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Definition
A permutation of length n is a rearrangement of the numbers

1,2,...,n.

Notation

» S, = the set of all permutations of length n.

Example

S3 ={123,132,213,231, 312,321},

and
|Sn| = n!
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Stack Sorting

Question
Why is « =3 1 2 5 4 stack-sortable, while m =3 1452 is NOT?

Theorem (D. Knuth 1968)

7 is NOT stack-sortable
iff
7 has three entries whose relative ordering is “231".

Examples

m=3145 2 is NOT stack-sortable
= m contains the pattern 231

a =3125 4 s stack-sortable
= « avoids the pattern 231
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> » 7 contains 132
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Notation

» S,(7) = the set of permutations of length n that avoid T.

Definition
Two patterns o and 7 are Wilf-equivalent if for all n,

[5n(7)] = |5n(0)]-



Permutation Patterns

Example (Patterns of length 2)



Permutation Patterns

Example (Patterns of length 2)

In general,
Sn(21) =



Permutation Patterns

Example (Patterns of length 2)

In general,
Sn(21) ={123...n}.



Permutation Patterns

Example (Patterns of length 2)
In general,

Sa(21) = {123...

Sn(12) =



Permutation Patterns

Example (Patterns of length 2)

In general,
Sn(21) ={123...n}.

Sn(12) = {n...321}.



Permutation Patterns

Example (Patterns of length 2)

In general,
Sn(21) ={123...n}.

Sn(12) = {n...321}.

= 12 is Wilf-equivalent to 21
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Patterns of length 3
If 7 is any pattern of length 3, then

153(7)[ =5
|5a(7)| = 14
|55(7)| = 42
|S6(7)| = 132

1 2
|Sn(T)] = ( n) = nth Catalan number
n+1\n

> ALL length 3 patterns are Wilf-equivalent
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Permutation Patterns
Patterns of length 4

n= 5 6 7 8 9

5,(2314)[ | 103 | 512 | 2740 | 15485 | 91245

1S,(1234)[ | 103 | 513 | 2761 | 15767 | 94359

1S,(1324)[ | 103 | 513 | 2762 | 15793 | 94776

= NOT all patterns of length 4 are Wilf-equivalent.

What's Known?
» Every pattern of length 4 is Wilf-equivalent to one of:
2314 1234 1324

> |. Gessel (1990) gave a formula for |S,(1234)]
» M. Béna (1997) gave a formula for |S,(2314)|

Open Problem
Find a formula for |S,(1324)|.
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Rook Placements

A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of markers
with EXACTLY one in each row and column.

Notation

» Rr = set of all f.r.p.’s on the Ferrers board F
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Patterns?
X
X
X » contains the pattern 312
X
» > avoids the pattern 231
X
X
Notation

» Re(7) = set of all f.r.p. on F that avoid .
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Definition
Two patterns ¢ and 7 are shape-Wilf-equivalent if for every F,

RF(0)] = [Re(T)]-

In this case we write o ~ 7.

Observe

shape-Wilf-equivalence = Wilf-equivalence.

What's Known?
» 123...k ~ k...321 (J. Backlin, J. West, and G. Xin, 2000)
» 231 ~ 312 (Z. Stankova and J. West, 2002)
- Complicated proof = can’t count things
> We give a simple proof that 231 ~ 312
- Can count things!
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Dyck Paths

=N W A

‘1234567891011121314

A Dyck path of size n is a path that:
» starts at the origin
» ends at the point (2n,0)

> never goes below the x-axis

It is well known that

1 2
# Dyck paths of size n = < n)
n+1\n
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Labeled Dyck paths

We label the Dyck path so that:
» Monotonicity
- 4+1/0 up step and —1/0 down step
» Zero Condition
- All zeros lie precisely on the x-axis
» Tunnel Property
- "Left” < “Right”
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Our proof of 231 ~ 312

3. Reverse tunnel property — 312-avoiding f.r.p.

X

1V

RF(312)

Theorem (Bloom—-Saracino '11)

This mapping is a bijection between R(231) and Rr(312).
= 231 and 312 are shape-Wilf-equivalent.
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Enumerative Results: 2314-Avoiding Permutations

In 1997, Bdna proved the celebrated result:

15,(2314))]
—7n® +3n+2 ! (2 =) (n—i+2
Sy ) L i S e ) | i
(=1) 2 * ;( )n(/—z)!< > )
Our Proof
X
X
| X |
6257413 | - .
X
X
X

5,(2314) Re(231)



Thank you!
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where C(z) is the generating function for the Catalan
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Appendix: New Enumerative Results

» In 2012, D. Callan and V. Kotesovec conjectured that

o
1- C(zC(2))

=14+2z4+22+622+2223+...

D " 15n(2314,1234)|2" =
n=0

where C(z) is the generating function for the Catalan
numbers.

» All 231-avoiding f.r.p. are counted by

54z

= 2 3 4 DY
1+36z—(1_122)3/2_1+z+3z + 14z° + 83z" +

» New enumerative results in the theory of perfect matchings
and set partitions.



