Another Look at Shape-Wilf-Equivalence and its Consequences

Jonathan Bloom
(Joint with Sergi Elizalde \& Dan Saracino)
Dartmouth College

July, 2013

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Notation...

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Notation...

- $\mathcal{F}_{n}=$ set of all Ferrers boards that admit a f.r.p. of n rooks

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Notation...

- $\mathcal{F}_{n}=$ set of all Ferrers boards that admit a f.r.p. of n rooks
- $\mathcal{R}_{F}=$ set of all f.r.p.'s on F

Definitions...

A Ferrers Board F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that EXACTLY one is in each row and in each column.

Notation...

- $\mathcal{F}_{n}=$ set of all Ferrers boards that admit a f.r.p. of n rooks
- $\mathcal{R}_{F}=$ set of all f.r.p.'s on F
- $\mathcal{R}_{n}=\bigcup_{F \in \mathcal{F}_{n}} \mathcal{R}_{F}$ - Analogous to S_{n}.

Pattern Avoidance in Rook Placements

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

- Contains 312

Read using cartesian coordinates!

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

- Contains 312
- Avoids 231

Read using cartesian coordinates!

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

- Contains 312
- Avoids 231

Read using cartesian coordinates!

Notation

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

- Contains 312
- Avoids 231

Read using cartesian coordinates!

Notation

- $\mathcal{R}_{F}(\sigma)=$ set of f.r.p.'s on F that avoid σ

Pattern Avoidance in Rook Placements

A f.r.p. on $F \in \mathcal{F}_{n}$ avoids a pattern $\sigma \in S_{k}$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

- Contains 312
- Avoids 231

Read using cartesian coordinates!

Notation

- $\mathcal{R}_{F}(\sigma)=$ set of f.r.p.'s on F that avoid σ
- $\mathcal{R}_{n}(\sigma)=\bigcup_{F \in \mathcal{F}_{n}} \mathcal{R}_{F}(\sigma)$ - Analogous to $S_{n}(\sigma)$.

Analog of Wilf-equivalence

Analog of Wilf-equivalence

We say two patterns $\sigma, \tau \in S_{k}$ are shape-Wilf-equivalent if

$$
\left|\mathcal{R}_{F}(\sigma)\right|=\left|\mathcal{R}_{F}(\tau)\right|,
$$

for any $F \in \mathcal{F}_{n}$.

Analog of Wilf-equivalence

We say two patterns $\sigma, \tau \in S_{k}$ are shape-Wilf-equivalent if

$$
\left|\mathcal{R}_{F}(\sigma)\right|=\left|\mathcal{R}_{F}(\tau)\right|,
$$

for any $F \in \mathcal{F}_{n}$. In this case we write $\sigma \sim \tau$.

Analog of Wilf-equivalence

We say two patterns $\sigma, \tau \in S_{k}$ are shape-Wilf-equivalent if

$$
\left|\mathcal{R}_{F}(\sigma)\right|=\left|\mathcal{R}_{F}(\tau)\right|
$$

for any $F \in \mathcal{F}_{n}$. In this case we write $\sigma \sim \tau$.

Observe:
Shape-Wilf-equivalence \rightarrow classical Wilf-equivalence.

Analog of Wilf-equivalence

We say two patterns $\sigma, \tau \in S_{k}$ are shape-Wilf-equivalent if

$$
\left|\mathcal{R}_{F}(\sigma)\right|=\left|\mathcal{R}_{F}(\tau)\right|
$$

for any $F \in \mathcal{F}_{n}$. In this case we write $\sigma \sim \tau$.

Observe:
Shape-Wilf-equivalence \rightarrow classical Wilf-equivalence.

