
An Introduction to Wedderburn Theory & Group Representations

Jonathan Bloom

Contents

1 Basic definitions and preliminaries 2

2 The semisimplicy of matrix algebras 4

3 Wedderburn’s theorem 5

4 Representation theory of groups 7

5 Characters 9

1



1 Basic definitions and preliminaries

Throughout we let F be an arbitrary field.

Definition. An F -algebra A is a vector space over F with a multiplication on A satisfying

(λa)b = λ(ab) = a(λb)

where λ ∈ F and a, b ∈ A. We say that A is finite dimensional if A as an F -vector space is finite
dimensional. Further, we say A has unity if there exists a multiplicative identity in A.

Definitions. Let M be an A-module. We say M is simple if M has no nonzero proper submodules.
On the other hand we say M is semisimple if M 6= 0 and

M ∼= S1 ⊕ S2 ⊕ . . .⊕ Sr

where the Si’s are simple R-modules.

In the following we will let A be a finite dimensional F -algebra with unity and M an A-module.
Observe that since 1 ∈ A then M is an F -vector space by defining

λ · a = λ1 · a

for a ∈ A and λ ∈ F .

Lemma 1.1. An A-module M is finitely generated if and only if M is a finite dimensional F -vector
space.

Proof. First, assume M is finitely generated and let {m1, . . . ,mr} be its generating set. As A
is finite dimensional then let {e1, . . . , en} be its basis over F . It is now clear that the finite set
{eimj | 1 ≤ i ≤ n, 1 ≤ j ≤ r} spans M as an F -vector space. The converse is trivial.

In the following we will further assume all A-modules are finitely generating, or in light of the
previous result, finite dimensional as a F -vector space.

Lemma 1.2 (Schur). Let S and T be simple R-modules. If ϕ : S → T is a module homomorphism
then either ϕ = 0 or ϕ is an isomorphism.

Proof. As kerϕ is a submodule of S then either kerϕ = 0 or kerϕ = S. If the latter occurs then
ϕ = 0. In the case of the former we see that ϕ is injective. As the image of ϕ is a submodule of
T we see that this must either be all of T , in which case ϕ is an isomorphism, or 0, in which case
ϕ = 0.

Lemma 1.3. Let M be an A-module. The following are equivalent:

a) M is semisimple

b) M is the sum (not necessarily direct) of finitely many simple modules

c) Any submodule of M is a direct summand of M .
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Proof. (a ⇒ b) Clear.
(b ⇒ a) First note that if S and T are simple submodules with S 6= T then S ∩ T = {0}. If

S1, · · · ⊕ Sr are the distinct simple submodules that sum to M it now follows that

M ∼= S1 ⊕ . . .⊕ Sr.

(c ⇒ a) Observe that if c) holds for M then it must hold for any submodule of M . To see this
let U be a submodule of M . Thus M ∼= U ⊕V for some submodule V . Now let U0 be a submodule
of U . Thus U0⊕V0 ∼= M . Letting U1 = U0 ∩V0, we see that U0⊕U1 = U . By Lemma 1.1 we know
that dimF (M) <∞. We no proceed by induction. Let S ⊂M be simple. So S ⊕ V ∼= M for some
V . As dimF (V ) < dimF (M) then by induction V is semisimple and we are done.

(c ⇒ a) Let U be a submodule of M . Let us define V to be the maximal submodule of M so
that U ∩V = {0}. Thus U⊕V is a submodule of M . If all the simple modules of M sit inside U⊕V
then M ⊂ U ⊕ V and we are done. For a contradiction we may assume this is not the case. Let S
be a simple module with S 6⊂ U ⊕ V . As S is simple we immediately see that S ∩ U ⊕ V = {0}.
This means U ⊕ V ⊕ S ⊂M which contradicts the maximality of V .

Lemma 1.4. Submodules and homomorphic images of semisimple modules are semisimple.

Proof. Let N and M be A-modules where M = S1⊕· · ·⊕Sr is semisimple. If ϕ : M → N is an onto
A-module homomorphism then (by Schur’s Lemma) ϕ|Si is either the zero map or an isomorphism.
Thus N is the sum of simple modules and by Lemma 1.3 it must be simple.

