
2013 Graduate Mini-Course, NTU
Scalar curvature and the Einstein constraint equations

Exercises

We use the Einstein summation convention to sum over a pair of upper and lower repeated indices.
Our convention for the Riemann curvature tensor agrees with that of John M. Lee’s book, for
instance (but is opposite in sign from that used in DoCarmo or O’Neill)—also watch the index
convention:

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z
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From the definition of curvature, we immediately get the vector field version of the Ricci formula:
Zi;jk − Zi;kj = Z`Rikj`. The Ricci tensor in DoCarmo and Lee agree, which means the way they are
defined from the Riemann tensor is slightly different to account for sign. In our convention,
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Also, recall that a comma in a subscript denotes partial differentiation (with respect to some
coordinate), whereas a semicolon in a subscript denotes covariant differentiation. For example, if
T is a (1, 2)-tensor with components T ijk in a coordinate chart, then the covariant derivative ∇T
is a (1, 3)-tensor with components

T ijk;` := ∇T
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where we recall the Christoffel symbols for the Levi-Civita connection are given by

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
, Γkij =

1

2
gkm (gim,j + gjm,i − gij,m) .

Please let us know if you think there is a typo or sign error!

Elementary warmup problems (you can skip to the next section if you’ve seen these).

Problem 1. If (M, g) is a Riemannian metric with Levi-Civita connection ∇. The Hessian of u
is defined by Hessgu = ∇(du), and as such it is a (0, 2)-tensor. The Laplacian is the trace of the
Hessian: ∆gu = trg(Hessgu).

a. Show that Hessgu(X,Y ) = Y [X[u]]−∇YX[u], where X[u] = du(X) is the directional derivative
of u in the direction X. Conclude that the Hessian is symmetric.

b. Let det g = det(gij). Show that ∆gu = 1√
det g

∂
∂xi

(
gij
√

det g ∂u
∂xj

)
.

c. Suppose ∆gu = −λu for some nontrivial (smooth) function u on a closed (compact, empty
boundary) Riemannian manifold (M, g). Show that λ ≥ 0. In case λ = 0, what is u?



d. If ∇ and ∇̂ are two connections on M . Show that S(X,Y ) = ∇XY − ∇̂XY is tensorial in both
X and Y (i.e. it is C∞-linear in X and Y ).

e. Prove the Ricci formula: if α is a one-form, then αi;jk − αi;kj = α`R
`
jki.

f. Use the Ricci formula to prove the following, for smooth functions u, where gradgu is the vector
metrically equivalent to du, i.e. du(X) = g(gradgu,X):

g(gradg(∆gu),∇u) + |Hessgu|2g + Ricg(gradgu, gradgu) =
1

2
∆g(|gradgu|2g).

Not-so-elementary warmup problems. The following formulas in the next two problems are
essential. Those of you who haven’t derived these should do so as soon as you can. You’ll go
through at least three Starbucks lattés while doing so, depending on how good you are at tensor
calculations, and whether you ordered a grande or venti size. You could also accept these for now,
and move on to the next section.

Problem 2. Linearization of Scalar Curvature. Let R(g) = gijRij be the scalar curvature
of a metric (not necessarily Riemannian). Consider a variation g(t) = g + th of g in the direction
of a symmetric (0, 2)-tensor h (more generally, note that all you will use is that g(t) is smooth in t,

with g(0) = g and g′(0) = h). For small t, g(t) is a metric. Define Lg(h) := DRg(h) = d
dt

∣∣∣
t=0

R(g(t)).

Derive the scalar curvature formula

R(g) = gijRij = gij
(

Γkij,k − Γkik,j + Γkk`Γ
`
ij − Γkj`Γ

`
ik

)
and use it to verify the identity

Lg(h) = −∆g(trg(h)) + divg(divg(h))− 〈h,Ric(g)〉g.

