Another Look at Shape-Wilf-Equivalence and its Consequences

Jonathan Bloom (Joint with Sergi Elizalde & Dan Saracino)

Dartmouth College

July, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Notation...

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

Notation...

• \mathcal{F}_n = set of all Ferrers boards that admit a f.r.p. of *n* rooks

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

Notation...

• \mathcal{F}_n = set of all Ferrers boards that admit a f.r.p. of *n* rooks

• \mathcal{R}_F = set of all f.r.p.'s on F

A **Ferrers Board** F is an $n \times n$ array of unit squares with a "bite" taken out of the northeast corner.

A **full rook placement** (f.r.p.) on F is a placement of n rooks so that **EXACTLY** one is in each row and in each column.

Notation...

• \mathcal{F}_n = set of all Ferrers boards that admit a f.r.p. of *n* rooks

•
$$\mathcal{R}_F$$
 = set of all f.r.p.'s on F

•
$$\mathcal{R}_n = \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F$$
 - Analogous to S_n .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Read using cartesian coordinates!

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

• Contains 312

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Avoids 231

Read using cartesian coordinates!

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

• Contains 312

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Avoids 231

Read using cartesian coordinates!

Notation

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

• Contains 312

Avoids 231

Read using cartesian coordinates!

Notation

• $\mathcal{R}_{F}(\sigma) = set of f.r.p.'s on F that avoid <math>\sigma$

A f.r.p. on $F \in \mathcal{F}_n$ avoids a pattern $\sigma \in S_k$ if, for any rectangle inside F the "permutation" in this rectangle avoids σ in the classical sense.

• Contains 312

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Avoids 231

Read using cartesian coordinates!

Notation

- $\mathcal{R}_F(\sigma) = set of f.r.p.$'s on F that avoid σ
- $\mathcal{R}_n(\sigma) = \bigcup_{F \in \mathcal{F}_n} \mathcal{R}_F(\sigma)$ Analogous to $S_n(\sigma)$.

We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for any $F \in \mathcal{F}_n$.

We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if

$$|\mathcal{R}_{F}(\sigma)| = |\mathcal{R}_{F}(\tau)|,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for any $F \in \mathcal{F}_n$. In this case we write $\sigma \sim \tau$.

We say two patterns $\sigma, \tau \in S_k$ are shape-Wilf-equivalent if

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for any $F \in \mathcal{F}_n$. In this case we write $\sigma \sim \tau$.

$\begin{array}{l} \mbox{Observe:} \\ \mbox{Shape-Wilf-equivalence} \rightarrow \mbox{classical Wilf-equivalence.} \end{array}$

We say two patterns $\sigma, \tau \in S_k$ are **shape-Wilf-equivalent** if

$$|\mathcal{R}_F(\sigma)| = |\mathcal{R}_F(\tau)|,$$

for any $F \in \mathcal{F}_n$. In this case we write $\sigma \sim \tau$.

Observe: Shape-Wilf-equivalence \rightarrow classical Wilf-equivalence.

Theorem (Backlin-West-Xin '01) If $\sigma \sim \tau$ and ρ is any other permutation then

 $\sigma \oplus \rho \sim \tau \oplus \rho.$

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Enumerated by noncrossing Dyck paths

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

- Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

- Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07

- Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated
- Relative ordering
 - Stankova '06

Our Work:

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
 - Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated
- Relative ordering
 - Stankova '06

Our Work:

• New proof that 231 \sim 312 (Bloom-Saracino '11)

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
 - Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated
- Relative ordering
 - Stankova '06

Our Work:

- New proof that 231 \sim 312 (Bloom-Saracino '11)
 - Previous proofs: nonbijective and complicated

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
 - Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated
- Relative ordering
 - Stankova '06

Our Work:

- New proof that 231 \sim 312 (Bloom-Saracino '11)
 - Previous proofs: nonbijective and complicated

- Our proof: Bijective and (we think) simple

There are 3 (shape-Wilf) equivalence classes:

 $231 \sim 312 \qquad < \qquad 123 \sim 321 \sim 213 \qquad < \qquad 132$

Past Work:

- $123 \sim 321 \sim 213$
 - Backelin-West-Xin '01, Krattenthaler '06, Jelínek '07
 - Enumerated by noncrossing Dyck paths
- $231 \sim 312$
 - Original proofs: Stankova-West '02, Jelínek '07
 - Not enumerated
- Relative ordering
 - Stankova '06

Our Work:

- New proof that 231 \sim 312 (Bloom-Saracino '11)
 - Previous proofs: nonbijective and complicated

- Our proof: Bijective and (we think) simple
- Yields enumerative results

Our Proof that 231 \sim 312

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Our Proof that $231\sim312$

 $\mathcal{R}_F(231)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Our Proof that $231\sim312$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathcal{R}_F(231)$

 $\mathcal{R}_F(231)$

◆□> ◆□> ◆注> ◆注> □注□

Defining Properties of $\mathcal{L}_F(231)$

Defining Properties of $\mathcal{L}_F(231)$

- Monotonicity:
 - +1/0 Horizontal Step & -1/0 Vertical Step

Defining Properties of $\mathcal{L}_F(231)$

- Monotonicity:
 - +1/0 Horizontal Step & -1/0 Vertical Step
- Zero Condition:
 - All zeros are along the main diagonal (red line)

Defining Properties of $\mathcal{L}_F(231)$

- Monotonicity:
 - +1/0 Horizontal Step & -1/0 Vertical Step
- Zero Condition:
 - All zeros are along the main diagonal (red line)

- Diagonal Property:
 - Upper \leq Lower

Theorem (Bloom-Saracino '11) The mapping $\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F(231)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a bijection.

Theorem (Bloom-Saracino '11) The mapping $\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F(231)$

is a bijection. Similarly, we have a bijection

 $\Theta: \mathcal{R}_F(312) \to \mathcal{L}_F(312),$

Theorem (Bloom-Saracino '11) The mapping $\Pi : \mathcal{R}_F(231) \rightarrow \mathcal{L}_F(231)$

is a bijection. Similarly, we have a bijection

$$\Theta: \mathcal{R}_F(312) \rightarrow \mathcal{L}_F(312),$$

where $\mathcal{L}_{F}(312) =$ the set of labelings with the **reverse** diagonal property:

 $Upper \geq Lower$

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

"Proof:"

 $\mathcal{R}_{F}(231) \xleftarrow{\Pi} \mathcal{L}_{F}(231) \qquad \qquad \mathcal{L}_{F}(312) \xleftarrow{\Theta} \mathcal{R}_{F}(312)$

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

"Proof:"

 $\mathcal{R}_{F}(231) \xleftarrow{\Pi} \mathcal{L}_{F}(231) \xleftarrow{??} \mathcal{L}_{F}(312) \xleftarrow{\Theta} \mathcal{R}_{F}(312)$

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

"Proof:"

$$\mathcal{R}_{F}(231) \xleftarrow{\Pi} \mathcal{L}_{F}(231) \xleftarrow{??} \mathcal{L}_{F}(312) \xleftarrow{\Theta} \mathcal{R}_{F}(312)$$

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

"Proof:"

$$\mathcal{R}_{F}(231) \xleftarrow{\Pi} \mathcal{L}_{F}(231) \xleftarrow{??} \mathcal{L}_{F}(312) \xleftarrow{\Theta} \mathcal{R}_{F}(312)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between $\mathcal{R}_F(231)$ and $\mathcal{R}_F(312)$, i.e., $231 \sim 312$.

"Proof:"

$$\mathcal{R}_{F}(231) \xleftarrow{\Pi} \mathcal{L}_{F}(231) \xleftarrow{??} \mathcal{L}_{F}(312) \xleftarrow{\Theta} \mathcal{R}_{F}(312)$$

・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Bloom-Elizalde '13)

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n(231)| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}}.$$

_ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Theorem (Bloom-Elizalde '13)

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n(231)| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}}.$$

_ .

Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Method:

Theorem (Bloom-Elizalde '13)

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n(231)| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}}.$$

- -

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Method:

 Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.

Theorem (Bloom-Elizalde '13)

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n(231)| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}}.$$

- -

Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Method:

- Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.
- Solved using the **quadratic method**; due to Tutte for counting rooted planar maps.