Now to prove the first claim let U be a submodule of M . By Lemma 1.3 we have M = U ⊕ V
for some submodule V . The result now follows by the first part and the fact that M/V ∼= U is the
homomorphic image of M .

Definition. We say an algebra A is semisimple if all modules over A are semisimple.

Lemma 1.5. The algebra A is semisimple if and only if the A as an A-module is semisimple.

Proof. (⇒) Clear.
(⇐) Let M be an A-module. As M is finitely generated, take {m1, . . . ,mr} to be a generating

set. Now define the surjective module homomorphism ϕ : Ar →M given by (a1, . . . , ar) 7→ a1m1 +
· · ·+ armr. So M is the homomorphic image of a semisimple module, namely Ar. By Lemma 1.3
we see that M is semisimple as well.

The following beautiful theorem tell us that for any semisimple module A there are only finitely
many distinct simple A-modules. We then show in Theorem 1.2 that the decomposition of any
A-module in terms of simple modules is unique.

Theorem 1.1. Let A be semisimple and assume A = S1 ⊕ . . . ⊕ Sr where the Si are simple A-
modules. Then any simple A-module S is isomorphic to some Si.

Proof. As S 6= 0 then we may choose some nonzero v ∈ S. Define ϕ : A → S by a 7→ av. As S
is simple then ϕ must be surjective and nonzero. Now consider the restriction of ϕ to each of A’s
summands. As ϕ 6= 0 is follows that at least one of these restrictions, ϕ|Si is nonzero. By Schur’s
Lemma the map

ϕSi : Si → S

must be an isomorphism.
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Theorem 1.2. Let S1, . . . , Sr be the distinct simple A-modules. If M ∼= n1S1⊕· · ·⊕nrSr then the
ni are uniquely determined.

Proof. By Schur’s Lemma it follows that we have the following F -vector space isomorphisms

HomA(M,Si) ∼= HomA(niSi, Si) ∼= ni Hom(Si, Si)

As M is finite dimensional over F (all our modules are assumed finitely generated) we see that
dimF (HomA(M,Si)) <∞. Thus ni is given by a ratio of dimensions.

2 The semisimplicy of matrix algebras

Definitions. Define An =


a1...
an

 | ai ∈ A
 and Mn(A) be the algebra of n × n matrices with

entries in A.

Lemma 2.1. Let D be a division algebra. Then Dn is a simple Mn(D)-module. Further

Mn(D) ∼= nDn

Proof. Let x ∈ Dn be nonzero. Without loss of generality, assume x1 6= 0. So E1,1(x
−1
1 )x = e1,

where the Eij are the elementary matrices and e1 =


1
0
...
0

. The theorem now follows immediately.

Convention. Let M be an A-module and N be a B-module. Then M ⊕ N is an A ⊕ B-module
by defining (a, b) · (m,n) := (am, bn).

Theorem 2.1. Let Di be division algebras for 1 ≤ i ≤ r. Then the algebra

A =
r⊕

i=1

Mn(Di)

is semisimple and has precisely r distinct simple modules (up to isomorphism).

Proof. By our convention A has a canonical A-module structure. Moreover, since Mn(Di) ∼= nDn
i

(as modules) it follows that

A ∼=
r⊕

i=1

nDn
i .

Since the Dn
i are simple it now follows that A is semisimple. The r distinct simple modules of A

are (easily) seen to be Dn
1 , . . . , D

n
r .

In the next section we show that every semisimple algebra A is essential a direct sum of matrix
algebras over division rings.
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3 Wedderburn’s theorem

The purpose of this section is to prove the following classification of semisimple algebras due to
Wedderburn.

Theorem 3.1 (Wedderburn). The algebra A is semisimple if and only if it is isomorphic with a
direct sum of matrix algebras over division rings.

First, observe that Theorem 2.1 proves the reverse direction. Next, we prove an important
corollary of Wedderburn’s Theorem. We start with the following lemma.

Lemma 3.1. If F is algebraically closed, then EndA(S) ∼= F , where S is a simple A-module.