Hints: One approach is to compute in normal coordinates at a point p, so that gij(p) = δij , as well
as Γkij(p) = 0, equivalently, gij,k(p) = 0. Indicated below are some formulas to guide you, and which
you should verify as you compute. We emphasize here and below that all quantities are evaluated
at p. In such normal coordinates, we have at p: hij;k` = hij,k`−hmjΓmik,`−himΓmjk,`. From this, one
shows that at p,

−∆g(trg(h)) = −gk`gijhij;k` = −
∑
i,k

(hii,kk − 2hkmΓmik,i)

divg(divg(h)) = gj`gikhij;k` =
∑
i,k

(hik,ik − hkmΓmii,k − hkmΓmik,i).

To find the variation of the scalar curvature, express the scalar curvature in terms of Christoffel
symbols, and take a time derivative, and expand. Recall that if A(t) is a smooth curve in GL(n),
then d

dtA
−1(t) is easily computed from A(t)A−1(t) = I using the product rule.

Another approach is to note that d
dt

∣∣∣
t=0

Γkij are the components (δΓ)kij of a tensor δΓ (this follows

from #1d on the above set of elementary problems), so that clearly the variation of the Ricci tensor

is given by d
dt

∣∣∣
t=0

Rij = (δΓ)kij;k − (δΓ)kik;j . One should now express δΓ in terms of the covariant

derivative of h.



Problem 3. Conformal deformation of scalar curvature.

a. Suppose (Mn, g) is a Riemannian metric and g̃ = eϕg. Show that

R(g̃) = e−ϕ
(
R(g)− (n− 1)∆gϕ−

1

4
(n− 1)(n− 2)|∇ϕ|2g

)
.

b. In case n ≥ 3, if we write eϕ = u
4

n−2 for u > 0, then

R(g̃) = −4(n− 1)

n− 2
u−

n+2
n−2

(
∆gu−

n− 2

4(n− 1)
R(g)u

)
.

c. Let c(n) = n−2
4(n−1) and Lgu = ∆gu− c(n)R(g)u is the conformal Laplacian, show that the total

scalar curvature of g̃ = u
4

n−2 g is given by∫
M
R(g̃) dvg̃ = c(n)−1

∫
M

(
|∇u|2g + c(n)R(g)u2

)
dvg.

Hint: Show that dvg̃ = u
2n
n−2 dvg.

Problems I.

Problem 4. Consider the following metric with corners on R3 (refer to Professor Miao’s first
lecture): for m 6= 0, let

gij(x) =

λ
4δij , |x| ≤ |m|(
1 + m

2|x|

)4
δij , |x| ≥ |m|

,

where λ = 1 + m
2|m| > 0. Let n = λ−2 ∂

∂r , where r = |x| is the Euclidean distance, be the g-unit

outward normal pointing to the boundary of the ball B = {x : |x| ≤ m}. Let ∇λ be the con-

nection on R3 for the metric (gλ)ij = λ4δij , and let ∇m be the connection for
(

1 + m
2|x|

)4
δij on

{x : |x| > |m|
2 }. Let E1, E2 be a local orthonormal frame for ∂B with respect to either metric (they

agree on ∂B). The mean curvature H− is defined as
2∑
i=1

g(∇λEi
n,Ei), and H+ =

2∑
i=1

g(∇mEi
n,Ei).

Can you compare H− and H+? How does it depend on the sign of m?

Problem 5. Suppose ν is a smooth unit normal field to a hypersurface Σ ⊂ (Mn, g), and that
Sp(X) = (∇Xν)p ∈ TpΣ is the corresponding shape operator. We note that given coordinates for
the hypersurface Σ, x′ = (x1, . . . , xn−1) 7→ p(x′) ∈ Σ, we let (x1, . . . , xn) 7→ expp(x′)(x

nν) ∈M . It’s

not hard to show that this map gives local coordinates for M , and that along Σ, ∂
∂xn = ν.

a. Prove the Riccati equation ∇νS + S2 = −R(·, ν, ν).
Note that in this equation, (∇νS)(X) = ∇ν(S(X))− S(∇νX).

b. Consider now a variation F : I × Σ → M given by ∂F
∂t

∣∣
(t,p)

= ν(t, p), where ν(t, p) is a unit

normal to the surface Σt = F (t,Σ). Show directly (without recourse to the second variation of
area formula) that the variation in the mean curvature is given by ∂H

∂t = −‖A‖2 −Ric(ν, ν), where
A(X,Y ) = g(X,−∇Xν) = g(∇XY, ν) is the second fundamental form, and H is the trace of S



along Σ.