Theorem (Backlin-West-Xin '01)
If $\sigma \sim \tau$ and ρ is any other permutation then

$$
\sigma \oplus \rho \sim \tau \oplus \rho
$$

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated
- Relative ordering
- Stankova '06

Our Work:

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213 \quad<\quad 132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated
- Relative ordering
- Stankova '06

Our Work:

- New proof that $231 \sim 312$ (Bloom-Saracino '11)

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
231 \sim 312<123 \sim 321 \sim 213<132
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated
- Relative ordering
- Stankova '06

Our Work:

- New proof that $231 \sim 312$ (Bloom-Saracino '11)
- Previous proofs: nonbijective and complicated

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
\begin{equation*}
231 \sim 312<123 \sim 321 \sim 213 \tag{132}
\end{equation*}
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated
- Relative ordering
- Stankova '06

Our Work:

- New proof that $231 \sim 312$ (Bloom-Saracino '11)
- Previous proofs: nonbijective and complicated
- Our proof: Bijective and (we think) simple

Patterns of Length 3

There are 3 (shape-Wilf) equivalence classes:

$$
\begin{equation*}
231 \sim 312<123 \sim 321 \sim 213 \tag{132}
\end{equation*}
$$

Past Work:

- 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
- Enumerated by noncrossing Dyck paths
- 231 ~ 312
- Original proofs: Stankova-West '02, Jelínek '07
- Not enumerated
- Relative ordering
- Stankova '06

Our Work:

- New proof that $231 \sim 312$ (Bloom-Saracino '11)
- Previous proofs: nonbijective and complicated
- Our proof: Bijective and (we think) simple
- Yields enumerative results

Our Proof that $231 \sim 312$

Our Proof that $231 \sim 312$

\times				
	\times			
			\times	
		\times		

Our Proof that $231 \sim 312$

\times			
	\times		

Our Proof that $231 \sim 312$

\times			
	\times		

Our Proof that $231 \sim 312$

Our Proof that $231 \sim 312$

$\mathcal{L}_{F}(231)$

Defining Properties of $\mathcal{L}_{F}(231)$

Our Proof that $231 \sim 312$

$\mathcal{L}_{F}(231)$

Defining Properties of $\mathcal{L}_{F}(231)$

- Monotonicity:
- $+1 / 0$ Horizontal Step \& $-1 / 0$ Vertical Step

Our Proof that $231 \sim 312$

$\mathcal{R}_{F}(231)$

$\mathcal{L}_{F}(231)$

Defining Properties of $\mathcal{L}_{F}(231)$

- Monotonicity:
- $+1 / 0$ Horizontal Step \& -1/0 Vertical Step
- Zero Condition:
- All zeros are along the main diagonal (red line)

Our Proof that $231 \sim 312$

$\mathcal{R}_{F}(231)$

$\mathcal{L}_{F}(231)$

Defining Properties of $\mathcal{L}_{F}(231)$

- Monotonicity:
- $+1 / 0$ Horizontal Step \& $-1 / 0$ Vertical Step
- Zero Condition:
- All zeros are along the main diagonal (red line)
- Diagonal Property:
- Upper \leq Lower

Proof of $231 \sim 312$

Theorem (Bloom-Saracino '11)
The mapping

$$
\Pi: \mathcal{R}_{F}(231) \rightarrow \mathcal{L}_{F}(231)
$$

is a bijection.

Proof of $231 \sim 312$

Theorem (Bloom-Saracino '11)
The mapping

$$
\Pi: \mathcal{R}_{F}(231) \rightarrow \mathcal{L}_{F}(231)
$$

is a bijection. Similarly, we have a bijection

$$
\Theta: \mathcal{R}_{F}(312) \rightarrow \mathcal{L}_{F}(312)
$$

Proof of $231 \sim 312$

Theorem (Bloom-Saracino '11)
The mapping

$$
\Pi: \mathcal{R}_{F}(231) \rightarrow \mathcal{L}_{F}(231)
$$

is a bijection. Similarly, we have a bijection

$$
\Theta: \mathcal{R}_{F}(312) \rightarrow \mathcal{L}_{F}(312)
$$

where $\mathcal{L}_{F}(312)=$ the set of labelings with the reverse diagonal property:

$$
\text { Upper } \geq \text { Lower }
$$

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and $\mathcal{R}_{F}(312)$, i.e., $231 \sim 312$.

