Patterns, Permutations, and Placements

Jonathan S. Bloom

Dartmouth College

Wake Forest University - February 2014
Permutations

Definition

A permutation of length \(n \) is a rearrangement of the numbers \(1, 2, \ldots, n \).

Notation

Let \(S_n \) denote the set of all permutations of length \(n \).

Example

\(S_3 = \{123, 132, 213, 231, 312, 321\} \), and \(|S_n| = n! \).
Permutations

Definition
A permutation of length n is a rearrangement of the numbers $1, 2, \ldots, n$.

Notation
Let S_n denote the set of all permutations of length n.

Example
$S_3 = \{123, 132, 213, 231, 312, 321\}$, and $|S_n| = n!$.
Permutations

Definition
A permutation of length n is a rearrangement of the numbers $1, 2, \ldots, n$.

Notation
Let S_n denote the set of all permutations of length n.
Permutations

Definition
A permutation of length n is a rearrangement of the numbers $1, 2, \ldots, n$.

Notation
Let S_n denote the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$
Permutations

Definition
A permutation of length n is a rearrangement of the numbers $1, 2, \ldots, n$.

Notation
Let S_n denote the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$

and

$$|S_n| =$$
Permutations

Definition
A permutation of length n is a rearrangement of the numbers $1, 2, \ldots, n$.

Notation
Let S_n denote the set of all permutations of length n.

Example

$$S_3 = \{123, 132, 213, 231, 312, 321\},$$

and

$$|S_n| = n!$$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3\ 1\ 2\ 5\ 4$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

\[\begin{array}{c}
3 \\
\end{array}\]

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$

\[\begin{array}{c}
3 \\
\end{array}\]
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

\[\alpha = 3 \ 1 \ 2 \ 5 \ 4 \]

\[\pi = 3 \ 1 \ 4 \ 5 \ 2 \]

Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called \textit{stack sorting}.

Examples

\begin{itemize}
\item Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$
\end{itemize}
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let \(\alpha = 3 \ 1 \ 2 \ 5 \ 4 \)

Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3\ 1\ 2\ 5\ 4$

Let $\pi = 3\ 1\ 4\ 5\ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

$\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable

$\pi = 3 \ 1 \ 2 \ 5 \ 4$ is stack-sortable
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3\ 1\ 2\ 5\ 4$

$\pi = 3\ 1\ 4\ 5\ 2$

π is not stack-sortable.
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called *stack sorting*.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 1 2 5 4$

- α is stack-sortable
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called "stack sorting".

Examples

Let \(\alpha = 3 \ 1 \ 2 \ 5 \ 4 \) ▶ \(\alpha \) is stack-sortable

Let \(\pi = 3 \ 1 \ 4 \ 5 \ 2 \)
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let \(\alpha = 3 \ 1 \ 2 \ 5 \ 4 \)
- \(\alpha \) is stack-sortable

Let \(\pi = 3 \ 1 \ 4 \ 5 \ 2 \)
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$
- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α is **stack-sortable**

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$

Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$
- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$
- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α **is stack-sortable**

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$

```plaintext
1 2 3 4 5
```

```plaintext
1 2
```

```plaintext
5
4
3
```
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let $\alpha = 3\ 1\ 2\ 5\ 4$

$\triangleright \alpha$ is stack-sortable

Let $\pi = 3\ 1\ 4\ 5\ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$

- π is not stack-sortable
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let $\alpha = 3 \ 1 \ 2 \ 5 \ 4$

- α is stack-sortable

Let $\pi = 3 \ 1 \ 4 \ 5 \ 2$
Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called **stack sorting**.

Examples

Let \(\alpha = 3\ 1\ 2\ 5\ 4 \)
- \(\alpha \) is stack-sortable

Let \(\pi = 3\ 1\ 4\ 5\ 2 \)
- \(\pi \) is NOT stack-sortable
Stack Sorting

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Examples
Stack Sorting

Question
Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)
π is NOT stack-sortable \iff π has three entries whose relative ordering is “231”.

Examples
Question

Why is $\alpha = 3\ 1\ 2\ 5\ 4$ stack-sortable, while $\pi = 3\ 1\ 4\ 5\ 2$ is NOT?

Theorem (D. Knuth 1968)

π is NOT stack-sortable \iff π has three entries whose relative ordering is “231”.

Examples

$\pi = 3\ 1\ 4\ 5\ 2$ is NOT stack-sortable
Stack Sorting

Question
Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)
π is NOT stack-sortable \iff π has three entries whose relative ordering is “231”.