Proof. Let ϕ ∈ EndA(S). As S is a vector space over our algebraically closed field F then ϕ must
have an eigenpair (x, λ). So x ∈ ker(ϕ − λ) and by Schur’s Lemma we must have ϕ − λ = 0. In
other words, ϕ = λ. The result now follows.

Since we will predominately be working over C the following Corollary of Wedderburn’s result
will be especially useful for us.

Corollary 3.1. Let F be algebraically closed. If A is semisimple then it is isomorphic to a direct
sum of matrix algebras over F .

We now work toward a proof of (the forward direction of) Wedderburn’s result. The following
definitions and lemmas will be needed.

Definition. If A is an algebra, then Aop, called the opposite algebra, is the algebra with the same
underlying vector space as A but where multiplication is given by a · b := ba where the right side
is the given multiplication in A.

Lemma 3.2. Aop ∼= EndA(A).

Proof. Let ϕ ∈ EndA(A). Observe that ϕ(b) = bϕ(1) for all b ∈ A. This means that ϕ is completely
determined by where it maps 1. Now define

ρ : Aop → EndA(A)

by a 7→ ϕa, where ϕa(1) = a. In light of our first observation this is clearly a vector space
isomorphism. Lastly,

ρ(a · b) = ρ(ba) = ϕba = ϕa ◦ ϕb = ρ(a) ◦ ρ(b).

Lemma 3.3. We have Mn(Aop) ∼= Mn(A)op.

Proof. Let tr be the transpose map. It will suffice to show that it preserves multiplication. Observe

tr(αEijβElk) = tr(βαEijElk) =

{
βα if l = i

0 else.

Similarly,

tr(αEij) · tr(βElk) = αEji · βElk) =

{
βα if l = i

0 else.

We see that the map tr extends by linearity to be an algebra isomorphism.
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Lemma 3.4. Let M and N be A-modules. If

HomA(M,N) = 0 = HomA(N,M)

then
End(M ⊕N) ∼= End(M)⊕ End(N)

as algebras.

Proof. Define ρM : M ⊕ N → M and ρN : M ⊕ N → N be projection maps. Now take γ ∈
EndA(M ⊕N) and observe that

ρM ◦ γ|M ∈ Hom(M,N) and ρN ◦ γ|N ∈ Hom(N,M).

By our assumption these are both zero. Thus

γ = ρM ◦ γ|M ⊕ ρN ◦ γ|N

where ρM ◦γ|M ∈ EndA(M) and ρN ◦γ|N ∈ EndA(N). In other words, every element in EndA(M⊕
N) looks like the sum α+ β where α ∈ EndA(M) and β ∈ EndA(N). As every map of this form is
and endomorphism of M ⊕N the result now follows.

Lemma 3.5. Let S1, . . . , Sr be the distinct simple A-modules. Define

U =

r⊕
i=1

niSi

then

EndA(U) ∼=
r⊕

i=1

EndA(niSi)

as algebras.

Proof. By Schur’s Lemma observe that Hom(
⊕

i∈I niSi,
⊕

j∈J njSj) = 0 provided I ∩ J = ∅. The
result now follows by repeated applications of Lemma 3.4.

Lemma 3.6. If S is a simple A-module then

EndA(nS) ∼= Mn(EndA(S)).

Proof. For notational ease let D = EndA(S). By Schur’s Lemma D is a division ring so it makes
sense to talk about a n-dimensional D-module V . Let e1, . . . , en be a basis for V . For ϕ ∈ EndA(nS)
define ϕ ∈ EndD(V ) by

ϕ(
n⊕

i=1

αiei) =
n⊕

i=0

ρiϕ(α1, . . . , αn)ei
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where αi ∈ D and ρi is the projection map onto the ith coordinate. Now if ϕ,ψ ∈ EndA(nS) then
we have

ϕ ◦ ψ(α1e1 + · · ·+ αnen) = ϕ

(
n⊕

i=1

ρiψ(α1, . . . , αn)ei

)

=

n⊕
i=1

ρiϕ(ρ1ψ(α1, . . . , αn), . . . , ρnψ(α1, . . . , αn))ei

=

n⊕
i=1

ρiϕψ(α1, . . . , αn)ei

= ϕψ

It now follows that the map ϕ 7→ ϕ is an injective algebra homomorphism. As this map is
between two vector spaces with the same dimension, namely n2 dim(D), it must also be surjective.