Problem 6. Let M be a closed (compact, empty boundary) manifold. Let M be the space of
smooth Riemannian metrics on M , let M1 be the space of smooth Riemannian metrics with unit
volume, and given any Riemannian metric g, let [g] = {fg : f ∈ C∞(M), f > 0} be the conformal
class of g. Prove that a Riemannian metric g ∈ M1 is stationary for the Einstein-Hilbert action
R(g) =

∫
M

R(g) dvg amongst variations gt ∈ [g] ∩M1 (t ∈ (−ε, ε), g0 = g) if and only if g has

constant scalar curvature.

Remark: One can equivalently consider g ∈ M stationary for R(g) = R(g)

(vol(g))1−
2
n

amongst varia-

tions gt ∈ [g].

Problem 7. Recall the definition of the energy of an asymptotically flat initial data set:

E =
1

2(n− 1)ωn−1
lim

r→+∞

∫
{|x|=r}

n∑
i,j=1

(gij,j − gii,j)
xj

|x|
dAe.

a. Suppose gij =
(

1 + A
|x|n−2 +O2(|x|1−n)

) 4
n−2

δij , where f ∈ O2(|x|γ) means |∂αx f(x)| = O(|x|γ−|α|)
for |α| ≤ 2. Show that E = 2A.

Remark: Recall the Riemannian Schwarzschild metric (gS)ij =
(

1 + m
2|x|n−2

) 4
n−2

δij . The above

calculation shows that the energy is precisely m.

b. Generalize part a.: If g is asymptotically flat with energy E(g), say (gij − δij) = O2(|x|−q) for

q ∈
(
n−2

2 , n− 2
]
. Let u = 1 + A

|x|n−2 +O2(|x|1−n) > 0. Show that the energy of ḡ = u
4

n−2 g satisfies

E(ḡ) = E(g) + 2A. If 0 < u ≤ 1, then E(ḡ) ≤ E(g).

c. Suppose gij(x) =
(
C1 + C2

|x|n−2 +O2(|x|1−n)
) 4

n−2
δij . Show that g is asymptotically flat, and

E = 2C1C2.

Problems II.

Euclidean Harmonic Functions

Problem 8. a. Verify that the following distributional equations hold: ∆( 1
2π log |x|) = δ0 in

dimension n = 2, while ∆( 1
(2−n)nωn

|x|2−n) = δ0 in dimensions n > 2. Here δ0 is the Dirac delta
distribution at the origin.

b. Suppose f ∈ C2
c (Rn), n > 2. Suppose spt(f) ⊂ {x : |x| ≤ K}. Then if we let u(x) =

1
(2−n)nωn

∫
Rn

|x− y|2−nf(y) dy, then ∆u = f by the above. Moreover, show that u has an expansion

of the form u(x) = A
|x|n−2 + Bix

i

|x|n +O(|x|−n). Express the constants A and Bi in terms of integrals

involving f .



Problem 9. a. Show that if u is harmonic with an isolated singularity at x = 0, then the singu-
larity is in fact removable if lim

x→0
|x|n−2u(x) = 0 in case n > 2, and in case n = 2, if lim

x→0

u(x)
log |x| = 0.

b. If K[u] is the Kelvin transform of u, find ∆(K[u]) in terms of ∆u. Conclude that K[u] is
harmonic if and only if u is harmonic. Recall K[u](x) = |x|2−nu(x∗), x∗ = |x|−2x.

c. Suppose n > 2, and v is harmonic outside a compact set. Show that K[v] has a removable
singularity at the origin if and only if lim

|x|→+∞
v(x) = 0. In this case we say v is harmonic at infinity.