Examples

$\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable
$\implies \pi \ contains \ the \ pattern \ 231$
Stack Sorting

Question
Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)
π is NOT stack-sortable \iff π has three entries whose relative ordering is “231”.

Examples

$\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable
$\Rightarrow \pi$ contains the pattern 231

$\alpha = 3 \ 1 \ 2 \ 5 \ 4$ is stack-sortable
Stack Sorting

Question

Why is $\alpha = 3 \ 1 \ 2 \ 5 \ 4$ stack-sortable, while $\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT?

Theorem (D. Knuth 1968)

π is NOT stack-sortable $\iff \pi$ has three entries whose relative ordering is “231”.

Examples

$\pi = 3 \ 1 \ 4 \ 5 \ 2$ is NOT stack-sortable

$\implies \pi$ contains the pattern 231

$\alpha = 3 \ 1 \ 2 \ 5 \ 4$ is stack-sortable

$\implies \alpha$ avoid the pattern 231
Permutation Patterns

It's easier with pictures!

$$\pi = 31452$$
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]

\[\begin{array}{cccc}
\times & \\
\end{array} \]

\[\Rightarrow \]

\[\pi \text{ contains } 123 \]
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]

[Diagram of a permutation pattern with marked cells]

- \(\pi \) contains 123

Notation

Let \(S_n(\tau) \) be the set of permutations of length \(n \) that avoid \(\tau \).
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]

\[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \\
\times & & \\
\end{array} \]

- \(\pi \) contains 123
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]

\[\begin{array}{ccc}
\times & \times \\
\times & & \\
& & \times \\
& \times & \\
\end{array} \]

- \(\pi \) contains 123
- \(\pi \) contains 213
Permutation Patterns

It's easier with pictures!

\[\pi = 31452 \quad \rightarrow \quad \begin{array}{cccc}
\times & \times & \times & \\
\times & \times & \times & \\
\times & \times & \times & \\
\end{array} \]

- \(\pi \) contains 123
- \(\pi \) contains 213

Notation

Let \(S_n(\tau) \) be the set of permutations of length \(n \) that avoid \(\tau \).
Permutation Patterns

Its easier with pictures!

\[\pi = 31452 \]

\(\rightarrow \)

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\end{array} \]

\[\begin{array}{c}
\text{\(\pi \) contains 123} \\
\text{\(\pi \) contains 213} \\
\text{\(\pi \) avoids 321} \\
\end{array} \]
Permutation Patterns

It's easier with pictures!

\[\pi = 31452 \]

\[\begin{array}{c|c|c|c|c|c}
\hline & & & & & \\
\hline \end{array} \]

- \(\pi \) contains 123
- \(\pi \) contains 213
- \(\pi \) avoids 321

Notation

Let \(S_n(\tau) \) be the set of permutations of length \(n \) that avoid \(\tau \).
Definition
We say two patterns $\tau, \sigma \in S_k$ are \textbf{Wilf-equivalent} provided

$$|S_n(\tau)| = |S_n(\sigma)|$$

for all n.
Example (Patterns of length 2)

What permutations avoid 21?

\[S^2 = \{12, 21\} \]

\[S^3(21) = \{123\} \]

In general, \[S^n(21) = \{123\ldots n\} \].

\[S^n(12) = \{n\ldots 321\} \]

\[12 \text{ is Wilf-equivalent to } 21 \]
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]
Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2(21) = \{12\}. \]
Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2(21) = \{12\}. \]

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

⇒ \[S_2(21) = \{12\} \].

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

⇒ \[S_3(21) = \{123\} \].

12 is Wilf-equivalent to 21.
Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2(21) = \{12\}. \]

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[\Rightarrow S_3(21) = \{123\}. \]

In general,

\[S_n(21) = \]
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2(21) = \{12\} \]

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[\Rightarrow S_3(21) = \{123\} \]

In general,

\[S_n(21) = \{123 \ldots n\} \]
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2 (21) = \{12\}. \]

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[\Rightarrow S_3 (21) = \{123\}. \]

In general,

\[S_n (21) = \{123 \ldots n\}. \]

\[S_n (12) = \]
Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

⇒ \[S_2(21) = \{12\} \].

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

⇒ \[S_3(21) = \{123\} \].

