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A Ferrers Board F is an n x n array of unit squares with a “bite”
taken out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement of n rooks so
that EXACTLY one is in each row and in each column.
Notation...
e F, = set of all Ferrers boards that admit a f.r.p. of n rooks
e Rp =setofall frp.'son F

e R,= U RE - Analogous to S,,.
FE-FI‘I
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Pattern Avoidance in Rook Placements

A fr.p. on F € F, avoids a pattern o € S if, for any rectangle
inside F the “permutation” in this rectangle avoids o in the
classical sense.

X

e Contains 312
X e Avoids 231

Read using cartesian coordinates!

Notation

e Re(o) = set of f.r.p.’s on F that avoid o

e Rp(o) = U REe(o) - Analogous to S,(o).
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Analog of Wilf-equivalence

We say two patterns o, 7 € Sy are shape-Wilf-equivalent if
RE(o)] = [RE(T)],

for any F € F,. In this case we write o ~ T.

Observe:
Shape-Wilf-equivalence — classical Wilf-equivalence.

Theorem (Backlin-West-Xin '01)

If o ~ 7 and p is any other permutation then

ocDp~T1TDp.
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There are 3 (shape-Wilf) equivalence classes:
231 ~ 312 < 123 ~ 321 ~ 213 < 132

Past Work:
e 123 ~ 321 ~ 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelinek '07
- Enumerated by noncrossing Dyck paths

e 231 ~ 312

- Original proofs: Stankova-West '02, Jelinek '07
- Not enumerated

e Relative ordering
- Stankova '06

Our Work:

e New proof that 231 ~ 312 (Bloom-Saracino '11)
- Previous proofs: nonbijective and complicated
- Our proof: Bijective and (we think) simple
- Yields enumerative results
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Defining Properties of ££(231)
e Monotonicity:
- +1/0 Horizontal Step & -1/0 Vertical Step
e Zero Condition:
- All zeros are along the main diagonal (red line)
e Diagonal Property:
- Upper < Lower
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Theorem (Bloom-Saracino '11)

The mapping
M:Re(231) — L£(231)

is a bijection. Similarly, we have a bijection

© : Re(312) — LF(312),

where L£(312) = the set of labelings with the reverse diagonal
property:
Upper > Lower
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Corollary (Bloom-Saracino '11)

There exists an explicit (and simple) bijection between R f(231)
and Re(312), ie., 231 ~ 312.

“Proof:”
RE(231) < Lr(231) 2 Lr(312) «2— Rp(312)
0 2 3 4 5 01 1 1 2 01 2 3 3
4 2 2
3 2 —_ 1
3 4 — 1 2 — 2 2
2 ;3 L 2 1
2 1 1
0 0 0
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Enumerative Results
Theorem (Bloom-Elizalde '13)

54z

D IRa(231)[2" = £a(231)[2" = :
= = 1+36z— (1 —122)3/2

Further, we obtain
3
3 n

mnd

[Rn(231)] ~

Method:
e Obtained a functional equation by applying standard Dyck
path decompositions to our labeled Dyck paths.
e Solved using the quadratic method; due to Tutte for
counting rooted planar maps.

- In fact the set of labelings with the monotone and diagonal
properties are in bijection with rooted planar maps!
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A Few Comments:

e The class 231 ~ 312 is algebraic.
e The class 123 ~ 321 ~ 213 is D-finite but NOT algebraic.
e The class 132 is....

A Connection with Perfect Matchings

e The class 321 ~ 123 ~ 213 counts perfect matchings that
avoid:

STRSN NN TN

321 (3-noncrossing) 123 (3-nonnesting) 213

- The class 231 ~ 312 counts perfect matchings that avoid:

Vo D= oN

231 312
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Counting 2314—Avoiding Permutations

We view any m € 5,(2314) as a f.r.p. on a minimal Ferrers board.

For example, m = 7165324 € 57(2314) becomes:

0 1

X0 1 2

X1 2

S € R+(231)

o = NN

— The labels rounding any peak are of the form a,a+ 1, a.
— We say such labeling have the peak property.
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Lemma (Bloom-Elizalde '13)
Our bijection T : R,(231) — L,(231) induces a bijection
M : S,(2314) — £X(231),

where L£(231) C L£,(231) with the peak property.

— Counting £(231) is simply a matter of “tweaking” the
method used to count £,(231).

Doing so we obtain Béna's result:

32z

n 2314 "= A 12 "= '
D 1Sn(2314)[2" =) " |L£7(312)|2 1+ 20z — 822 — (1 — 82)3/2

n>0 n>0



