance” bothered Newton and others, and
it also is not consistent with causality in special relativity. Einstein sought
to rectify this, and in doing so to incorporate another fundamental force
within a relativistic framework.

2.2. From The Equivalence Principle to General Relativity

In Minkowski space there is a preferred set of coordinate charts, correspond-
ing in physics terminology to inertial observers. In such charts the metric for
Minkowski space has the familiar form ηµνdx

µdxν = −(dx0)2 + δijdx
idxj ,

and any two such charts are related by a Lorentz transformation. These
charts are the analogues of Cartesian coordinate systems for Euclidean space
En.

From the point of view of physics, coordinates from an inertial chart
correspond to measurements made by an inertial observer. An interesting
physics question, then, is whether inertial observers exist in principle when
a gravitational field is present. Einstein applied a now famous thought ex-
periment to this question. Namely, suppose there were an inertial frame of
reference, say a small room isolated from other forces or fields. In such a
frame, if one lets go of a ball, it would tend to stay at rest. Now suppose on
the top of the room, there is attached a rocket, which now accelerates the
room “upward” at a uniform rate. If one lets go of a ball now, it will “fall”
toward the floor, just like it would in a uniform gravitational field. (Strictly
speaking, we are working in a lab frame which is limited in extent in both
space and time, so that we can reliably expect a gravitational field to be
approximately uniform, i.e. so that it generates a constant acceleration due
to gravity. In regions more extended in space-time, the non-uniformity of
the gravitational field will give rise to tidal forces that can be used to distin-
guish between uniform acceleration and a gravitational field.) In this case,
one cannot distinguish from making local measurements in the lab whether
the frame is non-inertial, or whether there is a uniform gravitational field.
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Note that this depends on the universality of gravity: it imparts the same
acceleration to all objects. This version of the principle of equivalence im-
plies the equality of gravitational and inertial masses: if they were different,
then one could distinguish between the two situations by making appropri-
ate measurements. The equality of the gravitational and inertial masses is
clearly a direct reflection of the equivalence of a uniform accelerating frame
with an inertial frame in which a uniform gravitational field is present.

We have just seen how to create a gravitational field via acceleration.
On the flip side, consider the room as an elevator, or even the compartment
of one of those amusement park “free fall” rides. In free fall, when the
gravitational force is acting, if one lets go of a small object (not safe to try
this on the free fall ride!), then its coordinates with respect to the room
are constant; this is because a uniform gravitational field accelerates all
objects the same. The observer in free fall will then not detect a uniform
gravitational field. We on the earth claim to detect such a field precisely
because we are not in free fall: the contact forces on the earth keep us from
a free fall path, and thus if we drop a ball, or Newton’s apple, then we
observe it “fall” to the earth under the force of gravity. This is equivalent to
the accelerated room: we “feel” the contact force between the floor and our
legs, and we observe objects falling toward the ground. Even light cannot
escape “gravity’s” pull: if we imagine a light ray entering the room at one
end moving toward the other end in a straight line in the inertial frame, then
the path of the light is curved in the accelerated frame of reference. Einstein
reasoned that by equivalence, a gravitational field should affect the paths of
light rays too. Then, could there be an inertial reference frame, where any
acceleration not accounted for by contact forces would be attributed to a
gravitational force, and in which light rays do not move along straight lines?

Putting that question aside for a moment, we note that the local equiva-
lence between acceleration and gravitation places a roadblock in an attempt
to incorporate gravity into the global Minkowski geometry of special relativ-
ity. Indeed, imagine two rockets moving with the same uniform acceleration
along the same line, one following the other at a distance ∆y. A photon of
wavelength λ0 = c

ν0
(frequency ν0) travels from the trailing rocket to the

lead rocket. In the time it travels, the rockets have a change in velocity ∆v,
which we arrange to satisfy |∆v| � c. The photon has a Doppler shift: if

ν1 is the frequency of the received photon, then ν1
ν0

= 1−∆v/c√
1−(∆v/c)2

, which to

first order in ∆v
c gives ∆λ

λ0
≈ ∆v

c ≈
a∆y
c2

.

Exercise 2.1. Derive the Doppler shift using Lorentz transformations. In
the tx-plane of an inertial observer, emit pulses one after the other at x = 0,
first at t = 0 then at t = ∆t0, where ∆t0 = 1

ν0
is the period. A moving

observer which is at position x0 at t = 0 moves with velocity v > 0, say,
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with respect to this inertial frame. If the moving observer receives the
first pulse at (x1, t1) and the second at (x2, t2) in the original frame, then
x1 = ct1 = x0 + vt1, and x2 = ct2 = x0 + vt2. Use a Lorentz transformation
to convert to the frame of the moving observer.

The above situation should be equivalent to the situation in which there
is a uniform gravitational field, with corresponding acceleration −a due to
gravity, and a photon travels a “height” ∆y in the gravitational field—we
assume the gravitational field is time-independent, and only varies in y. As
the change in velocity is the time integral of acceleration, and the equivalent
acceleration of the frame to produce the gravitational effect is the gradient
∇Φ of the potential Φ, the percentage Doppler shift is approximately given
by c−2(Φ(y+ ∆y)−Φ(y)). If we now try to reconcile this with the Principle
of Relativity, we run into trouble. For suppose we have two inertial ob-
servers we measure this gravitational field, related to each other by a simple
shift of origin: one observer is located at height y and the other at y + ∆y
in the gravitational field. If the observer at y (akin to the trailing rocket)
sends a photon of frequency ν0 to the other observer, the time between the
beginning and end of a wavelength is ∆t0 = c−1λ0. The other observer
measures the time between receiving the beginning and end of a wavelength
as ∆t1 ≈ ∆t0 + c−1∆λ > ∆t0, since the wavelength of the absorbed photon
is longer—the frequency, and hence the energy, is lower. This means that
clocks run at different rates in different places in a gravitational field (con-
firmed experimentally). However, this should not be the case for these two
inertial observers who are not in motion relative to teach other. The space-
time paths of the beginning and tail end of the wave should be congruent
(the gravitational field only depends on y), so that the ∆t measurements
should be the same at the two different heights.

The universality of gravity poses the conundrum that it seems there
could not be purely inertial observers in a region of space-time where grav-
ity is acting. Since gravity affects all observers equally, one could not set
up background frames of reference from which to measure the motion of a
test particle to measure gravity; this is different than electromagnetism, for
instance, where neutral particles and charged particles can be distinguished.
If we imagine a Newtonian inertial frame far away from massive objects, and
then “dial up” a gravitational field, then what happens? All free particles,
including light, would be accelerated away from the straight line paths in this
coordinate frame. If we actually think about a frame in terms of an observer,
however, the universality of gravity implies that the observer would also be
affected by gravity. Maybe the problem with the preceding paragraph is
that the two observers should have been falling freely in the gravitational
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field to have been construed to be inertial, as opposed to remaining station-
ary and measuring the gravitational field. If the observer builds coordinates
adapted to the motion (normal or Fermi coordinates along the world-line,
see below), then the physics corresponds, to good approximation and locally
in space-time, to that which is measured in an inertial frame.

Possibly, then, the gravitational force is a fictitious force, in analogy
with fictitious forces such as the Coriolis force in accelerating systems in
Newtonian mechanics. (Tidal forces, coming from non-uniform gravita-
tional fields, can in principle be measured and reflect the space-time cur-
vature, as we’ll see below.) While Einstein dispensed with a preferred set
of observers—and in particular the world-lines of the spatial origins in such
coordinate systems—he did postulate that freely falling objects move on
time-like geodesics. Geodesics are the analogues of straight lines in a curved
space, and Einstein asserted that objects that are experiencing no other
force except possibly that of gravity should move along time-like geodesics,
while light should propagate along null geodesics.

Whether one tries to ascribe the bending of light discussed earlier to an
accelerating frame, or to geometry, if the propagation is along null geodesics,
then in any coordinate system, one can compute the covariant acceleration
and check that it vanishes. In this way, the paths of light rays in vacuum
obey a rule that can be stated invariantly, and thus takes the same form in
every frame of reference. (This is also true in Minkowski space, of course.)
Laws of physics should in principle be able to be formulated in a coordinate-
independent way: this is the Principle of General Covariance. Tensorial
equations have this property: the components of tensors and their covariant
derivatives will generally be different in different frames, but the tensors
themselves are invariant objects, like geometric quantities. In any coordinate
system one can check to see if a curve is a geodesic, not by checking if the
path is linear with respect to the coordinates, but rather by computing the
covariant acceleration.

Einstein made a remarkable argument that the space-time continuum in
the presence of a gravitational field should be non-Euclidean. Consider a
Euclidean disk of radius r, with a boundary curve Cr. Measured in the rest
frame of the disk, the length of the circle is 2πr. Consider now measurements
made from the point of view of an observer O moving along the circle Cr
with angular velocity (relative to the rest frame) ω. Relative to the frame
of the disk, the length of a unit measuring stick in the frame O oriented
tangentially along Cr is shorter than one unit, by the factor

√
1− (ωr/c)2.

Thus, the length L(Cr) measured in O is more than 2πr: if rω/c is small,
then in O, L(Cr) ≈ 2πr(1+ 1

2(ωrc )2). Another way to think of this is that the
observer O places lots of measuring sticks along the circle, and an observer
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at rest with respect to the disk counts how many of these are needed to go
around the perimeter to determine the length of the circle as measured in
O (remember that the observers will not necessarily agree on simultaneity).
On the other hand, distances perpendicular to the direction of motion agree
in both frames. Thus both frames agree on the radius r. O concludes that
the spatial geometry is curved. Indeed, recall the classical formula for the
Gauss curvature, which applied to the above analysis would yield non-zero
curvature:

K(p) = lim
r→0

3

π
· 2πr − L(Cr)

r3
.

The geometry is either Euclidean, or it’s not. Depending on which it is, one
(or both!) of the two frames would need to convert coordinate distances to
the truly invariant geometric distances.

The effect of gravity on light has profound implications for the role
of gravity in physics. For, since it is currently assumed (based on data)
that signals cannot travel faster than the speed of light, then since gravity
affects the paths of light rays, gravity then plays a distinguished role in
determining the causal structure of the universe. Indeed, consider space-
time modeled on a Lorentzian manifold, and assume that light rays move
along null geodesics. The collection of null cones determines the conformal
class of the space-time metric g. Indeed, if X is time-like and Y is space-like
at a point p, then g(X + aY,X + aY ) = a2g(Y, Y ) + 2ag(X,Y ) + g(X,X).
The leading coefficient has positive sign, and the constant term is negative,
so there are exactly two real roots of this polynomial, which in principle
we can glean from knowing the null cone at p. The product of these roots

gives g(X,X)
g(Y,Y ) . If V and W are any tangent vectors at p, then g(V,W ) =

1
2(g(V + W,V + W ) − g(V, V ) − g(W,W )). Knowing the light cone at p,

then, allows us to determine the ratio g(V,W )
g(X,X) , since any of the terms on the

right of the preceding equation, if non-zero, can be gleaned in ratio with
either g(X,X) or g(Y, Y ).

2.3. The Einstein Equation

Our guiding principles in deriving the Einstein equation are as follows. We
start with a quote from Einstein: “The laws of physics must be of such
a nature that they apply to systems of reference in any kind of motion.”
This Principle of General Relativity puts all frames of reference on an equal
footing, in contrast to the privileged inertial frames of reference of spe-
cial relativity. We have seen above that global inertial frames appear to
be incompatible with gravitation. Furthermore, as we have seen from the
Principle of Equivalence that accelerating frames ought to be locally equiv-
alent to a uniform gravitational field, so that any coordinate system should
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be equivalent in a theory incorporating gravity. The Principle of General
Covariance asserts that it should be possible to formulate the equations of
physical laws in a coordinate-independent manner, such as laws that are ten-
sorial in nature, so that the laws of physics have the same form for all frames
of reference. Certainly, equations of physical laws in Minkowski space-time
can also be put into covariant form, but we will have other space-time metrics
when there is a non-trivial gravitational field, which we emphasize can be
the case even in vacuum, possibly corresponding the the gravitational field
outside a compact massive object, say. One seeks to relate the space-time
geometry to the distribution of matter fields and energy within space-time:
the result of this is the Einstein equation, which will be discussed at length
below. From the earlier discussion of the Principle of Equivalence, we assert
that space-time should be Lorentzian: thus in normal coordinates at some
point p in space-time, the laws of physics will take the same form as they
would in special relativity, and thus local to p, the laws are approximately
of the same form as special relativity. Said another way, in a small region
of space-time, local experiments cannot detect a gravitational field, which is
roughly uniform, and could be ascribed to a uniformly accelerating frame of
reference. In larger regions of space-time, non-uniformities can be detected
by measuring tidal forces. As a final guiding principle, the equations gov-
erning gravity should yield Newton’s Law of Gravitation in the case that
the gravitational field is sufficiently “weak.”

