Patterns, Permutations, and Placements

Jonathan S. Bloom

Dartmouth College

Wake Forest University - February 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A permutation of **length** n is a rearrangement of the numbers

 $1, 2, \ldots, n.$

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition

A permutation of **length** n is a rearrangement of the numbers

 $1, 2, \ldots, n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Notation

Let S_n denote the set of all permutations of length n.

Definition

A permutation of length n is a rearrangement of the numbers

 $1, 2, \ldots, n.$

Notation

Let S_n denote the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},\$$

Definition

A permutation of length n is a rearrangement of the numbers

 $1, 2, \ldots, n.$

Notation

Let S_n denote the set of all permutations of length n.

Example

and

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$

 $|S_n| =$

Definition

A permutation of length n is a rearrangement of the numbers

 $1, 2, \ldots, n.$

Notation

Let S_n denote the set of all permutations of length n.

Example

and

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$

 $|S_n| = n!$

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

(ロ)、(型)、(E)、(E)、 E) の(の)

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\alpha =$ 3 1 2 5 4

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ $\sim \alpha$ is stack-sortable

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ $\sim \alpha$ is stack-sortable

Let
$$\pi = 3\ 1\ 4\ 5\ 2$$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

31452

Let
$$\pi=$$
 3 1 4 5 2

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

Let
$$\pi = 3 \ 1 \ 4 \ 5 \ 2$$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

Let
$$\pi = 3\ 1\ 4\ 5\ 2$$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\pi = 3\ 1\ 4\ 5\ 2$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\pi = 3\ 1\ 4\ 5\ 2$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\pi = 3\ 1\ 4\ 5\ 2$

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**. Examples

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples

Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is "231".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Examples

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is "231".

Examples

 $\pi = 3\ 1\ 4\ 5\ 2$ is NOT stack-sortable

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable $\Rightarrow \pi$ contains the pattern 231

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2 \ is \ NOT \ stack-sortable$ $\Rightarrow \pi \ contains \ the \ pattern \ 231$ $\alpha = 3 \ 1 \ 2 \ 5 \ 4 \ is \ stack-sortable$

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

 π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is "231".

Examples

 $\pi = 3 \ 1 \ 4 \ 5 \ 2 \text{ is NOT stack-sortable}$ $\Rightarrow \pi \text{ contains the pattern 231}$ $\alpha = 3 \ 1 \ 2 \ 5 \ 4 \text{ is stack-sortable}$ $\Rightarrow \alpha \text{ avoid the pattern 231}$

Its easier with pictures!

 $\pi = 31452$

Its easier with pictures!

$$\pi = 31452 \quad \longmapsto$$

Its easier with pictures!

• π contains 123

Its easier with pictures!

• π contains 123

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Its easier with pictures!

• π contains 123

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Its easier with pictures!

Х

- π contains 123
- π contains 213

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Its easier with pictures!

- π contains 123
- π contains 213

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Its easier with pictures!

- π contains 123
- π contains 213

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

π avoids 321

Its easier with pictures!

- π contains 123
- π contains 213

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

π avoids 321

Notation

Let $S_n(\tau)$ be the set of permutations of length n that avoid τ .

Definition

We say two patterns $\tau, \sigma \in S_k$ are **Wilf-equivalent** provided

$$|S_n(\tau)| = |S_n(\sigma)|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for all n.

Example (Patterns of length 2)

Example (Patterns of length 2) What permutations avoid 21?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example (Patterns of length 2) What permutations avoid 21?

$$S_2 = \{12, 21\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\Rightarrow S_2(21) = \{12\}.$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$ In general,

$$S_n(21) =$$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$ In general,

$$S_n(21) = \{123\ldots n\}.$$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$ In general,

$$S_n(21) = \{123\ldots n\}.$$

$$S_n(12) =$$

Example (Patterns of length 2) *What permutations avoid 21?*

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$ In general,

$$S_n(21) = \{123\ldots n\}.$$

$$S_n(12) = \{n \dots 321\}.$$

Example (Patterns of length 2) What permutations avoid 21?

$$S_2 = \{12, 21\}$$

 $\Rightarrow S_2(21) = \{12\}.$

 $S_3 = \{123, 132, 213, 231, 312, 321\}$ $\Rightarrow S_3(21) = \{123\}.$ In general,

$$S_n(21) = \{123\ldots n\}.$$

$$S_n(12) = \{n \dots 321\}.$$

 \Rightarrow 12 is Wilf-equivalent to 21

What permutations avoid 321?