We are now ready to prove Wederburn’s main result.

Proof of Wedderburn’s Theorem. As we mentioned above it only remains to prove the forward
direction. To do first let S1, . . . , Sr be a complete list of distinct simple A-modules. Thus A =
U1 ⊕ · · · ⊕ Ur where Ui = niSi. Now

Aop ∼= EndA(A) ∼=
n⊕

i=1

EndA(Ui) (Lemmas 3.2, 3.5)

∼=
n⊕

i=1

Mni(EndA(Si)) (Lemmas 3.6)

Therefore Lemma 3.3 gives us that

A ∼=
n⊕

i=1

Mni(EndA(Si)
op).

It only remains to show that EndA(Si) is a division ring but this easily follows from Schur’s
Lemma.

4 Representation theory of groups

In this section let G be a finite group and V a vector space over an algebraically closed field F .

Definition. A representation of G (on V ) is a homomorphism ρ : G→ End(V ).

Definition. Assume G acts on V . We say this action is linear if

g(v + w) = gv + gw

and
g(λv) = λgv

where g ∈ G, w, v ∈ V and λ ∈ F .
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Observe that every representation ρ of G on V gives rise to a linear action as follows

g · v := ρ(g)v.

Likewise, if G acts linearly on V then this defines a representation ρ : G→ End(V ) by setting

ρ(g)v := gv.

ρ is indeed a homomorphism since ρ(gh)v = (gh)v = g(hv) = ρ(g)ρ(h)v for all v ∈ V . As these
constructions are inverses of one another it follows that linear actions and representations are
equivalent.

Definition. Define the set FG to be the set of all formal linear combinations of G by elements in
F . We call FG the group algebra.

It is clear that FG is a an F -vector space with dimension |G|. To see that it also has a canonical
algebra structure, and hence is deserving of its name, note that we can define∑

g∈G
αgg

(∑
h∈G

βhh

)
:=

∑
g,h∈G

αgβhgh

where gh is computed in the group and αgβh is computed in the ground field. Lastly, FG is also
an algebra with unity since e ∈ G acts as a multiplicative identity.

Before continuing, let us observe that any FG-module V is equivalent to a linear action of G
on V and, by the paragraph above, is equivalent to a representation of G on V .

Theorem 4.1 (Maschke). If Char(F ) = 0 or (Char(F ), |G|) = 1, then FG is a semisimple algebra.

Theorem 4.2. The group algebra CG is isomorphic to

Mn1(C)⊕ · · · ⊕Mnr(C).

Further, CG has exactly r distinct simple modules S1, . . . , Sr where dim(Si) = ri.

Proof. By Maschke’s theorem we know that CG is semisimple. Wedderburn’s theorem, its corollary,
and Theorem 2.1 give the reset.

Corollary 4.1.
r∑

i=1

n2i = |G|

Proof. Compare the dimensions in the decomposition in Theorem 4.2.

|G| = dim(CG) = dim

(
r⊕

i=1

Mni(C)

)
=

r∑
i=1

n2i .

Corollary 4.2. The number of distinct simple modules over CG is precisely the number of conju-
gacy classes in G.
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Proof. Here we use the decomposition given in Theorem 4.2 and compare the dimension of the
centers. On the right hand side we have

Z

(
r⊕

i=1

Mni(C)

)
= C In1 ⊕ · · · ⊕ C Inr

where In is the n×n identity matrix. Thus the dimension of the center is r. For the left hand side
we have, for h =

∑
g∈G αgg and x ∈ G:

h ∈ Z(CG) iff x

∑
g∈G

αgg

x−1 = h

iff
∑
g∈G

αgxgx
−1 = h

iff
∑
g∈G

αx−1gxg = h.

It now follows that h ∈ Z(CG) if and only if αg = αx−1gx, i.e., the coefficients αg must be constant
on conjugacy classes. Thus

dim(Z(CG)) = number of conjugacy classes in G.

The result now follows.