In general,

\[S_n(21) = \{123 \ldots n\} \].

\[S_n(12) = \{n \ldots 321\} \].
Example (Patterns of length 2)

What permutations avoid 21?

\[S_2 = \{12, 21\} \]

\[\Rightarrow S_2(21) = \{12\}. \]

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[\Rightarrow S_3(21) = \{123\}. \]

In general,

\[S_n(21) = \{123 \ldots n\}. \]

\[S_n(12) = \{n \ldots 321\}. \]

\[\Rightarrow 12 \text{ is Wilf-equivalent to } 21 \]
Patterns of length 3

What permutations avoid 321?
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[S_3(321) = \{123, 132, 213, 231, 312\} \]
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[S_3(321) = \{123, 132, 213, 231, 312\} \]

\[|S_3(321)| = 5 \]
\[|S_4(321)| = 14 \]
\[|S_5(321)| = 42 \]
\[\vdots \]
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[S_3(321) = \{123, 132, 213, 231, 312\} \]

\[|S_3(321)| = 5 \]
\[|S_4(321)| = 14 \]
\[|S_5(321)| = 42 \]

\[\vdots \]

\[|S_n(321)| = \frac{1}{n+1} \binom{2n}{n} \]

In fact, this is true for ALL length 3 patterns!!
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[S_3(321) = \{123, 132, 213, 231, 312\} \]

\[|S_3(321)| = 5 \]
\[|S_4(321)| = 14 \]
\[|S_5(321)| = 42 \]

\[\vdots \]

\[|S_n(321)| = \frac{1}{n+1} \binom{2n}{n} = nth \text{ Catalan number} \]
Patterns of length 3

What permutations avoid 321?

\[S_3 = \{123, 132, 213, 231, 312, 321\} \]

\[S_3(321) = \{123, 132, 213, 231, 312\} \]

\[|S_3(321)| = 5 \]
\[|S_4(321)| = 14 \]
\[|S_5(321)| = 42 \]

\[\vdots \]

\[|S_n(321)| = \frac{1}{n+1} \binom{2n}{n} = n\text{th Catalan number} \]

In fact, this is true for ALL length 3 patterns!!
Patterns of length 3

What permutations avoid 321?

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

$$\therefore S_3(321) = \{123, 132, 213, 231, 312\}$$

$$|S_3(321)| = 5$$
$$|S_4(321)| = 14$$
$$|S_5(321)| = 42$$

$$\therefore \quad |S_n(321)| = \frac{1}{n+1} \binom{2n}{n} = nth \text{ Catalan number}$$

In fact, this is true for ALL length 3 patterns!!

\(\therefore\) ALL length 3 patterns are Wilf-equivalent
Patterns of length 4

Things get messy...
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.

What is known?
▶ I. Gessel (1990) gave a formula for $|S_n(1234)|$.
▶ M. Bóna (1997) gave a formula for $|S_n(2314)|$.

Open Problem
Find a formula for $|S_n(1324)|$.
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

$$2314 \quad 1234 \quad 1324$$

What is known?
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

- I. Gessel (1990) gave a formula for $|S_n(1234)|$
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

\Rightarrow NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

$2314 \quad 1234 \quad 1324$

What is known?

- I. Gessel (1990) gave a formula for $|S_n(1234)|$
- M. Bóna (1997) gave a formula for $|S_n(2314)|$
Patterns of length 4

Things get messy...

<table>
<thead>
<tr>
<th>$n =$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_n(2314)</td>
<td>$</td>
<td>103</td>
<td>512</td>
<td>2740</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1234)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2761</td>
</tr>
<tr>
<td>$</td>
<td>S_n(1324)</td>
<td>$</td>
<td>103</td>
<td>513</td>
<td>2762</td>
</tr>
</tbody>
</table>

⇒ NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

$$2314 \quad 1234 \quad 1324$$

What is known?

- I. Gessel (1990) gave a formula for $|S_n(1234)|$
- M. Bóna (1997) gave a formula for $|S_n(2314)|$

Open Problem

Find a formula for $|S_n(1324)|$.
Definition
A **Ferrers Board** F is a square array of boxes with a “bite” taken out of the northeast corner.
Rook Placements

Definition
A **Ferrers Board** F is a square array of boxes with a “bite” taken out of the northeast corner.

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
| | | | | | | | |
\hline
| | | | | | | | |
\hline
| | | | | | | | |
\hline
| | | | | | | | |
\hline
| | | | | | | | |
\hline
\end{array}
\]
Rook Placements

Definition

A **Ferrers Board** F is a square array of boxes with a “bite” taken out of the northeast corner.
Rook Placements

Definition
A Ferrers Board F is a square array of boxes with a “bite” taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of markers with EXACTLY one in each row and column.
Rook Placements

Definition
A **Ferrers Board** F is a square array of boxes with a “bite” taken out of the northeast corner.