<□ > < @ > < E > < E > E のQ @

What permutations avoid 321?

 $S_3 = \{123, 132, 213, 231, 312, 321\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $S_3(321) = \{123, 132, 213, 231, 312\}$

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

•
$$S_3(321) = \{123, 132, 213, 231, 312\}$$

$$|S_3(321)| = 5$$

 $|S_4(321)| = 14$
 $|S_5(321)| = 42$

÷

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

•
$$S_3(321) = \{123, 132, 213, 231, 312\}$$

$$|S_{3}(321)| = 5$$

$$|S_{4}(321)| = 14$$

$$|S_{5}(321)| = 42$$

$$\vdots$$

$$|S_{n}(321)| = \frac{1}{n+1} {\binom{2n}{n}}$$

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

•
$$S_3(321) = \{123, 132, 213, 231, 312\}$$

$$|S_{3}(321)| = 5$$

$$|S_{4}(321)| = 14$$

$$|S_{5}(321)| = 42$$

$$\vdots$$

$$|S_{n}(321)| = \frac{1}{n+1} {\binom{2n}{n}} = n$$
th Catalan number

<□> <圖> < E> < E> E のQ@

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

►
$$S_3(321) = \{123, 132, 213, 231, 312\}$$

 $|S_3(321)| = 5$
 $|S_4(321)| = 14$
 $|S_5(321)| = 42$
 \vdots
 $|S_n(321)| = \frac{1}{n+1} {2n \choose n} = n$ th Catalan number

In fact, this is true for ALL length 3 patterns!!

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

►
$$S_3(321) = \{123, 132, 213, 231, 312\}$$

 $|S_3(321)| = 5$
 $|S_4(321)| = 14$
 $|S_5(321)| = 42$
 \vdots
 $|S_n(321)| = \frac{1}{n+1} {2n \choose n} = n$ th Catalan number

In fact, this is true for ALL length 3 patterns!!

► ALL length 3 patterns are Wilf-equivalent

Things get messy...

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

- ▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$
- M. Bóna (1997) gave a formula for $|S_n(2314)|$

Things get messy...

<i>n</i> =	5	6	7	8	9
$ S_n(2314) $	103	512	2740	15485	91245
$ S_n(1234) $	103	513	2761	15767	94359
$ S_n(1324) $	103	513	2762	15793	94776

 \Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

- ▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$
- M. Bóna (1997) gave a formula for $|S_n(2314)|$

Open Problem

Find a formula for $|S_n(1324)|$.

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

Definition

A **Ferrers Board** F is a square array of boxes with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of markers with **EXACTLY** one in each row and column.

Notation $\mathcal{R}_F = \text{set of all f.r.p.'s on the fixed board } F$

▶ This f.r.p. contains the pattern 312

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ This f.r.p. contains the pattern 312

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ This f.r.p. contains the pattern 312

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ This f.r.p. contains the pattern 312
- This f.r.p. avoids the pattern 231

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- This f.r.p. **contains** the pattern 312
- This f.r.p. avoids the pattern 231

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- This f.r.p. **contains** the pattern 312
- This f.r.p. avoids the pattern 231

Notation

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... *k* ~ *k*... 321 (J. Backlin, J. West, and G. Xin, 2000)

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... k ~ k... 321 (J. Backlin, J. West, and G. Xin, 2000)
 ▶ 231 ~ 312 (Z. Stankova and J. West, 2002)

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... *k* ~ *k*... 321 (J. Backlin, J. West, and G. Xin, 2000)

- \blacktriangleright 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... $k \sim k$...321 (J. Backlin, J. West, and G. Xin, 2000)

 \blacktriangleright 231 \sim 312 (Z. Stankova and J. West, 2002)

- Complicated proof \Rightarrow can't count things

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... *k* ~ *k*... 321 (J. Backlin, J. West, and G. Xin, 2000)

- 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof \Rightarrow can't count things
- \blacktriangleright We give a simple proof that 231 \sim 312

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for **every** Ferrers board *F*

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

▶ 123... k ~ k... 321 (J. Backlin, J. West, and G. Xin, 2000)

- 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof \Rightarrow can't count things
- \blacktriangleright We give a simple proof that 231 \sim 312
 - Can count things!