Einstein searched for a way to relate the geometry of space-time to the
energy-momentum distribution of matter and fields it within it. The gravi-
tational field per se is encoded in the metric of space-time. Einstein sought
to equate the stress-energy tensor T describing the energy-momentum den-
sities of the fields and matter to some tensor created from the metric g.
As such, he faced some restrictions. Indeed the tensor T was symmetric
and divergence-free in special relativity, and so it should be in a general
space-time; indeed the identities should persist in normal coordinates (lo-
cally inertial frame) about any point p, and thus the divergence of T will
vanish in any coordinate system, in accordance with general covariance.
Einstein originally tried to equate T with the Ricci tensor (up to a scalar
multiple), but that was doomed to fail in general, by the contracted Bianchi
identity (Corollary 2.3). This is standard, but it is so important we give the
proof here.

Proposition 2.2 (Bianchi Identities). In a pseudo-Riemannian manifold
(M, g), the curvature tensor satisfies an algebraic Bianchi identity,

R(X,Y, Z) +R(Y, Z,X) +R(Z,X, Y ) = 0
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for all vectors X, Y , and Z. The curvature tensor also satisfies a differential
Bianchi identity: for all vectors X, Y , Z, V , and W ,

〈(∇XR)(V,W, Y ), Z〉+ 〈(∇YR)(V,W,Z), X〉+ 〈(∇ZR)(V,W,X), Y 〉 = 0.

By symmetry-by-pairs, this is equivalent to

〈(∇XR)(V,W, Y ), Z〉+ 〈(∇VR)(W,X, Y ), Z〉+ 〈(∇WR)(X,V, Y ), Z〉 = 0.

Proof. Recall our convention R(X,Y, Z) = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z.
Thus we can re-arrange terms to obtain

−
[
R(X,Y, Z) +R(Y, Z,X) +R(Z,X, Y )

]
= ∇[X,Y ]Z +∇[Y,Z]X +∇[Z,X]Y

−∇X(∇Y Z −∇ZY )−∇Y (∇ZX −∇XZ)−∇Z(∇XY −∇YX)

= ∇[X,Y ]Z +∇[Y,Z]X +∇[Z,X]Y −∇X [Y,Z]−∇Y [Z,X]−∇Z [X,Y ]

= [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ]

= 0.

The last line is the Jacobi identity, and in the preceding line we used the
torsion-free property of the Levi-Civita connection: ∇VW−∇WV = [V,W ].

For the proof of the differential Bianchi identity, we use a coordinate
frame ∂

∂xi
. In fact, we use normal coordinates at a point p ∈ M , so that

gij(p) = ±δij , and∇ ∂

∂xi

∂
∂xj

∣∣∣
p

= 0. A semicolon is used to denote components

of the covariant derivative ∇R. Since [ ∂
∂xi
, ∂
∂xj

] = 0, we have at the point p:

Rijk`;m(p) =
∂

∂xm

∣∣∣
p

〈
R
( ∂

∂xi
,
∂

∂xj
,
∂

∂xk

)
,
∂

∂x`

〉
=

〈
∇ ∂

∂xm

(
∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

)
,
∂

∂x`

〉 ∣∣∣
p
.
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Thus we have (combining terms in pairs, and using the fact that for each i

and j, ∇ ∂

∂xi

∂
∂xj

∣∣∣
p

= 0)

Rijk`;m(p) +Rjmk`;i(p) +Rmik`;j(p) =〈
∇ ∂

∂xm

(
∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

)
,
∂

∂x`

〉 ∣∣∣
p

+

〈
∇ ∂

∂xi

(
∇ ∂

∂xj
∇ ∂

∂xm

∂

∂xk
−∇ ∂

∂xm
∇ ∂

∂xj

∂

∂xk

)
,
∂

∂x`

〉 ∣∣∣
p

+

〈
∇ ∂

∂xj

(
∇ ∂

∂xm
∇ ∂

∂xi

∂

∂xk
−∇ ∂

∂xi
∇ ∂

∂xm

∂

∂xk

)
,
∂

∂x`

〉 ∣∣∣
p

=

〈
R(

∂

∂xj
,
∂

∂xm
,∇ ∂

∂xi

∂

∂xk
) +R(

∂

∂xi
,
∂

∂xm
,∇ ∂

∂xj

∂

∂xk
)

+R(
∂

∂xj
,
∂

∂xi
,∇ ∂

∂xm

∂

∂xk
),

∂

∂x`
,

〉 ∣∣∣
p

= 0.

�

Corollary 2.3. If (M, g) is a pseudo-Riemannian manifold with scalar cur-
vature R(g), then

2 divg(Ric(g)) = dR(g).

Proof. We use the differential Bianchi identity below, along with symme-

tries of the curvature tensor, and the fact that ∇g = 0, so that gij;k = 0 for

all i, j, k:

dR(g)i = (gj`gkmRkj`m);i

= gj`gkm(−Rkjmi;` −Rkji`;m)

= gj`gkm(Rjkmi;` +Rjki`;m)

= gj`Rji;` + gkmRki;m

= 2(divg(Ric(g)))i.

�

From this lemma, we construct the Einstein tensor

GΛ = Ric(g)− 1

2
R(g) g + Λg,

where the constant Λ is called the cosmological constant. We recall that our
signature for Lorentzian metrics is (−,+,+, . . . ,+). The Einstein tensor
is divergence free, as is any constant scalar multiple, and thus provides a
candidate for the stress-energy tensor of space-time. In fact, it is known
that up to scalar multiple, GΛ is the only divergence-free symmetric tensor
whose coordinate expression is a function of the components (gµν) of the
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metric tensor, along with their first and second partial derivatives. This
result was known to Cartan and Weyl in the special case that the tensor is
quasi-linear, and the more general result was proved by Lovelock.

From this result, then if the Einstein equation should be as simple as
possible, and thus be second-order in the metric components, then it must
take the form

GΛ = κT

for some constant κ that will be determined by the Newtonian limit, as we
now show.

2.3.1. The Newtonian Limit. We first consider a space-time metric which
is close to the Minkowski metric, so that in coordinates gµν = ηµν + hµν ,
where hµν is taken to be “small.” Our coordinates xµ are chosen so that
x0 = ct, and we assume that gµν,0 = 0. Consider a geodesic parametrized by
proper time τ . We consider the geodesic to model a slowly moving particle

trajectory, so that
∣∣∣dxidτ ∣∣∣� c dtdτ ≈ c. We will expand to first order in h (and

derivatives of h) and 1
c
dxi

dt , and denote expressions that are equal up to terms
quadratic in these quantities using “∼.” Since gµν = ηµν +O(h), we have

Γµ00 =
1

2
gµν(gν0,0 + g0ν,0 − g00,ν) ∼ −1

2
ηµνh00,ν .

Since Γµρσ = O(h), the geodesic equation becomes

0 =
d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
∼ d2xµ

dτ2
+ Γµ00

(
dx0

dτ

)2

∼ d2xµ

dτ2
+ c2Γµ00.

Consider the spatial components:

d2xi

dτ2
∼ −c2Γi00 =

1

2
c2h00,i.

If we let Φ = −1
2c

2h00, so that g00 = −(1+ 1
2Φc−2), then we recover the New-

tonian relation between acceleration and the gradient of the gravitational
potential (2.1).

We still want to determine κ. To do this, let’s consider the stress-energy
for a dust model. For a perfect fluid, the pressure becomes important due
to high random motion of the particles, and we are assuming our particles
are slowly moving. So we are just considering the particles at rest in a given
frame, without any pressure forces between dust particles, each with four-
velocity U. As such Tµν = c−2ρUµUν . We again consider gµν = ηµν + hµν ,
where gµν,0 = 0 (or at least gµν,0 ∼ 0). We expand to first order in h (and
its derivatives), Ui and ρ. Since gµνUµUν = −c2, trg(T ) = gµνT

µν = −ρ,
g00 = −1 + h00, and we have U0 ∼ c+ 1

2c
2h00. Furthermore,

T00 = gµ0gν0T
µν ∼ g00g00T

00 = (−1 + h00)2c−2ρU0U0 ∼ ρ.
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From the Einstein equation (with Λ = 0) Ric(g) − 1
2R(g)g = κT , taking

a trace yields R(g) = κρ, which then yields, upon evaluating the (0, 0)-
component of the Einstein equation, that R00 + 1

2κρ ∼ κρ, or R00 ∼ 1
2κρ.

We can also compute R00 in terms of Christoffel symbols. Indeed we have

Rij00 = Γi00,j − Γij0,0 + ΓijµΓµ00 − Γi0µΓµj0

∼ Γi00,j =

[
1

2
giµ(gµ0,0 + g0µ,0 − g00,µ

]
,j

∼ −1

2
δiµg00,µj

1

2
κρ = R00 = Rii00 ∼ −

1

2
∆(h00) = c−2∆Φ

To compare with the Newtonian limit, we convert the energy density to mass
density, σ = c−2ρ, to obtain

∆Φ =
1

2
κc4σ.

Thus we have 1
2κc

4 = 4πG, or

κ =
8πG

c4
.

2.3.2. Energy conditions. We note that the Einstein equation is some-
times re-written as follows. From Ric(g) − 1

2R(g)g + Λg = κT , we trace to
obtain (in space-time dimension four) −R(g) + 4Λ = κtrg(T ), so

(2.3) Ric(g) = κ
(
T − 1

2
trg(T )g

)
+ Λg.

In the vacuum case T = 0, so the Einstein equation becomes Ric(g) = Λg.
One could take −Λg to part of T , and thus the vacuum Einstein equation
commonly refers to Ric(g) = 0.

Before we move on, we note that conditions coming from physical notions
are sometimes imposed on T . We mention several now. The weak energy
condition is that T (U,U) ≥ 0 for all time-like U. If c = 1, say, then unit time-
like vectors U correspond to physical observers, and T (U,U) is the energy
density as measured by such an observer. The strong energy condition is
that for all unit time-like U, T (U,U) ≥ −1

2trg(T ). From (2.3), we see this is
equivalent in case Λ = 0 to the time-like convergence condition Ric(ξ, ξ) ≥ 0
for all time-like ξ. In a time-oriented Lorentz manifold (i.e. if the manifold
admits a smooth time-like vector field that can be used to give a smooth
assignment of a future time-cone in the tangent space at each point), we
define the dominant energy condition that for all future-directed time-like
ξ, the vector given by −T abξb is future-directed causal, or in other words,
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for all future-directed time-like (causal) ξ and χ, we have T (ξ, χ) ≥ 0. The
dominant energy condition clearly implies the weak energy condition.

2.3.3. The Einstein Equation in Fermi Coordinates along a Time-
like Geodesic. Consider again motion of particles under gravitational force
with potential Φ in the Newtonian framework. We consider a family of paths
ξ(t, s) with coordinates xk(t, s), where s parametrizes the family of paths

by, say, their initial position s along an axis. Newton’s law becomes ∂2xk

∂t2
=

− ∂Φ
∂xk

(ξ(t, s)). We now consider the variation vector V (t) = ∂ξ
∂s = ∂xk

∂s
∂
∂xk

in
the direction across nearby paths. This vector satisfies the equation

(2.4)
(D2V

dt2

)k
=

∂2

∂t2

(∂xk
∂s

)
= −

( ∂2Φ

∂xj∂xk

)∂xj
∂s

= −
( ∂2Φ

∂xj∂xk

)
V j(s).

This equation describes the relative motion of particles moving on nearby
paths under the force of gravity. The relative motion is sometimes described
in terms of tidal forces from non-uniformities in the gravitational field, which
is consistent with what we see in the equation. The matrix which governs
this behavior is negative the Hessian of Φ, so the negative of its trace is
∆Φ = 4πGσ, where σ is the mass density. In the vacuum case ∆Φ = 0,
and this means that some nearby paths accelerate toward each other, while
others accelerate away from each other.

We can use this formulation as a motivation for Einstein’s equation. In
general relativity, the paths of observers subject only to gravitation (“freely
falling” observers) are given by time-like geodesics. We recall the logic be-
hind this. By the equivalence principle, a gravitational field can be created
or effectively cancelled out locally in space-time by a coordinate change.
Indeed, if γ(t) is a geodesic, then the geodesic equation in coordinates is
d2γk

dt2
= −Γkij(γ(t))dγ

i

dt
γj

dt . In normal coordinates at p = γ(0), these equations

reduce to d2γk

dt2

∣∣∣
0

= 0, analogous to the Newtonian equation with vanishing

gravitational field. The Christoffel symbols do not form the components
of a tensor field, and can be transformed away at a point by a coordinate
change. Normal coordinates at a point in space-time form a momentarily
co-moving rest frame, or locally inertial frame, associated to the observer.
In normal coordinates at such a point, covariant derivatives reduce to partial
derivatives, and tensor equations take the same form as they would have in
inertial coordinates in Minkowski space (special relativity).

We now derive the equation governing the behavior of a family of nearby
geodesics. Let f(t, s) be a two-parameter map, so that for each s, γs(t) =

f(t, s) is a geodesic. The vector field V = ∂f
∂s along f is the variation field

for the family of geodesics. If we focus on γ = γ0 and consider V (t) along γ,
then V (t) satisfies the following differential equation, the Jacobi equation.
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Proposition 2.4. Consider a family of geodesics f(t, s) as above, with vari-
ation field V . Then along γ = f(·, 0),

D2V

dt2
= R(γ′(t), V (t), γ′(t)).