![Diagram of Ferrers Board]

A **full rook placement** (f.r.p.) on F is a placement of markers with *EXACTLY* one in each row and column.
Rook Placements

Definition
A Ferrers Board F is a square array of boxes with a “bite” taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of markers with EXACTLY one in each row and column.

Notation
$\mathcal{R}_F =$ set of all f.r.p.’s on the fixed board F
Rook Placements

This f.r.p. contains the pattern 312

This f.r.p. avoids the pattern 231

Notation

$R_F(\tau) = \text{set of all f.r.p. on } F \text{ that avoid } \tau$.
Rook Placements

This f.r.p. contains the pattern 312
Rook Placements

This f.r.p. **contains** the pattern 312
This f.r.p. *contains* the pattern 312
Rook Placements

- This f.r.p. **contains** the pattern 312
- This f.r.p. **avoids** the pattern 231
Rook Placements

- This f.r.p. **contains** the pattern 312
- This f.r.p. **avoids** the pattern 231
Rook Placements

- This f.r.p. contains the pattern 312
- This f.r.p. avoids the pattern 231

Notation

- $\mathcal{R}_F(\tau) = \text{set of all f.r.p. on } F \text{ that avoid } \tau$.
Rook Placements

Definition

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for every Ferrers board F

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- $123\ldots k \sim k\ldots321$ (J. Backlin, J. West, and G. Xin, 2000)
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- 123...$k \sim k...321$ (J. Backlin, J. West, and G. Xin, 2000)
- 231 \sim 312 (Z. Stankova and J. West, 2002)
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- $123 \ldots k \sim k \ldots 321$ (J. Backlin, J. West, and G. Xin, 2000)
- $231 \sim 312$ (Z. Stankova and J. West, 2002)
 - Complicated proof
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent and write $\sigma \sim \tau$ if for every Ferrers board F

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- $123 \ldots k \sim k \ldots 321$ (J. Backlin, J. West, and G. Xin, 2000)
- $231 \sim 312$ (Z. Stankova and J. West, 2002)
 - Complicated proof \Rightarrow can’t count things
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- 123...$k \sim k$...321 (J. Backlin, J. West, and G. Xin, 2000)
- 231 \sim 312 (Z. Stankova and J. West, 2002)
 - Complicated proof \Rightarrow can’t count things
- We give a simple proof that 231 \sim 312
Rook Placements

Definition
We say two patterns $\sigma, \tau \in S_k$ are \textbf{shape-Wilf-equivalent} and write $\sigma \sim \tau$ if for every Ferrers board F

$$|R_F(\sigma)| = |R_F(\tau)|.$$

Note: shape-Wilf equivalence \Rightarrow Wilf-equivalence.

- $123 \ldots k \sim k \ldots 321$ (J. Backlin, J. West, and G. Xin, 2000)
- $231 \sim 312$ (Z. Stankova and J. West, 2002)
 - Complicated proof \Rightarrow can’t count things
- We give a simple proof that $231 \sim 312$
 - Can count things!
Dyck Paths

A Dyck path of size n is a path that:
- starts at the origin
- ends at the point $(2^n, 0)$
- never goes below the x-axis
A Dyck path of size \(n \) is a path that:

▶ starts at the origin
▶ ends at the point \((2^n, 0)\)
▶ never goes below the x-axis
A **Dyck path** of size n is a path that:

- starts at the origin
- ends at the point $(2^n, 0)$
- never goes below the x-axis
A **Dyck path** of size n is a path that:

- starts at the origin
A **Dyck path** of size n is a path that:

- starts at the origin
- ends at the point $(2n, 0)$
A **Dyck path** of size n is a path that:

- starts at the origin
- ends at the point $(2n, 0)$
- never goes below the x-axis
We label the Dyck path so that:

- **Monotonicity**: +1 for an up step and −1 for a down step.
- **Zero Condition**: All zeros lie precisely on the x-axis.
- **Tunnel Property**: "Left" ≤ "Right".
We label the Dyck path so that:

- **Monotonicity**
 - $+1/0$ up step and $-1/0$ down step

- **Zero Condition**
 - All zeros lie precisely on the x-axis

- **Tunnel Property**
 - "Left" \leq "Right"
We label the Dyck path so that:

- **Monotonicity**
 - $+1/0$ up step and $-1/0$ down step

- **Zero Condition**
 - All zeros lie precisely on the x-axis
Labeled Dyck paths

We label the Dyck path so that:

- **Monotonicity**
 - $+1/0$ up step and $-1/0$ down step

- **Zero Condition**
 - All zeros lie precisely on the x-axis

- **Tunnel Property**
 - “Left” \leq “Right”
Our proof of $231 \sim 312$

An outline
Our proof of $231 \sim 312$

An outline

1. 231-avoiding rook placement \mapsto Tunnel property
Our proof of $231 \sim 312$

An outline

1. 231-avoiding rook placement \leftrightarrow Tunnel property
2. Tunnel Property \leftrightarrow Reverse Tunnel Property
Our proof of $231 \sim 312$

An outline

1. 231-avoiding rook placement \iff Tunnel property
2. Tunnel Property \iff Reverse Tunnel Property
3. Reverse Tunnel Property \iff 312-avoiding rook placement
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

\[
\begin{array}{cccccccc}
\times & \times \\
\times & \\
\times & \times & \times & \times & \times & \times & \\
\times & \times & \times & \times & \times & \\
\times & \times & \times & \times & \\
\times & \times & \times & \\
\times & \\
\end{array}
\]

$\mathcal{R}_F(231)$
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

$\mathcal{R}_F(231)$
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

$\mathcal{R}_F(231)$
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

$$\mathcal{R}_F(231)$$
Our proof of 231 \sim 312

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property

$\mathcal{R}_F(231)$
Our proof of $231 \sim 312$

1. 231-avoiding f.r.p. \Rightarrow Tunnel property
Our proof of $231 \sim 312$

2. Tunnel property \Rightarrow Reverse tunnel property
Our proof of $231 \sim 312$

2. Tunnel property \Rightarrow Reverse tunnel property
Our proof of $231 \sim 312$

2. Tunnel property \Rightarrow Reverse tunnel property
Our proof of $231 \sim 312$

2. Tunnel property \Rightarrow Reverse tunnel property
Our proof of $231 \sim 312$

2. Tunnel property \Rightarrow Reverse tunnel property
Our proof of $231 \sim 312$

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

\[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
2 \\
1 \\
2 \\
1 \\
1 \\
\end{array} \]

\[\begin{array}{c}
3 \\
2 \\
1 \\
1 \\
1 \\
0 \\
\end{array} \]

\[\geq \]

Theorem (Bloom–Saracino '11)

This mapping is a bijection between $R_F(231)$ and $R_F(312)$.

\Rightarrow 231 and 312 are shape-Wilf-equivalent.
Our proof of $231 \sim 312$

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

\[
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 2 & 1 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}
\end{array}
\]

\geq

$\mathcal{R}_F(312)$
Our proof of $231 \sim 312$

3. Reverse tunnel property \Rightarrow 312-avoiding f.r.p.

Theorem (Bloom–Saracino ’11)

This mapping is a bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$.

\Rightarrow 231 and 312 are shape-Wilf-equivalent.
Generating Functions

The **generating function** for a sequence of integers

\[a_0, a_1, a_2, a_3, \ldots \]

is the “formal” series

\[\sum_{n=0}^{\infty} a_n z^n. \]
Generating Functions

The **generating function** for a sequence of integers

\[a_0, a_1, a_2, a_3, \ldots \]

is the “formal” series

\[\sum_{n=0}^{\infty} a_n z^n. \]

▶ “A generating function is a clothesline on which we hang up a sequence of numbers for display” - H. Wilf

Example

Let \(D_n \) be the set of Dyck paths with length \(n \).

\[
C(z) = \sum_{n=0}^{\infty} |D_n| z^n = 1 - \sqrt{1 - 4z^2} = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + \cdots
\]
Generating Functions

The **generating function** for a sequence of integers $a_0, a_1, a_2, a_3, \ldots$

is the “formal” series

$$
\sum_{n=0}^{\infty} a_n z^n.
$$

- “A generating function is a clothesline on which we hang up a sequence of numbers for display” - H. Wilf
- We do not worry about convergence!
Generating Functions

The generating function for a sequence of integers \(a_0, a_1, a_2, a_3, \ldots \)
is the “formal” series

\[
\sum_{n=0}^{\infty} a_n z^n.
\]

▶ “A generating function is a clothesline on which we hang up a sequence of numbers for display” - H. Wilf
▶ We do not worry about convergence!