Problem 10. If v is harmonic at infinity (cf. Problem 9) and n > 2, v admits an expansion at

infinity in terms of spherical harmonics. Show in fact that v(x) = a0
|x|n−2 + aix

i

|x|n +O(|x|n), and derive

the next order term, in case n = 3.

Schwarzschild Geometry Basics

For simplicity, we let n = 3. Let gE be the Euclidean metric, with Cartesian coordinates x =

(x1, x2, x3) so that gE = δijdx
idxj , and let |x| =

√
3∑
i=1

(xi)2. If r = |x|, gE = dr2 + r2 gS2 =

dr2 + r2(dφ2 + sin2(φ) dθ2). Consider the spatial Schwarzschild metric gS =
(

1 + m
2|x|

)4
gE , defined

onR3 \ {0} for m > 0, on R3 for m = 0, and on {x ∈ R3 : |x| > −m
2 } for m < 0. Recall that a

portion of the maximally extended Schwarzschild space-time S is given by

ḡS = −

(
1− m

2|x|

1 + m
2|x|

)2

dt2 +

(
1 +

m

2|x|

)4

gE

on |x| > |m|
2 in case m 6= 0. You may use the fact that Ric(ḡS) = 0, and we let M = S ∩{t = 0}, so

that with the induced metric, M is (possibly a subset of) the Schwarzschild geometry defined above.

Problem 11. a. Show that M is totally geodesic in S.

b. Show that R(gS) = 0 by using the conformal deformation of scalar curvature recalled above.
Show that this is consistent with the Einstein constraint equations.

c. Is Ric(gS) = 0?

Problem 12. a. Form > 0, show that r 7→ m2

4r induces an isometry of gS which fixes Σ0 = {r = m
2 }.

b. For m > 0, show that Σ0 is totally geodesic in M . Express m in terms of the area of Σ0.

c. Find the area A(r) of Sr = {x : |x| = r} of Sr in the metric gS . For m > 0, show that A(r) has
a global minimum at r = m

2 .

d. When m < 0, A(r) → 0 as r → −(m2 )+. Furthermore, a radial geodesic from r = r0 > −m
2 to

r = −m
2 has finite length. Can the Schwarzschild metric with m < 0 be completed by adding in a

point?



Problem 13. a. Fix r and find the second fundamental form II and the mean curvature vector H
of Sr = {x : |x| = r} of Sr in the metric gS .

b. Compare A′(r) to
∫
Sr

H ·X dσ, where X = ∂
∂r and dσ is the area measure induced by gS .

c. The Hawking mass of a surface Σ is given by

mH(Σ) =

√
A(Σ)

16π

1− 1

16π

∫
Σ

H2 dσ

 .

Find mH(Sr).

Problem 14. Show that there are no closed minimal surfaces in (M, gS) other than Σ0 as in
Problem 12b. in case m > 0. (The argument should follow along the lines of the proof that there
are no closed minimal surfaces in (R3, gE).)

Problem 15. Embedding the Schwarzschild spatial metric.

a. Let m > 0. Find an isometric embedding of (M, gS) into Euclidean space E4, identified in
Cartesian coordinates (x, y, z, w) with (R4, dx2 + dy2 + dz2 + dw2). It might be easiest use the
other coordinates we introduced for the Schwarzschild metric: (1 − 2m

r )−1dr2 + r2 gS2 , r > 2m.
(This corresponds to “half” of (M, gS). The map you get will then extend by reflection to the other
“half.”) For ω ∈ S2, look for an embedding of the form x = rω 7→ (rω, ξ(r)) ∈ R4. Explain how
this justifies the picture we’ve drawn of the Schwarzschild spatial slice.

b. When m < 0 the argument breaks down. Instead, look for an isometric embedding into
Minkowski space M4, which is identified with R4 with the metric dx2 + dy2 + dx2 − dw2.

Problems III.