Proof. We first note the following:

D

dt

∂f

∂s
= ∇γ′(t)

∂f

∂s

= ∇γ′(t)
(
∂fk

∂s

∂

∂xk

)
=
∂2fk

∂t∂s

∂

∂xk
+
∂2fk

∂t∂s

dγ`

dt
∇ ∂

∂x`

∂

∂xk

=

(
∂2fm

∂t∂s
+
∂fk

∂s

df `

dt
Γmk`

)
∂

∂xm

=
D

ds

∂f

∂t
.

Now, from the definition of curvature (R(X,Y, Z) = ∇X∇Y Z−∇Y∇XZ−
∇[X,Y ]Z), and since 0 = df

([
∂
∂s ,

∂
∂t

])
=
[
∂f
∂s ,

∂f
∂t

]
, we have (with D

dt = ∇γ′(t)
and D

ds = ∇ ∂f
∂s

= ∇V (t))

D2V

dt2
=
D

dt

D

dt

∂f

∂s
=
D

dt

D

ds

∂f

∂t

=
D

ds

D

dt

∂f

∂t
+R(γ′(t), V (t), γ′(t)) = R(γ′(t), V (t), γ′(t)),

since D
dt
∂f
∂t = ∇γ′(t)γ′(t) = 0 since γ is a geodesic. �

If we compare this to (2.4), we see that the analogue of the matrix(
∂2Φ

∂xj∂xk

)
is the matrix

(
Rkj`m

dγ`

dt
dγm

dt

)
, so that the analogue of ∆Φ is ob-

tained by tracing over j and k to obtain Ric(γ′(t), γ′(t)), where t is proper
time.

So we see that the analogue of the Newtonian law of gravitation with
vanishing field is Ric(g) = 0, since Ric(γ′(t), γ′(t)) = 0 for all time-like
directions at a point implies the Ricci curvature must vanish.

To make a further link to Newtonian theory, we now construct coordi-
nates along a time-like geodesic adapted to the geodesic and the geometry.
Consider a time-like geodesic γ(τ), parametrized by proper time τ , γ(0) = p.
Choose an orthonormal frame {e1, e2, e3} for the orthogonal complement of
γ′(0) in TpM . We parallel translate these vectors along γ to produce an
orthonormal frame {e1(τ), e2(τ), e3(τ)} for the orthogonal complement of
γ′(t) in Tγ(τ)M . We define coordinates in a neighborhood of the geodesic
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by the map ϕ(τ, x) = expγ(τ)(x
iei(τ)). Since dϕ

(
∂
∂τ

∣∣∣
(τ,0)

)
= γ′(τ), and

dϕ
(

∂
∂xi

∣∣∣
(τ,0)

)
= ei(τ), we see that ϕ defines a coordinate system in a neigh-

borhood of γ, Fermi coordinates. For index purposes, let x0 = cτ .

It is clear by construction that the metric components along γ in this
coordinate system agree with the components of the Minkowski metric in
inertial coordinates. We now establish a lemma regarding the behavior of
the Christoffel symbols along γ.

Lemma 2.5. For all 0 ≤ i, j, k ≤ 3, Γkij(cτ, 0) = Γkij(γ(τ)) = 0.

Proof. For any (τ, b), b = (b1, b2, b3), consider the curve defined via the
exponential map as β(s) = expγ(τ)(sb

iei(τ)). Let b0 = 0. Then β0(s) = cτ

and βk(s) = sbk for k = 1, 2, 3. By definition, β is a geodesic. Since
d2βk

ds2
= 0 for k = 0, 1, 2, 3, we have 0 = Γkij(cτ, sb)

dβi

ds
dβj

ds = Γkij(cτ, sb)b
ibj .

Since at s = 0, we can consider β defined by an arbitrary b ∈ R3, we have
Γkij(cτ, 0) = 0 for 0 ≤ k ≤ 3 and 1 ≤ i, j ≤ 3. Similarly, the geodesic

equation for γ yields Γk00(cτ, 0) = 0 for 0 ≤ k ≤ 3.

To get the other Christoffel symbols, we use the equations for parallel
transport. Along γ, the x`-coordinate vector is e` for ` = 1, 2, 3, so the
components of e` along γ are given by ei`(τ) = δi`. The parallel transport
equations are then given by

0 =
d

dτ
(ek` (τ)) + Γkij(cτ, 0)ei`(τ)

dγj

dτ
= Γkij(cτ, 0)δi`

dγj

dτ
= cΓk`0(cτ, 0),

where we used the fact that γ0(τ) = cτ and γj(τ) = 0 for j = 1, 2, 3. �

Lemma 2.6. Along γ, we have Rkj00 =
∂Γk00
∂xj

, so that for k = 1, 2, 3, Rkj00 =

−1
2g00,kj, while R0

j00 = 0, along γ.

Proof. Since the Christoffel symbols vanish along γ,
∂Γkij
∂τ = 0 along γ, so

that along γ,

Rkj00

∂

∂xk
= ∇ej(τ)∇ ∂

∂x0

∂

∂x0
−∇c−1γ′(τ)∇ ∂

∂xk

∂

∂x0

= ∇ej(τ)

(
Γk00

∂

∂xk

)
− c−1∇γ′(τ)

(
Γkj0

∂

∂xk

)
=
∂Γk00

∂xj
∂

∂xk
.
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Moreover, since the Christoffel symbols vanish along γ, so do the first
partials of gij and gij . Thus along γ, we have for k = 1, 2, 3,

∂Γk00

∂xj
=

∂

∂xj

(
1

2
gkm(2g0m,0 − g00,m)

)
= −1

2
δkmg00,mj = −1

2
g00,kj .

Similarly,
∂Γ0

00

∂xj
= −1

2g00,0j = 0. �

Now, as we noted above, the analogue of the matrix
(

∂2Φ
∂xj∂xk

)
is

c2Rkj00 = −1

2
c2g00,jk.

Thus the analogue of the gravitational potential Φ is −1
2c

2g00, which is
equivalent to what we had earlier (since Φ is defined only up to an additive
constant). The analogue of ∆Φ is then Ric(γ′(τ), γ′(τ)) = c2R00, as we
had before. Our analysis leads us again to propose that the Ricci curvature
should be related to the matter density. Of course, the mass-energy density
is not an invariant object, but the stress-energy tensor is. We can argue as
in our earlier analysis how to get from here to the Einstein equation.

2.3.4. Variational formulation. We now consider a Lagrangian varia-
tional formulation for the Einstein equation, as first derived by Hilbert
about a hundred years ago. Consider the total scalar curvature functional
R(g) =

∫
M

R(g)dvg, where in local coordinates, dvg =
√
| det(gij)| dx (the

definition then includes both Lorentzian and Riemannian cases). We as-
sume that M is compact, or more generally that R(g) ∈ L1(M,dvg). We
want to compute the first variation of R, and the associated Euler-Lagrange
equation.

First we recall Cramer’s Rule. If A = (Aij) is an n× n matrix, then we
let Mij be the determinant of the (n−1)×(n−1) minor matrix obtained by
deleting row i and column j of A. The determinant of A is given by column
or row expansion:

det(A) =
n∑
i=1

(−1)i+jMijAij =

n∑
j=1

(−1)i+jMijAij .

We thus let cof(A) be the n×n cofactor matrix, cof(A)ij = (−1)i+jMij , and

we let Aadj = (cof(A))T be the Cramer’s Rule adjoint with entries Aadj
ij =

(−1)i+jMji = cof(A)ji. Thus for any j ∈ {1, 2, . . . , n}, det(A) = (Aadj ·A)jj .

We also note that for i 6= j, (Aadj ·A)ij =
n∑
k=1

(−1)i+kMkiAkj = 0. Indeed, we

can interpret the preceding sum as the determinant of the matrix Ã obtained
by replacing column i of A by column j of A. The minors Mki are obtained
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by crossing out column i, so Mki are the same for A as for Ã. On the other
hand, det(Ã) = 0 since Ã has two equal columns. In summary we arrive at
Cramer’s Rule: If In is the n× n identity matrix, then Aadj ·A = det(A)In.
If A is invertible, then

A−1 =
1

det(A)
Aadj.

Now we turn to variational formulae.

Lemma 2.7. If A(t) is a smooth path of n× n matrices,

(2.5)
d

dt
(det(A(t))) = tr(Aadj(t) ·A′(t)).

In case A(t) is invertible,

(2.6)
d

dt
(log(det(A(t)))) = tr(A−1(t) ·A′(t)),

and

(2.7)
d

dt

√
| detA(t)| = 1

2

√
|det(A(t))| tr(A−1(t) ·A′(t)).

Proof. If consider det(A) as a function of (Aij) ∈ Rn2
, then

∂

∂Aij
(detA) = (−1)i+jMij = Aadj

ji .

Thus by the Chain Rule, d
dt (det(A(t))) =

n∑
i,j=1

∂(det(A))
∂Aij

∂Aij
∂t . Using this to-

gether with the preceding equation establishes the lemma. �

We need one more variational formula to compute the Euler-Lagrange
equation for the Einstein-Hilbert action. The proof can be carried out in a
straightforward though laborious manner, in normal coordinates at a point.

We leave it as an exercise. Let Lg(h) = d
dt

∣∣∣
t=0

R(g + th).

Lemma 2.8. Lg(h) = −∆g(trg(h)) + divgdivgh− h · Ric(g).

Exercise 2.9. Prove Lemma 2.8.

We now derive the Euler-Lagrange equation for the Einstein-Hilbert ac-
tion. We will vary the metric g in the direction of a symmetric (0, 2)-tensor
h. We will take h to be compactly supported, so we can make sense out of the
variation for a given h even in case R(g) fails to be integrable, by integrating
only over the support of h, where the metric g is actually changing.
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Theorem 2.10. The first variation of the Einstein-Hilbert action (total
scalar curvature functional) R is given by

d

dt

∣∣
t=0
R(g + th) = −

∫
M

h · (Ric(g)− 1

2
R(g)g) dvg

for all compactly supported tensors h (which vanish on the boundary ∂M if
∂M is nonempty). Thus the Euler-Lagrange equation is Ric(g)− 1

2R(g)g =
0. This equation is satisfied on all two-dimensional manifolds (M, g). For
dim(M) ≥ 3, the Euler-Lagrange equation is equivalent to Ric(g) = 0.

Proof. Since in local coordinates x, dvg =
√
|det(gij)| dx, we have by

the preceding lemma (and the symmetry of g (or h)) and the fact that
gijhij = trg(h), for gt = g + th,

(2.8)
d

dt

∣∣∣
t=0

dvgt =
1

2
gijhijdvg =

1

2
trg(h) dvg.

An integration by parts yields (boundary terms vanish by choice of h)

d

dt

∣∣∣
t=0
R(g + th) =

∫
M

Lg(h) dvg +

∫
M

R(g) · 1

2
trg(h) dvg

=

∫
M

[
(−∆g(trg(h)) + divgdivgh− h · Ric(g)) +

1

2
R(g)g · h

]
dvg

= −
∫
M

h · (Ric(g)− 1

2
R(g)g) dvg.

In case M is closed, we let h = Ric(g)− 1
2R(g)g to finish the proof. In any

case, the preceding equation holds for all h in a dense subset of L2(M,dvg),
so we see that we must have Ric(g)− 1

2R(g)g = 0.

If M is two-dimensional, and {e1, e2} is an orthonormal basis of TpM ,
say 〈e1, e2〉 = 0, 〈e1, e1〉 = ε1 = ±1, and 〈e2, e2〉 = ε2 = 1, then

Ric(e1, ej) = ε1〈R(e1, e1, ej), e1〉+ ε2〈R(e2, e1, ej), e2〉
= 〈R(e2, e1, e1), e2〉δ1j

= ε1〈R(e2, e1, e1), e2〉g(e1, ej)

Ric(e2, ej) = ε1〈R(e2, e1, e1), e2〉δ2j

= ε1〈R(e2, e1, e1), e2〉g(e2, ej).

Hence the desired equation follows from

R(g) = ε1Ric(e1, e1) + ε2Ric(e2, e2) = 2ε1〈R(e2, e1, e1), e2〉.
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If n = dim(M) ≥ 3, we trace the Euler-Lagrange equation to obtain R(g)−
n
2R(g) = 0, or R(g) = 0. Thus Ric(g) = 0 in this case; the converse is
trivial. �

Definition 2.11. A semi-Riemannian manifold (Mn, g) is Einstein provided
for some constant C, Ric(g) = Cg. In this case the scalar curvature is
constant: R(g) = nC.

Lemma 2.12. Consider (Mn, g) semi-Riemannian with n ≥ 3. If Ric(g) =
fg for some function f , then f is constant.

Exercise 2.13. Prove the lemma.

For any constant Λ, we can also consider RΛ(g) =
∫
M

(R(g) − 2Λ) dvg.

From the variation of the volume element dvg (2.8), the following is imme-
diate.

Corollary 2.14.

d

dt

∣∣
t=0
RΛ(g + th) = −

∫
M

h · (Ric(g)− 1

2
R(g)g + Λg) dvg

for all compactly supported tensors h (which vanish on the boundary ∂M if
∂M is nonempty). Thus the Euler-Lagrange equation for RΛ is

Ric(g)− 1

2
R(g)g + Λg = 0.

Suppose g solves the above equation. Then, for any Λ and for n > 2, we
have R(g) = 2n

n−2Λ. Thus the metric g is Einstein, Ric(g) = Cg, where C is

the constant C = 2Λ
n−2 . In case n = 2, Λ = 0.

