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Permutations

Definition
A permutation of length n is a rearrangement of the numbers

1, 2, . . . , n.

Notation
Let Sn denote the set of all permutations of length n.

Example

S3 = {123, 132, 213, 231, 312, 321},

and
|Sn| = n!
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Stack Sorting

D. Knuth (1968) defined a sorting algorithm, called stack sorting.

Examples

Let α = 3 1 2 5 4

I α is stack-sortable
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Stack Sorting

Question
Why is α = 3 1 2 5 4 stack-sortable, while π = 3 1 4 5 2 is NOT?

Theorem (D. Knuth 1968)

π is NOT stack-sortable ⇐⇒ π has three entries whose relative
ordering is “231”.

Examples

⇒ π contains the pattern 231

α = 3 1 2 5 4 is stack-sortable
⇒ α avoid the pattern 231
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Its easier with pictures!
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× I π contains 123

I π contains 213

I π avoids 321

Notation
Let Sn(τ) be the set of permutations of length n that avoid τ .
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Permutation Patterns

Definition
We say two patterns τ, σ ∈ Sk are Wilf-equivalent provided

|Sn(τ)| = |Sn(σ)|

for all n.



Permutation Patterns

Example (Patterns of length 2)

What permutations avoid 21?

S2 = {12, 21}

⇒ S2(21) = {12}.

S3 = {123, 132, 213, 231, 312, 321}

⇒ S3(21) = {123}.

In general,
Sn(21) = {123 . . . n}.

Sn(12) = {n . . . 321}.

⇒ 12 is Wilf-equivalent to 21
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Patterns of length 3

What permutations avoid 321?

S3 = {123, 132, 213, 231, 312, 321}

I S3(321) = {123, 132, 213, 231, 312}

|S3(321)| = 5

|S4(321)| = 14

|S5(321)| = 42

...

|Sn(321)| =
1

n + 1

(
2n

n

)
= nth Catalan number

In fact, this is true for ALL length 3 patterns!!

I ALL length 3 patterns are Wilf-equivalent
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Patterns of length 4
Things get messy...

n = 5 6 7 8 9

|Sn(2314)| 103 512 2740 15485 91245

|Sn(1234)| 103 513 2761 15767 94359

|Sn(1324)| 103 513 2762 15793 94776

⇒ NOT all patterns of length 4 are Wilf-equivalent.

In fact, every pattern of length 4 is Wilf-equivalent to one of:

2314 1234 1324

What is known?

I I. Gessel (1990) gave a formula for |Sn(1234)|
I M. Bóna (1997) gave a formula for |Sn(2314)|

Open Problem

Find a formula for |Sn(1324)|.
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Rook Placements

Definition
A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

F =

×
×

×
×

×

×
×

A full rook placement (f.r.p.) on F is a placement of markers
with EXACTLY one in each row and column.

Notation
RF = set of all f.r.p.’s on the fixed board F
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Rook Placements

Definition
We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent and
write σ ∼ τ if for every Ferrers board F

|RF (σ)| = |RF (τ)|.

Note: shape-Wilf equivalence ⇒Wilf-equivalence.

I 123 . . . k ∼ k . . . 321 (J. Backlin, J. West, and G. Xin, 2000)
I 231 ∼ 312 (Z. Stankova and J. West, 2002)

- Complicated proof ⇒ can’t count things

I We give a simple proof that 231 ∼ 312

- Can count things!
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I starts at the origin

I ends at the point (2n, 0)

I never goes below the x-axis
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I Zero Condition

- All zeros lie precisely on the x-axis

I Tunnel Property

- “Left” ≤ “Right”
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2. Tunnel Property 7→ Reverse Tunnel Property

3. Reverse Tunnel Property 7→ 312-avoiding rook placement
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2. Tunnel property ⇒ Reverse tunnel property
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3. Reverse tunnel property ⇒ 312-avoiding f.r.p.
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⇒ 231 and 312 are shape-Wilf-equivalent.
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Generating Functions
The generating function for a sequence of integers

a0, a1, a2, a3, . . .

is the “formal” series
∞∑
n=0

anz
n.

I “A generating function is a clothesline on which we hang up a
sequence of numbers for display” - H. Wilf

I We do not worry about convergence!

Example

Let Dn be the set of Dyck paths with length n.

C (z) =
∞∑
n=0

|Dn|zn

=
1−
√

1− 4z

2z

= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · ·
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Enumerative Results: 2314-Avoiding Permutations

In 1990 Bóna proved the following celebrated result
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32z
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New Enumerative Results

I In 2012, D. Callan and V. Kotesovec conjectured that

∞∑
n=0

|Sn(2314, 1234)|zn =
1

1− C (zC (z))

= 1 + z + 2z + 6z2 + 22z3 + · · ·

where C (z) is the generating function for the Catalan
numbers.

I All 231-avoiding f.r.p. are counted by

54z

1 + 36z − (1− 12z)3/2
= 1 + z + 3z2 + 14z3 + 83z4 + · · ·

I New enumerative results in the theory of perfect matchings
and set partitions.
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