5 Characters

In this section again let G be a finite group and V a CG-module where S1, . . . , Sr are the r
irreducible CG-modules. As usual let ρ be the corresponding representation.

Definition. Let ρ : G → End(V ) be a representation. We define a character of V to be the
function

χV : G→ C

where χV (g) is the trace of ρ(g).

Note that if the representation is irreducible then we usually say χV is an irreducible character.
Further, we will often extend χV linearly so that

χV : CG→ C .

Last, we adopt the convention that χi = χSi .

Definition. A class function of G is a function f : G→ C that is constant on conjugacy classes of
G. We denote by C the C-vector space of all class functions on G.

Observe that Corollary 4.2 says that dim(C) = r. Moreover since

χU (xgx−1) = Trace(ρ(x)ρ(g)ρ(x)−1) = Trace(ρ(g)) = χU (g)

we see that χi ∈ C. In fact, much more is true.
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Theorem 5.1. The irreducible characters χ1, . . . , χr form a basis for C.

Proof. Since dim(C) = r it will suffice to show that the χi are linearly independent. Let ei be the
element in CG that corresponds to the element in

⊕r
i=1Mni(C) that is zero in every coordinate

except the ith coordinate where we place the identity matrix. Thus

χi(ej) = δijnj .

Now, if 0 =
∑r

i=1 αiχi, then

0 =
r∑

i=1

αiχi(ej) = αjnj .

We conclude that the αi must all be zero and that the χi are linearly independent.

Theorem 5.2. Two CG-modules U and V are isomorphic if and only if χU = χV .

Proof. The forward direction is clear. For the other direction decompose U and V as

r⊕
i=1

αiSi and

r⊕
i=1

βiSi.

It now follows that
r∑

i=1

αiχi = χU = χV =
r∑

i=1

βiχi.

By the linear independence of the χi we see that αi = βi. Thus U and V are isomorphic.

Lemma 5.1. Assume g ∈ G of order n. Then

a) ρ(g) is a diagonalizable. All its eigenvalues are nth roots of unity

b) χV (g−1) = ¯χV (g)

c) |χV (g)| ≤ χV (1). Further, we have equality if and only if g ∈ ker(ρ).

d) {g ∈ G | χV (g) = χV (1)}EG

Proof. To prove a), observe that since gn = 1, then the minimal polynomial of ρ(g) must divide
xn − 1. Thus the minimal polynomial must have distinct roots all of which are nth roots of units.
The claim now follows from basic linear algebra. Next we prove b). By part a) we first diagonalize
ρ(g) so that the diagonal entries are roots of unity. So ρ(g)−1 = ¯ρ(g) and thus χV (g−1) = ¯χV (g).
Lastly the proofs of c) follows directly from a). To see d) observe that the set in question is precisely
ker(ρ).

If U is another CG-module then HomC(V,U) inherits a natural CG-module structure as follows.
First define

g · ϕ := gϕ(g−1·)

for g ∈ G and ϕ ∈ HomC(V,U). As usual we then extend this action to all of CG. Consequently,
V ∗ = Hom(V,C) has a CG-module structure since C can always be thought of as a CG-module
with the trivial action. Therefore if f ∈ V ∗ then

g · f = gf(g−1·) = f(g−1·)
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in this case. We may also think of V ⊗C U as a CG-module by defining the linear action of G on
V ⊗C U by

g · v ⊗ u := gv ⊗ gu.

This is called the diagonal action. There is an important connection between these two definitions.
To understand this connection first recall the vector space isomorphism

Φ: V ∗ ⊗C U → HomC(V,U)

given by mapping f ⊗ u 7→ uf(·). With the definitions given above Φ is actually a CG-module
isomorphism. Explicitly we have

Φ(g · ϕ⊗ u) = Φ(gϕ⊗ gu) = guϕ(g−1·) = g · (uϕ) = g · Φ(ϕ⊗ u).

Lemma 5.2. Let U be another CG-module. Then

a) χV⊗U = χV χU .

b) χV ∗ = χ̄U .

c) χHom(V,U) = χ̄V χU .

Proof. Part a) follows from basic linear algebra regarding trace and tensor products.
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