Definition 2.15. The Einstein tensor is given by G = G(g) = Ric(g) −
1
2R(g)g. We also defined the related tensor GΛ(g) = Ric(g)− 1

2R(g)g + Λg.
The vacuum Einstein equation (with cosmological constant Λ) is given by
GΛ = 0. In case Λ = 0 and n > 2, this is equivalent to Ric(g) = 0.

We now discuss how to include matter fields into the variational formu-
lation. We assume the matter fields are given in terms of a collection Ψ of
tensor fields (including scalars, vectors, etc.), which we assume are indepen-

dent of the metric g and are governed by an action
∫
M

L̂m(g,Ψ) dvg. Note

that L̂m can also depend on derivatives of the fields in Ψ. If h is a sym-
metric (0, 2)-tensor, and Φ is a collection of (smooth, compactly supported
and vanishing on the boundary, if nonempty) tensor fields representing a
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direction of variation of Ψ, we write

d

dt

∣∣∣
t=0
L̂m(g + th,Φ) =: (D1L̂m)(g,Ψ)(h, 0)

d

dt

∣∣∣
t=0
L̂m(g,Ψ + tΦ) =: (D2L̂m)(g,Ψ)(0,Φ).

We remark that it is sometimes useful, especially when varying the metric,

to express the Lagrangian as a density, Lm = L̂m ·
√
| det g|.

The fields Ψ are not arbitrary: for any g, and for any direction of vari-
ation Φ of the fields, we must have

0 =
d

dt

∣∣∣
t=0

∫
M

L̂m(g,Ψ + tΦ) dvg =

∫
M

(D2L̂m)(g,Ψ)(0,Φ) dvg.(2.9)

From here we can derive field equations (sometimes called equations of mo-
tion) for the matter fields. Instead of introducing new notation, we illustrate
with examples.

Example 2.16. Let’s consider g = η, the Minkowski metric on M1+k =
R1+k

1 . Consider global inertial coordinates (t, xi). Then for any smooth

function ψ, η(dψ, dψ) = −c−2(∂ψ∂t )2 +
k∑
i=1

( ∂ψ
∂xi

)2. If our Lagrangian L̂m =

−1
2η(dψ, dψ), then for any smooth ϕ, the field equation is given by

0 =
d

dt

∣∣∣
t=0

∫
M

− 1

2
η(dψ + tdϕ, dψ + tdϕ) dt dx1 · · · dxn

=

∫
M

−η(dψ, dϕ) dt dx1 · · · dxk

=

∫
M

ϕ�ψ dt dx1 · · · dxk

where � = −c−2
(
∂
∂t

)2
+

k∑
i=1

(
∂
∂xi

)2
is the wave operator in Minkowski space.

Since this must hold for all (appropriate) ϕ, the field equation is the wave
equation �ψ = 0.

Exercise 2.17. If we let L̂m = −1
2η(dψ, dψ)− V (ψ), where V is a smooth

function of one variable, show that the resulting field equation is �ψ =
V ′(ψ). In case V (ψ) = 1

2m
2ψ2, the resulting equation �ψ − m2ψ = 0 is

called the Klein-Gordon equation.

We remark that the Lagrangian for the gravitational fields involved
second-order derivatives of the metric, as does the corresponding Euler-
Lagrange equation (the Einstein equation), whereas for the preceding two
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examples, the Lagrangian is first-order in ψ, while the Euler-Lagrange equa-
tion is second-order in ψ.

Example 2.18. For the source-free electromagnetic field, one has L̂m =
− 1

16πFabFcdg
acgbd, where Fab = (dA)ab for a one-form A, the vector potential.

If ϕ is a direction of variation of the vector potential, then the stationarity
of the action requires (we use the antisymmetry of F )

0 =

∫
M

− 1

8π
g(dϕ, F ) dvg =

∫
M

− 1

8π
(ϕb;a − ϕa;b)Fcdg

acgbd dvg

=

∫
M

1

4π
ϕa;bFcdg

acgbd dvg

=

∫
M

− 1

4π
ϕa(Fcd;bg

bd)gac dvg.

In other words, we obtain the equation divgF = 0, where divg is the space-

time divergence Fcd;bg
bd, which forms part of Maxwell’s equations. The

other part comes from the fact that Fab is a closed two-form.

We now define the stress-energy tensor T corresponding to matter fields
given by a Lagrangian as above via the following equation identifying T as
a symmetric (0, 2)-tensor via an integral pairing:

d

dt

∣∣∣
t=0

∫
M

L̂m(g + th,Ψ) dvg+th =

∫
M

[
(D1L̂m)(g,Ψ)(h, 0) + L̂m(g,Ψ) · 1

2
trg(h)

]
dvg

=:
1

2

∫
M

g(h, T ) dvg.(2.10)

Example 2.19. Consider a Klein-Gordon field L̂m = −1
2η(dψ, dψ)− 1

2m
2ψ2

at the Minkowski metric on M1+k. In inertial coordinates, ψ;a = ∂ψ
∂xa , a =

0, 1, . . . , k. The stress tensor T satisfies∫
M

η(h, T ) dvη = 2

∫
M

[
1

2
ηijhjkη

k`ψ;iψ;`− (
1

2
η(dψ, dψ) +

1

2
m2ψ2)

1

2
hjkη

jk dvη.

Thus we see Tab = ψ;aψ;b − 1
2(η(dψ, dψ) + m2ψ2)ηab. There is an analogue

on any space-time (M, g): Tab = ψ;aψ;b − 1
2(ψ;cψ;dg

cd +m2ψ2)gab.
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Exercise 2.20. For the source-free Maxwell field L̂m = − 1
16πFabFcdg

acgbd,
show that the method above yields∫
M

g(h, T ) dvg

=

∫
M

− 1

8π

(
− FabFcdgaihijgjd − FabFcdgacgbihijgjd +

1

2
hijg

ijFabFcdg
acgbd

)
dvg

=

∫
M

1

8π
hij

(
FabFcdg

aigjcgbd + FabFcdg
acgbigjd − 1

2
FabFcdg

acgbdgij
)
dvg

=

∫
M

hij
1

4π

(
FabFcdg

bdgaigjc − 1

4
FabFcdg

acgbdgij
)
dvg

where in the last step we used the antisymmetry of Fab. Thus

Tab =
1

4π

(
FacFbdg

cd − 1

4
FijFk`g

ikgj`gab

)
.

We now derive the Einstein equation from the Ansatz that the action
for the combination of gravitation with the fields is simply the sum of a
constant multiple of RΛ with the action for the matter. In particular, we
are assuming that the fields do not themselves appear in the Lagrangian for
the gravitational field. With κ = 8πG

c4
as above, we consider the action

S(g,Ψ) =

∫
M

[ 1

2κ
(R− 2Λ) + L̂m(g,Ψ)

]
dvg.

An important consideration in the earlier derivation of the Einstein ten-
sor is that the stress-energy tensor is divergence-free. This can be derived
from the variational definition above, along with diffeomorphism invariance
of the action. The Einstein-Hilbert action RΛ is clearly diffeomorphism
invariant: if φ is a diffeomorphism of M , then RΛ(g) = RΛ(φ∗g). The

assumption that the action for the matter Rm(g,Ψ) =
∫
M

L̂m(g,Ψ) dvg is

diffeomorphism invariant is, then, by the preceding observation equivalent
to the diffeomorphism invariance of S(g,Ψ).

Now, suppose that X is a smooth vector field on M , which gener-
ates a local one-parameter subgroup of diffeomorphisms φt. Recall that
d
dt

∣∣∣
t=0

φ∗t g = LXg, where (LXg)ij = Xi;j +Xj;i.

Exercise 2.21. Suppose X is compactly supported away from the bound-
ary, and let h = LXg. Show directly from the formula for the variation of the

Einstein-Hilbert action and the Bianchi identities that d
dt

∣∣∣
t=0
R(g+ th) = 0.
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ForX compactly supported away from the boundary with one-parameter
group of diffeomorphisms φt, we then have by (2.9) and (2.10) and the
symmetry of T ,

0 =
d

dt

∣∣∣
t=0

∫
M

L̂m(φ∗t g, φ
∗
tΨ) dvφ∗t g

=
1

2

∫
M

g(LXg, T ) dvg =

∫
M

Xi;jT
ij dvg = −

∫
M

XiT
ij
;j dvg.

Since this holds for any compactly supported X, we see that T must be
divergence-free as desired.

2.3.4.1. Related variational problems. In this section, let M be a closed man-
ifold of dimension n ≥ 3. We want to characterize critical points of R
constrained to Riemannian metrics of fixed volume, say Vol(g) = 1. We
let M be the set of (smooth) Riemannian metrics, and let M1 ⊂ M be
the subset of unit volume metrics. Note that if g ∈ M, and if C > 0 is
a constant, then dv(Cg) = Cn/2dvg, and so Vol(Cg) = Cn/2Vol(g). Thus

(Vol(g))−2/ng ∈M1. We also note that R(Cg) = C−1R(g).

We can considerR onM1, or by rescaling g ∈M to ḡ = (Vol(g))−2/ng ∈
M1, we can consider the functional

R(g) = R(ḡ) =
R(g)

(Vol(g))1− 2
n

.

Proposition 2.22. A metric g ∈ M is critical for R if and only if g is
Einstein. Thus g ∈M1 is critical for R restricted to M1 if and only if g is
Einstein.

Proof. Let gt = g + th, and let ḡt = (Vol(gt))
−2/ngt ∈ M1. Then R(gt) =

R(ḡt) = R(gt)

(Vol(gt))
1− 2

n
. We compute, using d

dt

∣∣∣
t=0

Vol(gt) =
∫
M

1
2trg(h) dvg,

d

dt

∣∣∣
t=0
R(ḡt)

= −

∫
M

h · (Ric(g)− 1
2R(g)g) dvg

(Vol(g))1− 2
n

− (1− 2

n
)

R(g)

(Vol(g))2− 2
n

·
∫
M

1

2
trg(h) dvg

= − 1

(Vol(g))1− 2
n

∫
M

h ·
(

Ric(g)− 1

2
R(g)g + (

n− 2

2n
)(Vol(g))−1R(g)g

)
dvg.

For this to hold for all symmetric (0, 2)-tensors h, we must have Ric(g) −
1
2R(g)g+ (n−2

2n )(Vol(g))−1R(g)g = 0. From here, we can apply Lemma 2.12
to conclude g is Einstein, but we can also proceed as follows. Taking the
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trace yields
n− 2

2
(R(g)− (Vol(g))−1R(g)) = 0.

Hence R(g) = (Vol(g))−1R(g), a constant. From here, we clearly have

Ric(g) = R(g)
n g, and R(g) is constant. �

We note that while the unconstrained problem had critical points char-
acterized by Ric(g) = 0, the constrained problem has a more general critical
point equation, which can be interpreted as a Lagrange multiplier con-
dition. If we interpret the gradient (in an L2 integral sense) of R as
−(Ric(g)− 1

2R(g)g), then gradient of the volume functional would be 1
2g, and

a Lagrange multiplier condition would be of the form −(Ric(g)− 1
2R(g)g) =

λ · 1
2g. From here, Lemma 2.12 would imply the Einstein condition.

Remark 2.23. Einstein metrics arise as stationary points of normalized
Ricci flow. From (2.8), we see that a solution g = gt to the normalized

Ricci flow ∂g
∂t = −2Ric(g) + 2R(g)

n g = −2(Ric(g)− R(g)
n g) has volume Vol(gt)

constant.

We could further constrain the variation so that the metrics under con-
sideration are not only of unit volume, but are also pointwise conformal to g,
that is the metrics are of the form f ·g, where f > 0 is a smooth function on
M . One can break upM into equivalence classes [g] of pointwise conformal
metrics. As an immediate corollary of the proof of Proposition 2.22 we have
the following.

Proposition 2.24. A metric g is critical for R amongst variations gt ∈ [g]
if and only if R(g) is constant. A metric g ∈ M1 is critical for R amongst
variations gt ∈M1 ∩ [g] if and only if R(g) is constant.

Proof. Let gt = ftg, t ∈ I, be smooth in I ×M , with f0 = 1. Then ft is

smooth, and h = d
dtgt = dft

dt g. Let ϕ = dft
dt

∣∣∣
t=0

, which can be any smooth

function on M , since we could let ft = 1 + tψ. Applying the argument in
the proof of Proposition 2.22, with h = ψg, we have that

d

dt

∣∣∣
t=0
R(gt)

= − 1

(Vol(g))1− 2
n

∫
M

ψg ·
(

Ric(g)− 1

2
R(g)g + (

n− 2

2n
)(Vol(g))−1R(g)g

)
dvg

=
1

(Vol(g))1− 2
n

· n− 2

n

∫
M

ψ
(
R(g)− (Vol(g))−1R(g)

)
dvg.

Since this must hold for all ψ, we have have R(g) = Vol(g))−1R(g), and
conversely. �
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2.3.5. The Gauss-Bonnet Theorem for Closed Surfaces. Before we
return to general relativity, we discuss how the analysis of the Einstein-
Hilbert action yields the basic form of the Gauss-Bonnet Theorem.

