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Definitions...
A Ferrers Board F is an n × n array of unit squares with a “bite”
taken out of the northeast corner.

F =

×
×

×
×

×
×

A full rook placement (f.r.p.) on F is a placement of n rooks so
that EXACTLY one is in each row and in each column.

Notation...

• Fn = set of all Ferrers boards that admit a f.r.p. of n rooks

• RF = set of all f.r.p.’s on F

• Rn =
⋃

F∈Fn

RF - Analogous to Sn.
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Pattern Avoidance in Rook Placements

A f.r.p. on F ∈ Fn avoids a pattern σ ∈ Sk if, for any rectangle
inside F the “permutation” in this rectangle avoids σ in the
classical sense.

×
×

×
×

×
×

• Contains 312

• Avoids 231

Read using cartesian coordinates!

Notation

• RF (σ) = set of f.r.p.’s on F that avoid σ

• Rn(σ) =
⋃

F∈Fn

RF (σ) - Analogous to Sn(σ).
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Analog of Wilf-equivalence

We say two patterns σ, τ ∈ Sk are shape-Wilf-equivalent if

|RF (σ)| = |RF (τ)|,

for any F ∈ Fn. In this case we write σ ∼ τ .

Observe:
Shape-Wilf-equivalence → classical Wilf-equivalence.

Theorem (Backlin-West-Xin ’01)

If σ ∼ τ and ρ is any other permutation then

σ ⊕ ρ ∼ τ ⊕ ρ.
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Patterns of Length 3
There are 3 (shape-Wilf) equivalence classes:

231 ∼ 312 < 123 ∼ 321 ∼ 213 < 132

Past Work:

• 123 ∼ 321 ∼ 213
- Backelin-West-Xin ’01, Krattenthaler ’06, Jeĺınek ’07
- Enumerated by noncrossing Dyck paths

• 231 ∼ 312

- Original proofs: Stankova-West ’02, Jeĺınek ’07
- Not enumerated

• Relative ordering
- Stankova ’06

Our Work:

• New proof that 231 ∼ 312 (Bloom-Saracino ’11)
- Previous proofs: nonbijective and complicated
- Our proof: Bijective and (we think) simple
- Yields enumerative results
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Our Proof that 231 ∼ 312
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Π

0 1 1 1 2
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0

LF (231)

Defining Properties of LF (231)

• Monotonicity:
- +1/0 Horizontal Step & -1/0 Vertical Step

• Zero Condition:
- All zeros are along the main diagonal (red line)

• Diagonal Property:
- Upper ≤ Lower
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Proof of 231 ∼ 312

Theorem (Bloom-Saracino ’11)

The mapping
Π : RF (231)→ LF (231)

is a bijection.

Similarly, we have a bijection

Θ : RF (312)→ LF (312),

where LF (312) = the set of labelings with the reverse diagonal
property:

Upper ≥ Lower
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Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→

LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−
0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Proof of 231 ∼ 312

Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→

LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−
0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Proof of 231 ∼ 312

Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→ LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−
0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Proof of 231 ∼ 312

Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→ LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−

0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Proof of 231 ∼ 312

Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→ LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−
0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Proof of 231 ∼ 312

Corollary (Bloom-Saracino ’11)

There exists an explicit (and simple) bijection between RF (231)
and RF (312), i.e., 231 ∼ 312.

“Proof:”

RF (231)
Π←−−−→ LF (231)

??←−−−−−−−→ LF (312)
Θ←−−−→ RF (312)

0 2 3 4 5

4

3

2

3 4

3

2

0

−
0 1 1 1 2

2

2

1

1 2

2

1

0

LF (231)

=

0 1 2 3 3

2

1

1

2 2

1

1

0

LF (312)



Enumerative Results

Theorem (Bloom-Elizalde ’13)

∑
n≥0

|Rn(231)|zn =
∑
n≥0

|Ln(231)|zn =
54z

1 + 36z − (1− 12z)3/2
.

Further, we obtain

|Rn(231)| ∼ 33

25
√
πn5

12n.

Method:

• Obtained a functional equation by applying standard Dyck
path decompositions to our labeled Dyck paths.
• Solved using the quadratic method; due to Tutte for

counting rooted planar maps.

- In fact the set of labelings with the monotone and diagonal
properties are in bijection with rooted planar maps!
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A Few Comments:

• The class 231 ∼ 312 is algebraic.

• The class 123 ∼ 321 ∼ 213 is D-finite but NOT algebraic.

• The class 132 is....

A Connection with Perfect Matchings

• The class 321 ∼ 123 ∼ 213 counts perfect matchings that
avoid:

321 (3-noncrossing) 123 (3-nonnesting) 213

- The class 231 ∼ 312 counts perfect matchings that avoid:
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Counting 2314−Avoiding Permutations

We view any π ∈ Sn(2314) as a f.r.p. on a minimal Ferrers board.

For example, π = 7165324 ∈ S7(2314) becomes:
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0

∈ R7(231)

→ The labels rounding any peak are of the form a, a + 1, a.

→ We say such labeling have the peak property.
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Counting 2314−Avoiding Permutations

Lemma (Bloom-Elizalde ’13)

Our bijection Π : Rn(231)→ Ln(231) induces a bijection

Π× : Sn(2314)→ L×n (231),

where L×n (231) ⊂ Ln(231) with the peak property.

→ Counting L×n (231) is simply a matter of “tweaking” the
method used to count Ln(231).

Doing so we obtain Bóna’s result:∑
n≥0

|Sn(2314)|zn =
∑
n≥0

|L×n (312)|zn =
32z

1 + 20z − 8z2 − (1− 8z)3/2
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