・ロト ・聞ト ・ヨト ・ヨト

æ

A **Dyck path** of size *n* is a path that:

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

- A **Dyck path** of size *n* is a path that:
 - starts at the origin

ヘロト ヘ週ト ヘヨト ヘヨト

æ

- A **Dyck path** of size *n* is a path that:
 - starts at the origin
 - ends at the point (2n, 0)

イロト 不得 トイヨト イヨト

æ

- A **Dyck path** of size *n* is a path that:
 - starts at the origin
 - ends at the point (2n, 0)
 - never goes below the x-axis

(日) (同) (日) (日)

э

- Monotonicity
 - +1/0 up step and -1/0 down step

(日) (同) (日) (日)

э

- Monotonicity
 - +1/0 up step and -1/0 down step
- Zero Condition
 - All zeros lie precisely on the x-axis

(日)、

э

- Monotonicity
 - +1/0 up step and -1/0 down step
- Zero Condition
 - All zeros lie precisely on the x-axis
- Tunnel Property
 - "Left" ≤ "Right"

An outline

An outline

1. 231-avoiding rook placement \mapsto Tunnel property

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An outline

1. 231-avoiding rook placement \mapsto Tunnel property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Tunnel Property \mapsto Reverse Tunnel Property

An outline

- 1. 231-avoiding rook placement \mapsto Tunnel property
- 2. Tunnel Property \mapsto Reverse Tunnel Property
- 3. Reverse Tunnel Property \mapsto 312-avoiding rook placement

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

(日)、

E 996

2. Tunnel property \Rightarrow Reverse tunnel property

(日)、

3

2. Tunnel property \Rightarrow Reverse tunnel property

(日)、

2. Tunnel property \Rightarrow Reverse tunnel property

(日) (同) (日) (日)

2. Tunnel property \Rightarrow Reverse tunnel property

(日) (同) (日) (日)

2. Tunnel property \Rightarrow Reverse tunnel property

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

Theorem (Bloom–Saracino '11)

This mapping is a bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$. $\Rightarrow 231$ and 312 are shape-Wilf-equivalent.

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty}a_nz^n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty} a_n z^n.$$

 "A generating function is a clothesline on which we hang up a sequence of numbers for display" - H. Wilf

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty} a_n z^n.$$

 "A generating function is a clothesline on which we hang up a sequence of numbers for display" - H. Wilf

We do not worry about convergence!

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty} a_n z^n.$$

 "A generating function is a clothesline on which we hang up a sequence of numbers for display" - H. Wilf

We do not worry about convergence!

Example

Let \mathcal{D}_n be the set of Dyck paths with length n.

$$C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n$$

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty} a_n z^n.$$

 "A generating function is a clothesline on which we hang up a sequence of numbers for display" - H. Wilf

We do not worry about convergence!

Example

Let \mathcal{D}_n be the set of Dyck paths with length n.

$$C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n = \frac{1 - \sqrt{1 - 4z}}{2z}$$

The generating function for a sequence of integers

 $a_0, a_1, a_2, a_3, \ldots$

is the "formal" series

$$\sum_{n=0}^{\infty} a_n z^n.$$

- "A generating function is a clothesline on which we hang up a sequence of numbers for display" - H. Wilf
- We do not worry about convergence!

Example

Let \mathcal{D}_n be the set of Dyck paths with length n.

$$C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n = \frac{1 - \sqrt{1 - 4z}}{2z}$$
$$= 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + \cdots$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲目 ● ● ●

In 1990 Bóna proved the following celebrated result

$$\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

In 1990 Bóna proved the following celebrated result

$$\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our Proof

6257413 →

*S*_n(2314)

In 1990 Bóna proved the following celebrated result

$$\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our Proof

In 1990 Bóna proved the following celebrated result

$$\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

(日)、

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

▶ In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

All 231-avoiding f.r.p. are counted by

$$\frac{54z}{1+36z-(1-12z)^{3/2}} = 1+z+3z^2+14z^3+83z^4+\cdots$$

・ロト・日本・モート モー うへぐ

In 2012, D. Callan and V. Kotesovec conjectured that

$$\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}$$
$$= 1 + z + 2z + 6z^2 + 22z^3 + \cdots$$

where C(z) is the generating function for the Catalan numbers.

All 231-avoiding f.r.p. are counted by

$$\frac{54z}{1+36z-(1-12z)^{3/2}} = 1+z+3z^2+14z^3+83z^4+\cdots$$

 New enumerative results in the theory of perfect matchings and set partitions.

Thank you!

<□ > < @ > < E > < E > E のQ @