Theorem 2.25. Suppose that (Σ, g) is an orientable, closed Riemannian
surface with Euler characteristic χ(M). If K = K(g) is the Gauss (sec-
tional) curvature, then ∫

Σ

K dvg = 2πχ(Σ).

Proof. Any such surface Σ is a sphere, or a torus, or a torus with some
number γ of handles attached (genus γ). A sphere has Euler characteristic
2, as can be seen using a tetrahedral triangulation. It is also not too hard
to triangulate a torus and compute its Euler characteristic to be 0. Higher
genus surfaces are obtained by doing a connected sum to a torus. We can
view this as removing a triangle from a surface and a torus, and gluing along
the edges of the triangle. Let’s say the original surface had Euler character-
istic χ, and we know the torus has Euler characteristic 0. So we know the
total alternating sum of vertices, edges and faces at the start for both sur-
faces is χ. In the process of adding a handle, we lost two faces, three edges
and three vertices. Thus adding a handle brings the Euler characteristic
down by 2. Thus χ(Σγ) = 2− 2γ, γ = 0, 1, 2, . . ..

As we proved earlier, the Einstein-Hilbert action R(g) is critical at every
metric g on a two-dimensional manifold. This means that R is constant on
the space M of metrics: any two metrics g1, g2 ∈ M can be connected
by a linear path gt = (1 − t)g1 + tg2, 0 ≤ t ≤ 1, and we’ve seen that
R(gt) is constant in t. Since R(g) = 2K(g), we see that

∫
Σ

K(g) dvg is

independent of g. Thus to compute it, we just need to pick a particularly
nice g. For a sphere, we take a round metric for a unit sphere, so that
K = 1 and Vol(g) = 4π. The Euler characteristic of the sphere is 2, which
can be seen by using the triangulation induced by a homeomorphism with
a tetrahedron. For a torus, we have Euler characteristic 0, and we can use
a flat metric on the torus to compute R(g). Consider a surface S = S1 ∪ S2

which is homeomorphic to a sphere, and is obtained by smoothly capping
off the ends of a circular cylinder. The cylinder is flat (K = 0). Divide
it along a circular geodesic into two surfaces S1 and S2 with the geodesic
circle as their common boundary. We can certainly do this in a symmetric
manner, but to make a point, suppose we had not imposed symmetry. We
could take either surface and apply a Euclidean motion to produce a new
surface (S′i, g

′), so that Si ∪ S′i is homeomorphic to a sphere, with Si ∩ S′i
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the same common geodesic circle, and with overall metric g̃. Thus

(2.11)

∫
Si

K(g) dvg =

∫
S′i

K(g′) dvg′ =
1

2

∫
Si∪S′i

K(g̃) dvg̃ = 2π.

Given a surface Σ, we consider Σ′ to be the connected sum of Σ and a
torus T. We can readily put a metric g on Σ which has a region isometric to
a surface S1 as above with the cylindrical part extended a bit further past
S1. A similar statement is true for a metric g0 on the torus, say with S2

for which the cylindrical piece has the same radius as that of the cylindrical
piece of S1. Then Σ′ = (Σ \ S1) ∪ (T \ S2), and we can take a metric g′ on
Σ′ compatible with the metric on each piece. If the Gauss-Bonnet Theorem
holds for Σ, then by (2.11)∫

Σ′

K)(g′) dv′g =

∫
Σ

K(g) dvg +

∫
T

K(g0) dvg0 − 4π = χ(Σ)− 2 · 2π.

Since adding a handle contributed to a decrease in the Euler characteristic
by 2, the Gauss-Bonnet Theorem follows by induction. �

2.4. Space-time examples

In this section we consider some examples of space-times and the form of
the Einstein equation which they satisfy.

2.4.1. Constant curvature space-times. Let Rnν for 0 ≤ ν ≤ n denote
the semi-Riemannian manifold Rn with the metric 〈 ∂

∂xi
, ∂
∂xj
〉 = εiδij , where

εi = −1 for 1 ≤ i ≤ ν, and εi = 1 for ν + 1 ≤ i ≤ n. Recall the following
manifolds defined as level sets of certain quadratic polynomials, with the
metric induced from the indicated inclusions: for n ≥ 2 and r > 0, we define

Sn1 (r) = {x ∈ Rn+1 : −(x0)2 + (x1)2 + · · ·+ (xn)2 = r2} ⊂ Rn+1
1 = M1+n

Hn
1 (r) = {x ∈ Rn+1 : −(x0)2 − (x1)2 + (x2)2 + · · ·+ (xn)2 = −r2} ⊂ Rn+1

2 .

It is easy to see that Sn1 (r) is diffeomorphic to R × Sn−1, which is simply
connected for n ≥ 3, while Hn

1 (r) is diffeomorphic to S1 × Sn−1. We have
the following proposition.

Proposition 2.26. A complete, simply connected n-dimensional Lorentzian
manifold of constant curvature C is isometric to one of the following:

• Sn1 (r) (n ≥ 3, C = 1
r2

)

• S̃2
1(r) (n = 2, C = 1

r2
)

• Rn1 (C = 0)

• H̃n
1 (r) (C = − 1

r2
)
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S4
1(r) is de Sitter space-time of curvature C = 1

r2
, H4

1(r) is anti-de Sitter

space-time of curvature C = − 1
r2

, while the universal cover H̃4
1(r) is universal

anti-de Sitter space-time.

Constant curvature manifolds are Einstein. Indeed, in a constant cur-

vature Lorentz four-manifold (S4, g), we have Ric(g) = R(g)
4 g, where R(g)

is constant. Then we have (Ric(g)− 1
2R(g)g) + 1

4R(g)g = 0. One can inter-

pret this as Einstein’s equation with T = 0 and Λ = 1
4R(g). Thus we have

Ric(g) = Λg, and in the examples above, Λ > 0 corresponds to de Sitter
space-time, while Λ < 0 corresponds to anti-de Sitter space-time.

2.4.2. The Einstein Static Universe. Consider the space R × S3 with
the product metric g = −c2dt2 + gS3 , where gS3 is the unit round metric on
the three-sphere.

Exercise 2.27. Show that the Ricci curvature of this metric is Ric(g) =
2gS3 .

From the exercise we see R(g) = 6, so that the Einstein tensor is Ric(g)−
1
2R(g)g = 3c2dt2−gS3 , andGΛ(g) = (3−Λ)c2dt2+(Λ−1)gS3 . We identify this

with the stress-energy tensor of a perfect fluid, with fluid velocity U = ∂
∂t ,

density ρ and pressure p. If we write T as a (0, 2)-tensor, we have T =
(ρ+ p)c2dt2 + pg = ρc2dt2 + pgS3 . The Einstein equation GΛ(g) = 8πG

c4
T is

then equivalent to

3− Λ =
8πG

c4
ρ

Λ− 1 =
8πG

c4
p.

Note that for p ≥ 0, we must have Λ ≥ 1. Note that (ρ+p) = 2
κ for κ = 8πG

c4
.

2.4.3. Friedmann-Lemaitre-Robinson-Walker. Let I ⊂ R and let Σ
be a three-manifold. We consider a warped product metric of the form
g = −c2dt2 +(cf(t))2g0, where g0 is a Riemannian metric of constant curva-
ture k on Σ, and f is a positive function on I. Such metrics arise in cosmo-
logical models which incorporate the observation that the universe seems to
be everywhere isotropic (with respect to a class of “observers,” which may
be on the galactic scale), which in turn implies spatial homogeneity of the
manifolds orthogonal to the trajectories of such observers (spaces of simul-
taneity). See the references Carroll, O’Neill and Wald for more discussion
of how isotropy and spatial homogeneity are translated into a metric of the
above form.

Let U = ∂
∂t , and let X, Y and Z denote tangent vectors to Σt = {t} ×

Σ for t ∈ I. Recall the curvature convention R(X,Y, Z) = ∇X∇Y Z −
∇Y∇XZ −∇[X,Y ]Z. We also denote g(X,Y ) = 〈X,Y 〉.
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Exercise 2.28. Verify the following curvature formulas:

R(X,Y, Z) = c−2
[(f ′(t)

f(t)

)2
+

k

(f(t))2

]
[〈Y,Z〉X − 〈X,Z〉Y ]

R(X,U,U) = −f
′′(t)

f(t)
X

R(X,Y,U) = 0

R(X,U, Y ) = −c−2 f
′′(t)

f(t)
〈X,Y 〉U.

We can now readily find the Ricci and scalar curvatures of g. It is easy
to see

Ric(U,U) = −3
f ′′(t)

f(t)
= 3

f ′′(t)

f(t)
〈U,U〉c−2

Ric(U, X) = 0

Ric(X,Y ) =
[
2
(f ′(t)
f(t)

)2
+ 2

k

(f(t))2
+
f ′′(t)

f(t)

]
〈X,Y 〉c−2

R(g) = 6
[(f ′(t)

f(t)

)2
+

k

(f(t))2
+
f ′′(t)

f(t)

]
c−2.

The stress-energy tensor that corresponds to this metric can be found

using the Einstein equation: T = c4

8πG

[
Ric(g)− 1

2R(g)g + Λg
]
.

Exercise 2.29. Verify the following formulas.

T (U, X) = 0

T (X,Y ) = − c2

8πG

[(f ′(t)
f(t)

)2
+

k

(f(t))2
+ 2

f ′′(t)

f(t)
− Λc2

]
〈X,Y 〉

T (U,U) =
c4

8πG

[
3
(f ′(t)
f(t)

)2
+ 3

k

(f(t))2
− Λc2

]
.

We can try to identify this with a perfect fluid, which has stress tensor
T = c−2(ρ+ p)U[ ⊗ U[ + pg. For instance, T (U,U) = c2ρ, T (U, X) = 0 and
T (X,Y ) = p〈X,Y 〉. We can identify the stress-energy tensor of the warped
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product as that of a perfect fluid, with

ρ =
c2

8πG

[
3
(f ′(t)
f(t)

)2
+ 3

k

(f(t))2
− Λc2

]
=

c4

8πG

[
3
( f ′(t)
cf(t)

)2
+ 3

k

(cf(t))2
− Λ

]
p = − c2

8πG

[(f ′(t)
f(t)

)2
+

k

(f(t))2
+ 2

f ′′(t)

f(t)
− Λc2

]
=

c4

8πG

[
−
( f ′(t)
cf(t)

)2
− k

(cf(t))2
− 2

f ′′(t)

c2f(t)
+ Λ

]
.

Note that 4πG
c4

(ρ + 3p) − Λ = −3f
′′(t)
f(t) . It is also elementary to derive

the following equation from the above; it is basically the vanishing of the
t-component of divgT , and so expresses conservation of energy: ρ′(t) =

−3(ρ(t) + p(t))f
′(t)
f(t) .

Observe that in the case when f(t) is constant, for example in the Ein-
stein static universe, then the geometry of the spatial slices is not dynamic.
In this case, if Λ = 0, then ρ and p must have opposite signs, which is not
appealing in terms of standard physics.

The Friedmann cosmological models are the cases of the above that
correspond to dust models, so that p = 0, with f ′/f positive for some time
t0 ∈ I. This would model situations when the energy density dominates
pressure, as might be the present situation in the universe (but not, say,
near the Big Bang). When p = 0, we obtain the first-order linear equation

ρ′(t) + 3ρ(t)f
′(t)
f(t) = 0, so by integrating we obtain ρf3 is constant, say m.

Substituting into the equation for ρ above, we get the Friedmann equation

8πGm

3c2
· 1

f(t)
= (f ′(t))2 + k − 1

3
Λc2(f(t))2.

Note that there is a critical value of Λ for which one can achieve a static
model (constant f(t)) when p = 0, given by Λc2 = k3

(
4πGm
c2

)−2
.

We let Λ = 0 and A = 8πGm
3c2

, so that the equation becomes

A

f(t)
= (f ′(t))2 + k.

One can solve this for each possible sign of k. For k = 0, we get, assuming
f(t) > 0 and f ′(t) 6= 0,

√
f(t)f ′(t) = A0, so (f(t))3/2 = A0t + A1. If we

let f(t) = 0 at t = 0, we obtain f(t) = Ct2/3. This describes a universe
that expands from an initial Big Bang singularity (note that f ′(t)→ +∞ as
t → 0+). If k = 1, the solution graph can be written in parametrized form
as t = 1

2A(u − sinu), f = 1
2A(1 − cosu), which describes a cycloid. The

geometry here expands from f(0) = 0 to a maximum value, then recollapses
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at t = πA (u = 2π), the “Big Crunch.” Similarly, when k = −1, (f ′(t))2 =
1+ A

f(t)) > 1, so that f(t) keeps growing without bound, and the spatial slices

expand in size over time. We note that you can parametrize the solution
graph as t = 1

2A(sinhu− u), f = 1
2A(coshu− 1).

2.4.4. Schwarzschild space-time. Consider the vacuum Einstein equa-
tion Ric(g) = 0. This is a nonlinear system of second-order partial differen-
tial equations for the metric components. One can reduce this to a second-
order ordinary differential equation by imposting an Ansatz of spherical
symmetry. One can argue (Birkhoff’s Theorem, see Hawking-Ellis or Wald)
that there is a time-like Killing field orthogonal to the orbits of the isometry
group, and that the metric has the form (where gS2 is the unit round metric
on the two-sphere)

g = −f(r)dt2 + h(r)dr2 + r2gS2 .