Problem 16. On the center of mass. Suppose (R3 \Br0(0), g) is harmonically flat: g = u4gE ,
R(g) = 0, i.e. ∆gEu = 0, with u(x) → 1 as |x| → +∞. We saw the expansion u(x) =

1 + A
|x| + βix

i

|x|3 +O(|x|−3) via spherical harmonics.

a. Let y = x+ c, for c ∈ Rn. For |y − c| > r0, find the asymptotic expansion of u as a function of
y. Show that there is a choice of c ∈ R3 for which u(y) = 1 + A

|y| +O(|y|−3).

b. Compute lim
r→+∞

∫
|x|=r

xk
3∑

i,j=1
(gij,i − gii,j) νje dAe where νje = xj

r . (Warning: this gives the center

of mass, but the flux integral isn’t the right form for more general asymptotically flat metrics.)

c. For r1 > r0, express
∫

r1≤|x|≤r
xk

3∑
i,j=1

(gij,ij − gii,jj) dx as a difference of two flux integrals, plus

an “error term”—be careful—why is it an “error term”? More generally, for g asymptotically
flat, with R(g) ∈ L1(M, g), what additional condition might you impose on g to show that this
term is of smaller magnitude than the flux integrals? Note that you might first show that for
gij − δij = O2(|x|−q), R(g) =

∑
i,j

(gij,ij − gii,jj) +O(|x|−(2q+2).



Problem 17. Variation of the mass. Consider R3 with the Euclidean metric gE . Assume
that h is a compactly supported smooth symmetric (0, 2)-tensor on R3. For t ∈ (−ε, ε), we let
γt = gE + th, which is still a metric for ε > 0 sufficiently small. For ε sufficiently small, we can let
ut > 0 be the associated conformal factor so that with gt = u4

tγt, R(gt) = 0. Let m(t) be the ADM
mass of gt. Since h has compact support, ut is (Euclidean) harmonic near infinity, thus has a full
spherical harmonic expansion.

a. Show that 16πm(t) = −
∫
R3

R(γt)ut dµγt .

b. Show directly (without recourse to the Positive Mass Theorem) that m′(0) = 0.

c. Generalize the above in the following way: let (R3, g) be asymptotically flat with R(g) = 0. Let
gt = u4

tR(g + th) with R(gt) = 0, with gt asymptotically flat. Compute m′(0). What happens in
case m′(0) = 0—can you pick a particularly good choice for h?

Problem 18. Static potentials, I. Let L∗g be the formal adjoint of Lg (the linearization
of scalar curvature, see above) defined by integration by parts: for any smooth compactly sup-
ported symmetric (0, 2)-tensor h,

∫
M h · L∗gf dµg =

∫
M fLgh dµg. Clearly we have L∗gf =

−(∆gf)g + Hessgf − fRic(g). A nontrivial element in the kernel of L∗g is called a static poten-
tial.

Let (Mn, g) be connected.

a. Suppose that L∗gf = 0, and that γ is a unit-speed geodesic in (Mn, g). Let h(t) = f(γ(t)). Prove
that h(t) satisfies a second-order linear ODE. What does this say about the dimension of the kernel
of L∗g?

b. Suppose that L∗gf = 0, but that f is not identically zero. Show that Σ = f−1(0) is a regular
hypersurface, which is totally geodesic (zero second fundamental form). Hint: If p ∈ Σ and dfp = 0,
what does part a. have to say about things?

c. Suppose that (Mn, g) is a closed manifold with negative scalar curvature. Find the kernel of L∗g.

d. Find the kernel of L∗g for the following metrics g: (i) (Rn, gE); (ii) (Tn, gF ) (a flat torus);
(iii) (Sn, gSn) (round unit sphere Sn, which you can think of as sitting in Rn+1).

e. Consider the metric g = (n− 2)−1gS1 ⊕ gSn−1 on S1 × Sn−1. Show that f(t, ω) = sin t is a static
potential for g.

f. Does every Ricci-flat metric have a static potential? What can you say in case a metric (M, g)
on a closed manifold with zero scalar curvature has a static potential?