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and \mathcal{R}_{F} (312), i.e., $231 \sim 312$.
"Proof:"
$\mathcal{R}_{F}(231) \longleftrightarrow \mathcal{L}_{F}(231)$
$\mathcal{L}_{F}(312) \stackrel{\Theta}{\longleftrightarrow} \mathcal{R}_{F}(312)$

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and \mathcal{R}_{F} (312), i.e., $231 \sim 312$.
"Proof:"
$\mathcal{R}_{F}(231) \longleftrightarrow \mathcal{L}_{F}(231) \longleftrightarrow ? \quad \mathcal{L}_{F}(312) \longleftrightarrow{ }^{\Theta} \mathcal{R}_{F}(312)$

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and $\mathcal{R}_{F}(312)$, i.e., $231 \sim 312$.
"Proof:"
$\mathcal{R}_{F}(231) \longleftrightarrow \mathcal{L}_{F}(231) \longleftrightarrow ? \quad \mathcal{L}_{F}(312) \stackrel{\ominus}{\longleftrightarrow} \mathcal{R}_{F}(312)$

$\mathcal{L}_{F}(231)$

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and $\mathcal{R}_{F}(312)$, i.e., $231 \sim 312$.
"Proof:"
$\mathcal{R}_{F}(231) \longleftrightarrow \mathcal{L}_{F}(231) \longleftrightarrow ? \quad \mathcal{L}_{F}(312) \stackrel{\ominus}{\longleftrightarrow} \mathcal{R}_{F}(312)$

Proof of $231 \sim 312$

Corollary (Bloom-Saracino '11)
There exists an explicit (and simple) bijection between $\mathcal{R}_{F}(231)$ and $\mathcal{R}_{F}(312)$, i.e., $231 \sim 312$.
"Proof:"
$\mathcal{R}_{F}(231) \longleftrightarrow \mathcal{L}_{F}(231) \longleftrightarrow ? \quad \mathcal{L}_{F}(312) \stackrel{\ominus}{\longleftrightarrow} \mathcal{R}_{F}(312)$

$\mathcal{L}_{F}(231)$

Enumerative Results

Enumerative Results

Theorem (Bloom-Elizalde '13)

$$
\sum_{n \geq 0}\left|\mathcal{R}_{n}(231)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}(231)\right| z^{n}=\frac{54 z}{1+36 z-(1-12 z)^{3 / 2}}
$$

Further, we obtain

$$
\left|\mathcal{R}_{n}(231)\right| \sim \frac{3^{3}}{2^{5} \sqrt{\pi n^{5}}} 12^{n}
$$

Enumerative Results

Theorem (Bloom-Elizalde '13)

$$
\sum_{n \geq 0}\left|\mathcal{R}_{n}(231)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}(231)\right| z^{n}=\frac{54 z}{1+36 z-(1-12 z)^{3 / 2}}
$$

Further, we obtain

$$
\left|\mathcal{R}_{n}(231)\right| \sim \frac{3^{3}}{2^{5} \sqrt{\pi n^{5}}} 12^{n}
$$

Method:

Enumerative Results

Theorem (Bloom-Elizalde '13)

$$
\sum_{n \geq 0}\left|\mathcal{R}_{n}(231)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}(231)\right| z^{n}=\frac{54 z}{1+36 z-(1-12 z)^{3 / 2}}
$$

Further, we obtain

$$
\left|\mathcal{R}_{n}(231)\right| \sim \frac{3^{3}}{2^{5} \sqrt{\pi n^{5}}} 12^{n} .
$$

Method:

- Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.

Enumerative Results

Theorem (Bloom-Elizalde '13)

$$
\sum_{n \geq 0}\left|\mathcal{R}_{n}(231)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}(231)\right| z^{n}=\frac{54 z}{1+36 z-(1-12 z)^{3 / 2}}
$$

Further, we obtain

$$
\left|\mathcal{R}_{n}(231)\right| \sim \frac{3^{3}}{2^{5} \sqrt{\pi n^{5}}} 12^{n}
$$

Method:

- Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.
- Solved using the quadratic method; due to Tutte for counting rooted planar maps.

Enumerative Results

Theorem (Bloom-Elizalde '13)

$$
\sum_{n \geq 0}\left|\mathcal{R}_{n}(231)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}(231)\right| z^{n}=\frac{54 z}{1+36 z-(1-12 z)^{3 / 2}}
$$

Further, we obtain

$$
\left|\mathcal{R}_{n}(231)\right| \sim \frac{3^{3}}{2^{5} \sqrt{\pi n^{5}}} 12^{n}
$$

Method:

- Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.
- Solved using the quadratic method; due to Tutte for counting rooted planar maps.
- In fact the set of labelings with the monotone and diagonal properties are in bijection with rooted planar maps!