By imposing the Einstein equations, one may compute to find d
dr (fh) =

0, by rescaling the t variable we can arrange fh = 1. We then would
find d

dr (rf) = 1. We can integrate to solve for f and h, and hence the

metric g. Then integrating the second equation we get f(r) = 1 − 2Gm
c2r

=

(h(r))−1. The notation for the constant of integration may seem odd, but
it turns out there is good reason to identify the constant m as the mass of
the space-time. Indeed, the metric can represent the gravitational field in
the exterior of a non-rotating spherically symmetric massive body, and in
the weak field regime (large r), the effect of the gravitational field on test
particles (ascertained by finding the geodesics in Schwarzschild) is roughly
that of a Newtonian gravitational field for a point mass m.

We let

ḡS = −(1− 2Gm

c2r
) c2 dt2 + (1− 2Gm

c2r
)−1 dr2 + r2gS2 .

For simplicity, we take units for which G = 1 and c = 1, so that

ḡS = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2gS2 .

It appears that the metric is singular at r = 2m and at r = 0. It turns out
the geometry can be extended past r = 2m, but that as r → 0+, the square
norm of the Riemann tensor blows up.

2.4.4.1. Kruskal-Szekeres coordinates. We fix a point on the sphere, and
study the light cones as r → 2m+. Null vectors of the form a ∂∂t + b ∂∂r must

satisfy a
b = ±(1 − 2m

r )−1, which approaches infinity as r → 2m. Thus the
light cones seem to be pinching in these coordinates. To see how the metric
is not ill-behaved at r = 2m, we use Kruskal-Szekeres coordinates, in which
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the light cones are better behaved. Define new coordinates for the t-r space
given by, for r > 2m,

u = (
r

2m
− 1)1/2e

r
4m cosh(

t

4m
)

v = (
r

2m
− 1)1/2e

r
4m sinh(

t

4m
),

while for r < 2m,

u = (1− r

2m
)1/2e

r
4m sinh(

t

4m
)

v = (1− r

2m
)1/2e

r
4m cosh(

t

4m
).

In either case, u2 − v2 = e
r

2m ( r
2m − 1), and the coordinates are singular at

r = 2m, which corresponds to u = v. We can convert the metric for r > 2m
using the formulas

du =
1

4m
e
r

4m (
r

2m
− 1)1/2 sinh(

t

4m
) dt+

1

4m
e
r

4m (
r

2m
− 1)−1/2 r

2m
cosh(

t

4m
) dr

dv =
1

4m
e
r

4m (
r

2m
− 1)1/2 cosh(

t

4m
) dt+

1

4m

√
u2 − v2(

r

2m
− 1)−1 r

2m
sinh(

t

4m
) dr.

Thus

dv2 − du2 =
1

(4m)2
e
r

2m (
r

2m
− 1) dt2 − 1

(4m)2
e
r

2m
r

2m
(1− 2m

r
)−1 dr2

=
1

(4m)2
e
r

2m
r

2m

[
(1− 2m

r
) dt2 − (1− 2m

r
)−1 dr2

]
where we used (1− 2m

r )−1 =
r

2m
r

2m
−1 . Thus we see

ḡS = −32m3

r
e−

r
2m (dv2 − du2) + r2gS2 .

This metric is not singular at r = 2m, which we see is a null hypersurface
(its normal vector is null). Moreover, the coordinate representation of the
light cones in these coordinates is uniform.

2.4.4.2. Isotropic coordinates. The spatial slice at constant t in the above
Schwarzschild metric are actually conformally flat. To see this, we just need
to perform a change in the radial variable, from r to r̃, with the change of
coordinate an increasing function. We have

(1− 2m

r
)−1dr2 + r2gS2 =

(
(1− 2m

r
)−1/2dr

dr̃

)2
dr̃2 +

(r
r̃

)2
r̃2gS2 .

We thus want to arrange

(1− 2m

r
)−1/2dr

dr̃
=
r

r̃
.
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This becomes
∫
dr̃
r̃ =

∫
dr√

r2−2mr
=
∫

dr√
(r−m)2−m2

. We can integrate this

with the substitution r −m = m coshw: w = log r̃ + C̃, so ew = Cr̃. Thus
r = m + m coshw = m + m

2 (Cr̃ + 1
Cr̃ ). Thus r

r̃ = mc
2 + m

r̃ + m
2cr̃2

. If we let
C = 2/m, then we get

r

r̃
=
(

1 +
m

2r̃

)2
.

Thus the Schwarzschild metric can also be written

ḡS = −
(1− m

2r̃ )2

(1 + m
2r̃ )2

dt2 +
(

1 +
m

2r̃

)4
(dr̃2 + r̃2gS2).

Of course the Euclidean metric gE on R3 is written in standard spherical
coordinates as gE = dr̃2 + r̃2 gS2 , so we see that the constant time slice is
conformally Euclidean.

2.4.5. The Kerr Metric. The Kerr family of metrics is a family of Ricci-
flat metrics that includes the Schwarzschild metrics, but allows for metrics
which do not have full spherical symmetry, but rather axisymmetry. Such
metrics model the exterior of a rotating gravitational object. We will write
down the metric in a certain coordinate system, the Boyer-Lindquist coor-
dinates. We let r, φ and θ be spherical coordinates on three-space. We will
use the mathematical convention that θ is the polar angle, whereas φ is the
angle between the position vector and the z-axis—-in most physics books,
the angle notation is reversed, so be careful when comparing. In any case,
the metric appears somewhat complicated, and depends on two parameters,
m and a. For simplicity, we use units where G = 1 and c = 1; in general,
we can replace “m” with “Gm/c2” and “dt” with “c dt” in what follows to
obtain the more general formulas.)

We let ∆ = r2−2mr+a2 and ρ2 = r2 +a2 cos2 φ. Then the Kerr metric
is given by

g = −
(

1− 2mr

ρ2

)
dt2 − a2mr sin2 φ

ρ2
(dt⊗ dθ + dθ ⊗ dt)(2.12)

+
(r2 + a2)2 − a2∆ sin2 φ

ρ2
sin2 φ dθ2 +

ρ2

∆
dr2 + ρ2 dφ2.(2.13)

This metric is stationary : ∂
∂t is a time-like Killing vector, but unlike with

the Schwarzschild solution, if a 6= 0, this Killing field is not orthogonal to
the constant t slices. The axisymmetry is apparent, as ∂

∂θ is also a Killing
vector. One can define suitably the angular momentum and show that it is
J = am in the z-direction. Note that when a = 0, the metric reduces to the
Schwarzschild metric.
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General relativity predicts that a rotating massive object will cause the
space-time around it to be “warped.” One such manifestation of this is the
frame dragging effect, which we illustrate in the Kerr metric.

Lemma 2.30. If X is a Killing field on (M, g), and if γ is a geodesic, then
〈X, γ′〉 is constant.

Proof. γ(τ) has constant speed, so 〈∇Xγ′, γ′〉 = 0. By the geodesic equa-
tion then, d

dτ 〈X, γ
′〉 = 〈∇γ′X, γ′〉 = gij(γ

k)′Xi
;k(γ

j)′ = Xj;k(γ
k)′(γj)′ =

Xk;j(γ
k)′(γj)′. We see this must vanish by applying the Killing equation

Xj;k +Xk;j = 0. �

First, consider in any space-time a time-like geodesic parametrized by
proper time τ , with velocity vector U(τ). In the Kerr metric, X = ∂

∂θ is a

Killing vector, so that by the preceding lemma, Uθ = 〈U, ∂∂θ 〉 is conserved
along the geodesic. One can see this directly from the geodesic equations
UαUα;β = 0, which can be written

dUβ
dτ

= ΓγαβU
αUγ =

1

2
gγν(gνβ,α + gαν,β − gαβ,ν)UαUγ

=
1

2
(gνβ,α + gαν,β − gαβ,ν)UαUν =

1

2
gαν,βUαUν .

Since the metric is independent of θ, then Uθ is conserved. If the geodesic
represents the path of a particle of rest mass m0, then Pθ = m0Uθ is a
component of the momentum one-form which is conserved.

Now consider a geodesic in Kerr with Uθ = 〈U, ∂∂θ 〉 = 0. Although

U remains orthogonal to ∂
∂θ , the fact that gtθ 6= 0 means that Uθ will be

non-zero. In fact, we have Ut = dt
dτ 6= 0 and Uθ = dθ

dτ . Thus

dθ

dt
=

Uθ

Ut
=
gθαUα
gtαUα

=
gθt

gtt
= − gθt

gθθ
=

2mra

(r2 + a2)2 − a2∆ sin2 φ
.

Although in the metric the trajectory is orthogonal to the direction of the
symmetry given by the Killing field ∂

∂θ , the coordinate description of the
motion the trajectory has a component in the θ-direction. Thus a freely
falling object seems to pick up some coordinate angular momentum in the
direction of rotation of the massive object, say, generating this gravitational
field (metric).





Chapter 3

The Einstein
Constraint Equations

3.1. Introduction

Many physical models admit an initial value formulation. In Newtonian me-
chanics, for instance, if we suppose the force is a function of the positions of
the various particles under observation, then Newton’s Second Law gives a
system of ordinary differential equations which in principle will yield the evo-
lution of the system once the initial positions and velocities of the particles
are specified. The wave and heat equations also admit initial value prob-
lems. Maxwell’s equations likewise admit an initial value formulation, but
unlike the previous examples, where the initial configuration is essentially
unconstrained, one cannot arbitrarily prescribe the electric and magnetic
field at t = 0, say, and hope to solve Maxwell’s equations. The reason is
that parts of Maxwell’s equations do not involve time derivatives: the spatial
divergence of B vanishes, as does that of E (in the source-free case). These
two divergence constraints place restrictions on the vector fields one can use
to prescribe initial data. As it turns out, these are the only constraints.

In this chapter, we discuss an initial value formulation for Einstein’s
equation. Geometrically, the initial data will be a three-manifold Σ, endowed
with a Riemannian metric g and symmetric (0, 2)-tensor K. That this three-
manifold embeds into a Lorentzian manifold (M, ḡ) satisfying the Einstein
equations, with induced metric g and second fundamental form K imposes
constraints on g and K. These are the Einstein constraint equations, the
study of solutions to which form an interesting and rich subject for geometric
analysis.

59
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3.1.1. Maxwell’s Equations. We briefly discuss the initial value prob-
lem for the source-free Maxwell equations on Minkowski space-time M4 =
(R4, η). For simplicity we take c = 1, so x0 = t. We saw that the Maxwell
equations can be written in terms of the Faraday tensor F , an antisym-
metric (2, 0)-tensor with corresponding two-form F [. In inertial coordinates

we write F [ = (E1dx
1 + E2dx

2 + E3dx
3) ∧ dx0 + (B1dx

2 ∧ dx3 + B2dx
3 ∧

dx1 + B3dx
1 ∧ dx2). Maxwell’s equations can then be written divηF = 0,

dF [ = 0. From the second equation and the Poincaré Lemma, we can write
F [ = dA for a one-form A = Aµdx

µ, well-defined up to a gauge function φ:

F [ = d(A + dφ) for any smooth φ. If ~∇ is the spatial (Euclidean) gradient
operator, and if we let A = A1

∂
∂x1

+ A2
∂
∂x2

+ A3
∂
∂x3

, then we can identify

B = ~∇ ×A, while E = ~∇A0 − ∂A
∂t . Note that the spatial divergence van-

ishes automatically: ~∇ · B = 0. The spatial divergence of E is given by
~∇ · E = ∆A0 − ~∇ · ∂A∂t = 0, where ∆ is the Euclidean Laplacian on R3.

As it turns out, this equation is equivalent to (divηF )0 = F 0ν
;ν = 0. Now,

Maxwell’s equations should be second order in A, but this one component
only has first derivatives of A in it. This component of Maxwell’s equations,
equivalent to the vanishing of the spatial divergence of E, must be satisfied
by the initial data. This imposes a constraint on the data.

To formulate a second-order initial value problem for A, we can use the
gauge freedom in A. The Lorentz gauge condition imposes precisely that

0 = divηA = −∂A0
∂t + ~∇ ·A. Clearly, Maxwell’s equations are equivalent to

�A = −∂2Aµ
∂t2

+ ∆Aµ = 0, along with the Lorentz gauge condition.

Exercise 3.1. Verify this last claim. While you’re at it, show that ~∇·E = 0

is equivalent to (divηF )0 = F 0ν
;ν = 0. Use the fact that Fµν = ∂Aν

∂xµ −
∂Aµ
∂xν .