Problem 19. Static potentials, II.

a. Let f : M → R be a smooth function. Define the metric ḡ = −f2dt2 ⊕ g on the space
N = I × {p ∈ M : f(p) 6= 0}. Prove that for X,Y tangent to M at p with f(p) 6= 0, we have
Ric(ḡ)(X,Y ) = Ric(g)(X,Y )− 1

f(p)Hessgf(p), Ric(ḡ)(X, ∂∂t) = 0, and Ric(ḡ)( ∂∂t ,
∂
∂t) = f∆gf .



b. Conclude from part a. that a function f on M is a nontrivial element of the kernel of L∗g if and
only if the metric ḡ as above is an Einstein metric. (Note that in the preceding problem you said
something about the set {p ∈M : f(p) = 0} where the metric ḡ may have issues.)

c. Identify a static potential for the Schwarzschild metric. If you use conformally flat coordinates,
where does the static potential have zeros? Did you already know some things about this special
level set?

d. Let gS be a Schwarzschild metric of non-zero mass m. Show that there is a one-dimensional
kernel for L∗gS . Do this by showing first that for any function in the kernel, HessgS (f) = fRic(gS).

Write this out in coordinates for which gS = (1 − 2m
r )−1dr2 + r2(dϕ2 + sin2 ϕ dθ2). Show that

∂θf = 0 and ∂ϕf = 0, and then solve the remaining ODE for f .

Problem 20. A PDE problem for those who know some functional analysis and
elliptic theory. Suppose (Mn, g) is a closed, smooth Riemannian manifold. Suppose L∗g has
trivial kernel.

a. Show that LgL
∗
g has trivial kernel.

b. Show that Lg maps the space of smooth symmetric tensors on M onto the space of smooth
functions, i.e. for any smooth function F on M , there is a smooth symmetric (0, 2)-tensor h so that
L(h) = F . In fact, find a smooth function u so that h = L∗gu solves the equation, i.e. LgL

∗
g(u) = F .

Hint: Consider the functional G(v) =
∫
M

(
1
2 |L
∗
gv|2 − Fv

)
dµg. Show that there is a unique mini-

mizer u ∈ H2, say, where H2 = H2(M, g) is the Sobolev space of tensor fields which are in L2(M, g)
along with two covariant derivatives. To do this, you’ll need to prove there is a C > 0 so that for
all v ∈ H2, ‖v‖H2 ≤ C‖L∗gv‖L2 . This will involve a pointwise estimate, together with the Rellich
theorem. Why is the minimizer smooth?

Problem 21. A projected problem in finite dimensions. Suppose T : Rn → Rm is a linear
operator. Define T ∗ : Rm → Rm to be the adjoint, defined by (where angle brackets denote dot
product in the domain or co-domain of T : for all v ∈ Rn and all w ∈ Rm, 〈Tv,w〉 = 〈v, T ∗w〉.

a. Show that the image Ran(T ) is the orthogonal complement of the kernel ker(T ∗) of the adjoint:
Rm = Ran(T )⊕ ker(T ∗). The kernel of T ∗ is sometimes called the co-kernel.

b. Suppose f : Rn → Rm is smooth, f(0) = 0, and Df(0) : T0Rn → T0Rm has rank r, with image
Ran(Df(0)) = S ⊂ Rm. Let ΠS : Rm → S be the orthogonal projection onto S. Let F : Rn → S
be the smooth function given by F = ΠS ◦ f . Show that there is a neighborhood V of the origin in
Rm and a neighborhood U of the origin in Rn so that F (U) = V ∩ S.

Problem 22. A mass estimate via the Penrose Inequality. Suppose (M, g) is an asymptot-
ically flat three-manifold with R(g) ≥ 0, and suppose Σ is an outermost minimal sphere in M , with

respect to an asymptotically flat end E of mass m. The Penrose inequality states that m ≥
√
|Σ|
16π .

If the sectional curvatures of M are bounded above by a constant C > 0, give an estimate of m in
terms of C.