Example

Let \(\mathcal{D}_n \) be the set of Dyck paths with length \(n \).

\[
C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n
\]
Generating Functions

The **generating function** for a sequence of integers \(a_0, a_1, a_2, a_3, \ldots \)

is the “formal” series

\[
\sum_{n=0}^{\infty} a_n z^n.
\]

▶ “A generating function is a clothesline on which we hang up a sequence of numbers for display” - H. Wilf
▶ We do not worry about convergence!

Example

Let \(\mathcal{D}_n \) be the set of Dyck paths with length \(n \).

\[
C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n = \frac{1 - \sqrt{1 - 4z}}{2z}
\]
Generating Functions

The **generating function** for a sequence of integers $a_0, a_1, a_2, a_3, \ldots$

is the “formal” series

$$\sum_{n=0}^{\infty} a_n z^n.$$

▶ “A generating function is a clothesline on which we hang up a sequence of numbers for display” - H. Wilf
▶ We do not worry about convergence!

Example

Let \mathcal{D}_n be the set of Dyck paths with length n.

$$C(z) = \sum_{n=0}^{\infty} |\mathcal{D}_n| z^n = \frac{1 - \sqrt{1 - 4z}}{2z}$$

$$= 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + \cdots$$
In 1990 Bona proved the following celebrated result
\[\sum_{n=0}^{\infty} |S_n(2314)| z^n = 32z + 20z - 8z^2 - \frac{(1-8z)^3}{2}. \]

Our Proof
Enumerative Results: 2314-Avoiding Permutations

In 1990 Bóna proved the following celebrated result

\[
\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}.
\]
In 1990 Bóna proved the following celebrated result

\[
\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}.
\]

Our Proof

\[6257413 \rightarrow S_n(2314)\]
Enumerative Results: 2314-Avoiding Permutations

In 1990 Bóna proved the following celebrated result

\[\sum_{n=0}^{\infty} |S_n(2314)|z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}. \]

Our Proof

\[6257413 \rightarrow \]

\[S_n(2314) \quad R_F(231) \]
Enumerative Results: 2314-Avoiding Permutations

In 1990 Bóna proved the following celebrated result

\[
\sum_{n=0}^{\infty} |S_n(2314)| z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}.
\]

Our Proof

\[
6257413 \quad \rightarrow \quad S_n(2314) \quad \rightarrow \quad R_F(231) \quad \leq \quad \text{Graph}
\]
In 2012, D. Callan and V. Kotesovec conjectured that
\[
\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = 1 - C(zC(z)) = 1 + z + 2z^2 + 6z^3 + 22z^4 + \cdots
\]
where $C(z)$ is the generating function for the Catalan numbers.

All 231-avoiding f.r.p. are counted by
\[
\frac{54z}{32} - \frac{(1 - 12z)^3}{2} = 1 + z + 3z^2 + 14z^3 + 83z^4 + \cdots
\]

New enumerative results in the theory of perfect matchings and set partitions.
New Enumerative Results

- In 2012, D. Callan and V. Kotesovec conjectured that

\[
\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))} = 1 + z + 2z + 6z^2 + 22z^3 + \cdots
\]

where \(C(z)\) is the generating function for the Catalan numbers.
New Enumerative Results

- In 2012, D. Callan and V. Kotesovec conjectured that

\[
\sum_{n=0}^{\infty} |S_n(2314, 1234)| z^n = \frac{1}{1 - C(zC(z))}
\]

\[
= 1 + z + 2z + 6z^2 + 22z^3 + \cdots
\]

where \(C(z) \) is the generating function for the Catalan numbers.

- All 231-avoiding f.r.p. are counted by

\[
\frac{54z}{1 + 36z - (1 - 12z)^{3/2}} = 1 + z + 3z^2 + 14z^3 + 83z^4 + \cdots
\]
New Enumerative Results

- In 2012, D. Callan and V. Kotesovec conjectured that

\[
\sum_{n=0}^{\infty} |S_n(2314, 1234)|z^n = \frac{1}{1 - C(zC(z))} = 1 + z + 2z + 6z^2 + 22z^3 + \cdots
\]

where \(C(z) \) is the generating function for the Catalan numbers.

- All 231-avoiding f.r.p. are counted by

\[
\frac{54z}{1 + 36z - (1 - 12z)^{3/2}} = 1 + z + 3z^2 + 14z^3 + 83z^4 + \cdots
\]

- New enumerative results in the theory of perfect matchings and set partitions.
Thank you!