Let’s now proceed. We specify initial data Aµ and
∂Aµ
∂t at t = 0. We can

actually arrange the Lorentz gauge condition at t = 0 by adding dφ to A, for
a function φ depending only on (x1, x2, x3); this involves solving a Poisson
equation on R3, and we assume we are working in function spaces where
we can solve this equation (for instance, where the fields decay sufficiently
near infinity), and similar comments apply in the remainder of this section.
This effects Aµ at t = 0 by a gauge transformation, but it doesn’t change
the time derivative at t = 0. We now solve the wave equation �Aµ = 0. We
will have produced a solution to Maxwell’s equations, provided we can show
that the gauge condition is propagated in time. How do we do this? We

haven’t yet incorporated the constraint. In fact, the condition ~∇ · E = 0,

i.e. ∆A0 − ~∇ · ∂A∂t = 0 at t = 0, together with the wave equation for A0,

yields ∂
∂t

∣∣∣
t=0

(divηA) = 0. Now, the wave equation for each Aµ also implies

�(divηA) = 0. The gauge condition at t = 0 together with the constraint
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~∇ · E = 0 implies that divηA satisfies the wave equation with zero initial
data. Thus divηA = 0 for all t, and the gauge condition propagates in time.

We can also formulate the initial value problem in terms of E and B,
with the constraints that the spatial divergences vanish. We can proceed by
re-writing the problem in the above form. Namely, we solve for A as above,

where the initial data for A is as follows: A0 = 0, ~∇×A = B (possible to

find A since ~∇ ·B = 0 at t = 0; at t = 0, set ∂A
∂t = −E, and for the Lorentz

gauge condition, we take ∂A0
∂t = ~∇ ·A at t = 0. We can now solve as above

to produce solutions to the Maxwell equations with given initial electric and
magnetic fields.

We can use a different gauge condition as well. The source-free Maxwell’s
equations imply vector wave equations for E and B. We can thus solve for
E in time using the initial values for E as well as imposing the Maxwell

equation ∂E
∂t = ~∇ × B at t = 0. The vector wave equation for E implies

~∇ · E solves the wave equation. Moreover, ∂
∂t(

~∇ · E) = ~∇ · (~∇ × B) = 0

at t = 0, and thus the constraint ~∇ · E = 0 propagates in time. To handle

the other constraint, we solve for A at t = 0 so that B = ~∇×A. We take
A0 = 0. The evolution of A is then given by ∂A

∂t = −E. From this and the

definition B = ~∇×A, we obtain the Maxwell equation ∂B
∂t = −~∇×E. We

now have

∂

∂t

(
∂E

∂t
− ~∇×B

)
=
∂2E

∂t2
− ~∇×

(
~∇× ∂A

∂t

)
=
∂2E

∂t2
+ ~∇× (~∇×E)

=
∂2E

∂t2
+ ~∇(~∇ ·E)−∆E = 0

by the wave equation for E and the constraint ~∇·E = 0. From the propaga-

tion of the constraint, we see that ~∇·A is constant in time. We can replace

A by A + ~∇φ for a suitable time-independent φ to arrange ~∇ · A = 0 at
t = 0, and hence for all time. This is the Coulomb gauge.

3.1.2. The Gauss and Codazzi Equations. Assume Σk is a submanifold
of (Mn, ḡ) on which ḡ induces a metric g (Riemannian or Lorentzian) on Σ.
We let ḡ(X,Y ) = 〈X,Y 〉.

Example 3.2. Consider the forward light cone minus the origin Σ+ =
{x0, x1, x2, x3) : x0 =

√
(x1)2 + (x2)2 + (x3)2} ⊂ M4. Consider a point p

in this submanifold at which y = 0 = z. Then the tangent space TpΣ
+ is

spanned by
{

∂
∂x0
± ∂

∂x1
, ∂
∂x2

, ∂
∂x3

}
. Note that ∂

∂x0
± ∂

∂x1
is orthogonal to all

of TpΣ
+, and so the Minkowski metric does not induce a metric on Σ+.
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We can decompose the tangent bundle of M into the direct sum of the
tangent and normal bundles of Σ: TM = TΣ⊕NΣ. It is not hard to show
that the Levi-Civita connection ∇Σ from the induced metric on Σ satisfies,
for smooth vector fields X and Y tangent to Σ,

∇XY = ∇Σ
XY + II(X,Y )

where ∇Σ
XY is tangent to Σ, and II(X,Y ) is normal to Σ.

Lemma 3.3. Suppose Σ ⊂M is a Lorentzian or Riemannian submanifold.
For any vector fields X, Y tangent to Σ, the induced Levi-Civita connection
∇Σ
XY is the tangential projection of ∇XY , while II(X,Y ) is tensorial in X

and Y , and is symmetric.

Proof. We define ∇Σ
XY as the tangential component of ∇XY , and we show

it satisfies the defining properties of the Levi-Civita connection. Clearly ∇Σ

is torsion-free, since ∇XY − ∇YX = [X,Y ], which is tangential to Σ; this
latter equation also implies that II(X,Y ) = II(Y,X). Clearly ∇Σ

XY is C∞-
linear in X, R-linear in Y , since∇XY has these properties. Since∇X(fY ) =
X(f)Y + f∇XY , and X(f)Y is tangential to Σ, by taking projections we
get the corresponding equation for ∇Σ. Finally, the preceding equation also
implies that II(X,Y ) is C∞-linear in Y , and hence by symmetry in X as
well. �

Definition 3.4. The tensor II is the (vector-valued) second fundamental

form. The mean curvature vector field is H = trgII =
k∑
i=1

εiII(Ei, Ei), where

{E1, . . . , Ek} is an orthonormal basis of TpΣ with εi = 〈Ei, Ei〉. The scalar-
valued second fundamental form with respect to the unit normal vector n is
given by K(X,Y ) = 〈II(X,Y ), n〉, and the respective mean curvature H is
the trace: H = trgK.

In the case of a hypersurface, we let ε = 〈n, n〉 = ±1, and II(X,Y ) =
εK(X,Y )n, while H = εHn.

We begin by reviewing the proof of the Gauss equation, which relates
the curvature of the submanifold to the ambient curvature and the second
fundamental form.

Proposition 3.5. Suppose Σ is a submanifold of (M, g). For any X,Y, Z,W ∈
TpΣ, then we have

〈RΣ(X,Y, Z),W 〉 = 〈R(X,Y, Z),W 〉 − 〈II(X,Z), II(Y,W )〉
+ 〈II(X,W ), II(Y, Z)〉.(3.1)
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Proof. We decompose the following into tangential and normal compo-
nents, and discard inner products between any tangential and normal vec-
tors. We also note that if X and Y are tangential and N is normal, then
∇X〈Y,N〉 = 0, which is equivalent to 〈∇XY,N〉 = −〈Y,∇XN〉.

〈R(X,Y, Z),W 〉 = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W 〉

= 〈∇X(∇Σ
Y Z + II(Y, Z))−∇Y (∇Σ

XZ + II(X,Z))−∇Σ
[X,Y ]Z,W 〉

= 〈∇Σ
X∇Σ

Y Z + II(X,∇Σ
Y Z) +∇X(II(Y,Z))

−∇Σ
Y∇Σ

XZ − II(Y,∇Σ
XZ)−∇Y (II(X,Z))−∇Σ

[X,Y ]Z,W 〉

= 〈RΣ(X,Y, Z),W 〉 − 〈II(Y,Z),∇XW 〉+ 〈II(X,Z),∇YW 〉

= 〈RΣ(X,Y, Z),W 〉 − 〈II(Y,Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉.

The last equation followed by decomposing ∇XW and ∇YW into tangential
and normal components. �

To derive the Einstein constraint equations, we will use the Einstein
equation, together with the Gauss equation, and the Codazzi equation,
which we present now. We first define the normal connection ∇⊥ in the
normal bundle NΣ as follows: for V tangent to Σ and Z a normal vector
field to Σ, we define ∇⊥V Z to be the normal component of ∇V Z. We can
use this connection (and impose a product rule) to differentiate tensors with
values in the normal bundle, in particular the second fundamental form: for
V , X and Y tangent to Σ,

(∇V II)(X,Y ) := ∇⊥V (II(X,Y ))− II(∇Σ
VX,Y )− II(X,∇Σ

V Y ).

For X, Y and Z tangent to Σ, let R⊥(X,Y, Z) be the normal component of
R(X,Y, Z).

Proposition 3.6. For X, Y and Z tangent to Σ,

(3.2) R⊥(X,Y, Z) = (∇XII)(Y, Z)− (∇Y II)(X,Z).

Proof. As in the proof of the Gauss equation, we decompose the curvature
tensor:

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∇Σ
Y Z + II(Y,Z))−∇Y (∇Σ

XZ + II(X,Z))−∇[X,Y ]Z.
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Thus by taking the normal component we have, using [X,Y ] = ∇Σ
XY −∇Σ

YX,

R⊥(X,Y, Z) = II(X,∇Σ
Y Z) +∇⊥X(II(Y,Z))

− II(Y,∇Σ
XZ)−∇⊥Y (II(X,Z))− II([X,Y ], Z)

= II(X,∇Σ
Y Z) +∇⊥X(II(Y,Z))

− II(Y,∇Σ
XZ)−∇⊥Y (II(X,Z))− II(∇Σ

XY, Z) + II(∇Σ
YX,Z)

= (∇XII)(Y, Z)− (∇Y II)(X,Z).

�

3.2. The Einstein Constraint Equations

Suppose (M, ḡ) is Lorentzian, and Σ ⊂ M is a k-dimensional space-like
hypersurface, i.e. the induced metric g on Σ is Riemannian. Let n be a
(local) time-like unit vector field to Σ. We let T be a symmetric (0, 2)-tensor
and assume that (M, ḡ) satisfies the Einstein equation GΛ(ḡ) = κT . We let
J = (−T (n, ·))], so that Jν = −Tµνnµ. We write J = ρn + J ], where J ] is
tangent to Σ. Then ρ = T (n, n) = T00, and if E1, . . . , Ek, is a local frame for

TΣ (and we let E0 = n to complete the indexing), we write J ] =
k∑
i=1

J iEi,

with −Tµjnµ = −T0j = −T (n,Ej) =
k∑
i=1

J igij = Jj , j ≥ 1. Note that

J i =
k∑
j=1

gijJj = −T iµnµ = T i0, i ≥ 1. Then ρ is the energy density of the

matter fields as measured by the observer with four-velocity cn, and J is
(c times) the corresponding momentum density one-form. We note if n is
future-pointing, then the Dominant Energy Condition (J is future-pointing

causal) implies ρ ≥ |J |g =

√
k∑
i=1

J iJi.

Theorem 3.7. The following system of equations must hold on Σ.

R(g)− ‖K‖2g +H2 =
16πG

c4
ρ+ 2Λ = 2κρ+ 2Λ(3.3)

divgK − d(trgK) =
8πG

c4
J = κJ.(3.4)
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Proof. Let E1, . . . , Ek be a local orthonormal frame field for Σ. We first
apply the Gauss equation:

k∑
i,j=1

〈R(Ei, Ej , Ej), Ei〉 =

k∑
i,j=1

[
〈RΣ(Ei, Ej , Ej), Ei〉 − 〈II(Ej , Ej), II(Ei, Ei)〉

+ 〈II(Ei, Ej), II(Ei, Ej)〉
]

= R(g)− ‖K‖2g +H2.

Because 〈n, n〉 = −1, we have for i ≥ 1,

Ric(Ei, Ei) = −〈R(n,Ei, Ei), n〉+
k∑
j=1

〈R(Ei, Ej , Ej), Ei〉,

so that with the Einstein tensor G(ḡ) = Ric(ḡ)− 1
2R(ḡ)ḡ,

k∑
i,j=1

〈R(Ei, Ej , Ej), Ei〉 = Ric(n, n) +
3∑
i=1

Ric(Ei, Ei)

= R(ḡ) + 2Ric(n, n) = 2G(n, n)

= (−2Λḡ + κT )(n, n) = 2Λ + 2κρ

For (3.4), we apply the Codazzi equation (3.2). For any W tangent to
Σ,

k∑
i=1

R⊥(W,Ei, Ei) =
k∑
i=1

−(∇EiII)(W,Ei) + (∇W II)(Ei, Ei).

Since 〈R(n,W, n), n〉 = 0 and 〈R⊥(W,Ei, Ei), n〉 = 〈R(W,Ei, Ei), n〉, the
above becomes

Ric(W,n) =
k∑
i=1

〈−(∇EiII)(W,Ei) + (∇W II)(Ei, Ei), n〉.

We evaluate the right-hand side first. Each term can be re-written in terms
of K, starting with the first term:

−(∇EiII)(W,Ei) = −
[
∇⊥Ei(II(W,Ei))− II(∇Σ

EiW,Ei)− II(W,∇Σ
EiEi)

]
= ∇⊥Ei(K(W,Ei)n)−K(∇Σ

EiW,Ei)n−K(W,∇Σ
EiEi)n

= ∇Ei(K(W,Ei))n−K(∇Σ
EiW,Ei)n−K(W,∇Σ

EiEi)n

where we used the fact that 〈∇Ein, n〉 = 0. Summing we obtain

k∑
i=1

−(∇EiII)(W,Ei) = ((divgK)(W ))n.
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For the second term, we may assume that we are computing in normal
coordinates for (Σ, g) at p ∈ Σ, and that {E1, E2, E3} is the coordinate
frame. In particular, at p we have ∇Σ

WEi = 0 for all i ≥ 1 and all W ∈
TpΣ. Since the Christoffel symbols vanish at p, we also have d(trgK)

∣∣∣
p

=

d

[
k∑
i=1

K(Ei, Ei)

] ∣∣∣
p
. Using this, and again using 〈∇Wn, n〉 = 0, we obtain

at p

k∑
i=1

(∇W II)(Ei, Ei) =

k∑
i=1

(
∇⊥W (II(Ei, Ei))− 2II(∇Σ

WEi, Ei)
)

=

k∑
i=1

∇⊥W (II(Ei, Ei))

= −(d(trgK)(W ))n.