Theorem (Bloom-Elizalde '13)

$$\sum_{n\geq 0} |\mathcal{R}_n(231)| z^n = \sum_{n\geq 0} |\mathcal{L}_n(231)| z^n = \frac{54z}{1+36z-(1-12z)^{3/2}}.$$

Further, we obtain

$$|\mathcal{R}_n(231)| \sim \frac{3^3}{2^5 \sqrt{\pi n^5}} 12^n.$$

Method:

- Obtained a functional equation by applying standard Dyck path decompositions to our labeled Dyck paths.
- Solved using the **quadratic method**; due to Tutte for counting rooted planar maps.
 - In fact the set of labelings with the monotone and diagonal properties are in bijection with rooted planar maps!

A Few Comments:

<□ > < @ > < E > < E > E のQ @

A Few Comments:

• The class $231 \sim 312$ is algebraic.

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class 123 \sim 321 \sim 213 is D-finite but NOT algebraic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class 123 \sim 321 \sim 213 is D-finite but NOT algebraic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The class 132 is....

A Connection with Perfect Matchings

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but **NOT** algebraic.
- The class 132 is....
- A Connection with Perfect Matchings
 - The class 321 \sim 123 \sim 213 counts perfect matchings that avoid:

A Few Comments:

- The class $231 \sim 312$ is algebraic.
- The class $123 \sim 321 \sim 213$ is D-finite but **NOT** algebraic.
- The class 132 is....
- A Connection with Perfect Matchings
 - The class 321 \sim 123 \sim 213 counts perfect matchings that avoid:

- The class 231 \sim 312 counts perfect matchings that avoid:

Counting 2314-Avoiding Permutations

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

Counting 2314–Avoiding Permutations

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board.

Counting 2314-Avoiding Permutations

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board. For example, $\pi = 7165324 \in S_7(2314)$ becomes:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board. For example, $\pi = 7165324 \in S_7(2314)$ becomes:

$$\in \mathcal{R}_7(231)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board. For example, $\pi = 7165324 \in S_7(2314)$ becomes:

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board. For example, $\pi = 7165324 \in S_7(2314)$ becomes:

 \rightarrow The labels rounding any peak are of the form a, a + 1, a.

We view any $\pi \in S_n(2314)$ as a f.r.p. on a **minimal** Ferrers board. For example, $\pi = 7165324 \in S_7(2314)$ becomes:

→ The labels rounding any peak are of the form a, a + 1, a. → We say such labeling have the **peak property**.

Lemma (Bloom-Elizalde '13) Our bijection $\Pi : \mathcal{R}_n(231) \to \mathcal{L}_n(231)$ induces a bijection

 $\Pi^{\times}: S_n(2314) \to \mathcal{L}_n^{\times}(231),$

where $\mathcal{L}_n^{\times}(231) \subset \mathcal{L}_n(231)$ with the peak property.

Lemma (Bloom-Elizalde '13) Our bijection $\Pi : \mathcal{R}_n(231) \to \mathcal{L}_n(231)$ induces a bijection

 $\Pi^{\times}: S_n(2314) \to \mathcal{L}_n^{\times}(231),$

where $\mathcal{L}_n^{\times}(231) \subset \mathcal{L}_n(231)$ with the peak property.

 \rightarrow Counting $\mathcal{L}_n^{\times}(231)$ is simply a matter of "tweaking" the method used to count $\mathcal{L}_n(231)$.

Lemma (Bloom-Elizalde '13) Our bijection $\Pi : \mathcal{R}_n(231) \rightarrow \mathcal{L}_n(231)$ induces a bijection

 $\Pi^{\times}: S_n(2314) \to \mathcal{L}_n^{\times}(231),$

where $\mathcal{L}_n^{\times}(231) \subset \mathcal{L}_n(231)$ with the peak property.

 \rightarrow Counting $\mathcal{L}_n^{\times}(231)$ is simply a matter of "tweaking" the method used to count $\mathcal{L}_n(231)$.

Doing so we obtain Bóna's result:

$$\sum_{n\geq 0} |S_n(2314)| z^n = \sum_{n\geq 0} |\mathcal{L}_n^{\times}(312)| z^n = \frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$