Enumerative Results

A Few Comments:

Enumerative Results

A Few Comments:

- The class $231 \sim 312$ is algebraic.

Enumerative Results

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but NOT algebraic.

Enumerative Results

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but NOT algebraic.
- The class 132 is....

A Connection with Perfect Matchings

Enumerative Results

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but NOT algebraic.
- The class 132 is....

A Connection with Perfect Matchings

- The class $321 \sim 123 \sim 213$ counts perfect matchings that avoid:

123 (3-nonnesting)

Enumerative Results

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but NOT algebraic.
- The class 132 is....

A Connection with Perfect Matchings

- The class $321 \sim 123 \sim 213$ counts perfect matchings that avoid:

123 (3-nonnesting)

213

- The class $231 \sim 312$ counts perfect matchings that avoid:

231

312

Counting 2314-Avoiding Permutations

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.
For example, $\pi=7165324 \in S_{7}$ (2314) becomes:

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.
For example, $\pi=7165324 \in S_{7}$ (2314) becomes:

$$
\in \mathcal{R}_{7}(231)
$$

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.
For example, $\pi=7165324 \in S_{7}(2314)$ becomes:

$$
\in \mathcal{R}_{7}(231)
$$

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.
For example, $\pi=7165324 \in S_{7}$ (2314) becomes:

$$
\in \mathcal{R}_{7}(231)
$$

\rightarrow The labels rounding any peak are of the form $a, a+1, a$.

Counting 2314-Avoiding Permutations

We view any $\pi \in S_{n}(2314)$ as a f.r.p. on a minimal Ferrers board.
For example, $\pi=7165324 \in S_{7}$ (2314) becomes:

$$
\in \mathcal{R}_{7}(231)
$$

\rightarrow The labels rounding any peak are of the form $a, a+1, a$.
\rightarrow We say such labeling have the peak property.

Counting 2314-Avoiding Permutations

Lemma (Bloom-Elizalde '13)
Our bijection $\Pi: \mathcal{R}_{n}(231) \rightarrow \mathcal{L}_{n}(231)$ induces a bijection

$$
\Pi^{\times}: S_{n}(2314) \rightarrow \mathcal{L}_{n}^{\times}(231)
$$

where $\mathcal{L}_{n}^{\times}(231) \subset \mathcal{L}_{n}(231)$ with the peak property.

Counting 2314-Avoiding Permutations

Lemma (Bloom-Elizalde '13)
Our bijection $\Pi: \mathcal{R}_{n}(231) \rightarrow \mathcal{L}_{n}(231)$ induces a bijection

$$
\Pi^{\times}: S_{n}(2314) \rightarrow \mathcal{L}_{n}^{\times}(231)
$$

where $\mathcal{L}_{n}^{\times}(231) \subset \mathcal{L}_{n}(231)$ with the peak property.
\rightarrow Counting \mathcal{L}_{n}^{\times}(231) is simply a matter of "tweaking" the method used to count $\mathcal{L}_{n}(231)$.

Counting 2314-Avoiding Permutations

Lemma (Bloom-Elizalde '13)
Our bijection $\Pi: \mathcal{R}_{n}(231) \rightarrow \mathcal{L}_{n}(231)$ induces a bijection

$$
\Pi^{\times}: S_{n}(2314) \rightarrow \mathcal{L}_{n}^{\times}(231)
$$

where $\mathcal{L}_{n}^{\times}(231) \subset \mathcal{L}_{n}(231)$ with the peak property.
\rightarrow Counting $\mathcal{L}_{n}^{\times}(231)$ is simply a matter of "tweaking" the method used to count $\mathcal{L}_{n}(231)$.

Doing so we obtain Bóna's result:
$\sum_{n \geq 0}\left|S_{n}(2314)\right| z^{n}=\sum_{n \geq 0}\left|\mathcal{L}_{n}^{\times}(312)\right| z^{n}=\frac{32 z}{1+20 z-8 z^{2}-(1-8 z)^{3 / 2}}$.