Thus we obtain Ric(W,n) = − ((divgK)− d(trgK)) (W ). If we apply the
Einstein equation, then since ḡ(W,n) = 0, we obtain Ric(W,n) = κT (W,n) =
−κJ(W ), as desired. �

We make some remarks on these equations. Note that the constraints
come from imposing GΛ(ḡ)(n, ·) = κT (n, ·), and as we saw above (and will
see more precisely below), this does not involve second time derivatives of
the metric. The time-symmetric, or Riemannian, case of the constraints is
the case K = 0. In this case, (3.3) reduces to R(g) = κρ + 2Λ. In case
Λ = 0, then, the scalar curvature R(g) is proportional to the energy density,
and R(g) ≥ 0 if and only if ρ ≥ 0. The maximal case is H = 0, so that
R(g) = ‖K‖2g + κρ + 2Λ ≥ κρ + 2Λ. In the vacuum case (T = 0), then the
time-symmetric constraints reduce to R(g) = 2Λ, and in the maximal case
we have R(g) ≥ 2Λ; we often consider Λ = 0, which highlights the conditions
of zero or nonnegative scalar curvature of (Σ, g).

3.3. The Initial Value Formulation for the Vacuum Einstein
Equation

In this section we discuss aspects of the analysis and geometry of the initial
value formulation for Ric(ḡ) = 0, or more generally GΛ(ḡ) = 0. We will
follow the approach of the foundational work of Choquet-Bruhat. The pur-
pose of this section is to illustrate the ideas; to be mathematically precise,
we should specify function spaces and state carefully the relevant partial
differential equations results that are in play here. We won’t do this, but
refer the reader to the text General Relativity and the Einstein Equations
by Yvonne Choquet-Bruhat.
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3.3.1. Einstein’s equation in the harmonic gauge. In order to formu-
late the initial value problem as a nonlinear wave equation, we express the
Einstein equations in terms of a partial differential equation along with a
gauge condition, as we did for Maxwell’s equations above. The gauge choice
we use is the choice of coordinates. In fact, we will use harmonic coordinates,
or in the Lorentzian case, wave coordinates xα, which are coordinates so that
λα := �ḡx

α = 0. On any Lorentzian manifold we can locally set up wave
coordinates: given any local coordinates yµ, we solve the Cauchy problem
for the linear wave equations �ḡx

µ = 0 with initial conditions xµ = yµ and

∇nxµ = ∇nyµ impose on a level surface of y0 ( ∂
∂y0

is time-like), where n is

the unit normal to the level surface.

Let Γkij = 1
2 ḡ
km(ḡim,j + ḡjm,i − ḡij,m) be the Christoffel symbols for ḡ in

a coordinate system. It’s easy to see

λα = �ḡx
α = ḡijxα;ij = ḡij(−Γkijx

α
,k) = −ḡijΓαij .

In what follows we will write “A ∼ B” to mean A − B is a function
of the components ḡij and ḡij,k; in particular, A − B does not depend on
second derivatives of the metric components. For example,

−(ḡαiλ
α
,j + ḡαjλ

α
,i) ∼ ḡαiḡkmΓαkm,j + ḡαj ḡ

kmΓαkm,i.

Exercise 3.8. Show that

1

2
(ḡαiλ

α
,j + ḡαjλ

α
,i) ∼ −

1

2
ḡkm(ḡki,mj + ḡjm,ki − ḡkm,ij).(3.5)

Now the components of the Ricci curvature of ḡ are given by

Rij = Γkij,k − Γkik,j + Γkk`Γ
`
ij − Γkj`Γ

`
ik ∼ Γkij,k − Γkik,j .

Moreover,

Γkij,k − Γkik,j ∼
1

2
ḡkm[(ḡim,jk + ḡjm,ik − ḡij,mk)− (ḡim,kj + ḡkm,ij − ḡik,mj)]

=
1

2
ḡkm(ḡjm,ik − ḡij,mk − ḡkm,ij + ḡik,mj).

From this equation together with (3.5), we see

RHµν := Rµν +
1

2
(ḡαµλ

α
,ν + ḡανλ

α
,µ) ∼ −1

2
ḡmkḡµν,mk.

We let RH = ḡµνRHµν and (GHΛ (ḡ))µν = RHµν − 1
2R

H ḡµν + Λḡµν , and we

consider the reduced Einstein equation GHΛ (ḡ) = 0, which can be formulated
as a system of quasi-linear wave equations:

−1

2
ḡαβ ḡµν,αβ + Ψµν((ḡij), (ḡij,k)) = 0.(3.6)
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A solution to (3.6) will solve the Einstein equation if we can arrange λα = 0
for all α. From the seminal work of Leray, along with a rescaling argument
(see Wald, Ch. 10), we know we can solve a system like (3.6) for small time.

3.3.2. The Einstein constraints and the propagation of the gauge
condition. Suppose we are given a solution (Σ, g,K) of the Einstein con-
straint equations for GΛ(ḡ) = 0. We prescribe initial data for (3.6). Choose
local coordinates xi (i ≥ 1) on U ⊂ Σ. We will construct a solution on the
product of an interval (the x0 = t interval) and U . For µ, ν ≥ 1, let the
initial date be given by ḡµν = gµν , and ḡµν,0 = −2Kµν . We also let ḡ00 = −1
and for µ ≥ 1, ḡ0µ = 0. For µ ≥ 0, we will choose the initial values of ḡ0µ,0

to arrange the gauge condition, as we explain.

Now using the formula we derived earlier for the derivative of a deter-
minant, we see

λα =
1√
|det ḡ|

(
√
| det ḡ| ḡβγxα,γ),β = ḡβα,β +

1

2
ḡβαḡρσ ḡρσ,β.

We get at t = 0,

λ0 = ḡ00
,0 +

1

2
ḡ00ḡρσ ḡρσ,0 = −1

2
ḡ00,0 −

1

2

∑
i,j≥1

ḡij ḡij,0(3.7)

and for i ≥ 1, we have at t = 0,

λi = ḡ0i
,0 +

∑
j≥1

(
ḡji,j +

1

2
ḡjiḡρσ ḡρσ,j

)
= ḡ0i,0 +

∑
j≥1

(
ḡji,j +

1

2
ḡjiḡρσ ḡρσ,j

)
.

(3.8)

Note that the summation in (3.8) only involves spatial derivatives, so we see

we can choose ḡ0i,0 at t = 0 to arrange λi
∣∣∣
t=0

= 0 for i ≥ 1. We can also

clearly use (3.7) to determine ḡ00,0 at t = 0 in order that λ0
∣∣∣
t=0

= 0 as well.

Now that we’ve specified all the Cauchy data, we can use standard theory
to obtain a solution ḡµν to (3.6). The question now is how to guarantee
that λα = 0 propagates in time. As we will see, a homogeneous linear
wave equation for λα is a consequence of the Bianchi identities, while the
Einstein constraints will show that the initial time derivative of λα vanishes.
Together with the preceding paragraph, this will allow us to conclude that
the gauge conditions that we have arranged at t = 0 propagate in time.

We begin with the following simple exercise.

Exercise 3.9. Assuming GHΛ (ḡ) = 0, show that

(GΛ(ḡ))µν = Rµν −
1

2
R(ḡ)ḡµν + Λḡµν = −1

2
ḡαµλ

α
,ν −

1

2
ḡανλ

α
,µ +

1

2
ḡµνλ

α
,α.
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The vacuum constraints that are satisfied are precisely (GΛ(ḡ))µνn
ν = 0

for µ ≥ 0, or in our set up, (GΛ(ḡ))µ0 = 0 at t = 0. Note that by our
arrangement of the gauge condition at t = 0, λµ,i = 0 for i ≥ 1 and all µ.

The component of the vacuum constraint for µ = 0 (at t = 0) is just (using
the preceding remark)

0 = −1

2
ḡα0λ

α
,0 −

1

2
ḡα0λ

α
,0 +

1

2
ḡ00λ

α
,α =

1

2
λ0
,0.

For µ = i ≥ 1, we have at t = 0 (again using the vanishing of the spatial
derivatives of λµ, and the initial condition on the metric)

0 = −1

2
ḡαiλ

α
,0 −

1

2
ḡα0λ

α
,i +

1

2
ḡi0λ

α
,α = −1

2

∑
j≥1

gjiλ
j
,0

Since this is true for i ≥ 1 and the matrix (gij) is invertible, we have λi,0
must vanish as well at t = 0.

Exercise 3.10. Use the preceding exercise to show that for a solution of
(3.6), the vanishing of the divergence of GΛ(ḡ) is equivalent to

0 = −1

2
ḡαν�ḡλ

α +Bθ
νγ (((ḡ)ρσ), (ḡρσ,β))λγ,θ.

From this exercise we see that the partials of λα satisfy a homogeneous
linear hyperbolic system with vanishing initial data. Thus λα vanish identi-
cally.

What we’ve discussed here is a local construction. We would like to
say we can patch overlapping local solutions together, essentially proving
a uniqueness result. Suppose U ⊂ Σ corresponds to the common inter-
section of two such patches, and that V1 and V2 are the corresponding
space-times generated by solving the initial-value problem as above. The
Cauchy data both agree with that coming from (U, g,K). It is not so hard
(cf. Choquet-Bruhat’s book, for example) to argue that there are diffemor-
phisms fi : U → Ui ⊂ Vi which yield wave coordinates, and in which the the
Cauchy data ḡµν and ḡµν,0 at t = 0 agree, where these are the components in
these wave charts. Indeed one can find coordinates that yield the agreement
of the Cauchy data components; one can modify (as we noted above) the
coordinates to wave coordinates, by using the values of the coordinates and
their time derivatives at t = 0 for the wave equation. We’ll then have under
pullback to U two solutions of the reduced Einstein equations in wave gauge,
with the same initial data. Uniqueness for the Cauchy problem for the re-
duced Einstein equation in the harmonic gauge shows that the solutions
must agree.
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3.3.3. Geometry of the evolution. Consider a Lorentzian manifold (I×
Σ, ḡ), where I is an interval, around 0, say, and where the slices Σt = {t}×Σ
are space-like. We let g = g(t) be the induced metric on Σt. Let n be normal
to the slices, parallel to the space-time gradient of t, pointing in the same
time direction as ∂

∂t = Nn+X, where X is tangent to the slice, and N > 0.
N is the lapse function, and X is the shift vector field. We can write the
metric in local coordinates xi, i = 1, 2, 3, for Σ as ḡ as

ḡ = −N2 dt2 + gij(dx
i +Xi dt)⊗ (dxj +Xj dt)(3.9)

Also note that the Einstein summation convention here and in this section
will be over the spatial indices from 1 to 3.

The first and second fundamental forms of the slices form a family of
solutions to the Einstein constraint equations. In our discussion of solving
the Einstein equations from initial data, we chose N = 1 and X = 0 on
the initial slice. One can view the solution of the initial value problem as
determining a lapse and shift for a space-time splitting. It is also possible (by
work of Choquet-Bruhat) to formulate the evolution equations by suitably
prescribing N and X, and then solving for the induced metric and second
fundamental forms of the slices. Given N and X, we indicate here the
evolution equations of these geometric quantities on the slices.

With our convention on K, we have ∇XY = ∇Σ
XY −K(X,Y )n, where

X and Y are tangent to a slice. We suppress the “t” subscript on Σt.

We compute the time derivative of the induced metric. Let ei = ∂
∂xi

be

a coordinate frame for Σ, and let e0 = ∂
∂t . Using metric compatibility, the

torsion-free property of the connection, and the fact that all the eµ commute,
we have

∂gij
∂t

= ḡ(∇eie0, ej) + ḡ(ei,∇eje0)

= ḡ(∇ei(Nx+X), ej) + ḡ(ei,∇ej (Nn+X))

= Nḡ(∇ein, ej) +Nḡ(ei,∇ejn) + ḡ(∇eiX, ej) + ḡ(ei,∇ejX)

= −2NKij + g(∇Σ
eiX, ej) + g(ei,∇Σ

ejX)

= −2NKij + (LXg)ij

where LXg is the Lie derivative, and it is not hard to show (LXg)ij = Xi;j +
Xj;i, where the semi-colon indicates covariant differentiation for the Levi-
Civita connection of g. Note that we can solve for the second fundamental

form: Kij = −1
2N
−1
(
∂gij
∂t − (LXg)ij

)
.

A more laborious exercise determines the time evolution of K.
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Exercise 3.11. Show that
∂Kij

∂t
= −N;ij + (LXK)ij −N(Rij −RΣ

ij + 2K`
iKj` −K`

`Kij)

where Rij are components of Ric(ḡ), and RΣ
ij are components of Ric(g),

and (LXK)(Y,Z) = X(K(Y,Z)) − K([X,Y ], Z) − K(Y, [X,Z]) is the Lie
derivative of K.




