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First we define the (intermediate) map
¢:5,— S,

which is implicitly dependent on some fixed k > 2.
For any o € S,

1. Order the k...1—patterns o}, ...0j, in o lexicographically
(according to the o;}'s, not the j's)

2. Let ¢(o) be obtained from o by taking the smallest
k...l—pattern
0i0jy .- - 0Oj

and placing in positions /7 ... i the values
Oiy ... 0} O,

respectively, and leaving all other entries of o fixed.
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Definition of the BWX map ¢*

Now the map of interest
¢* 1 Sp— Sp(k...1)

is given by
or— ¢ (o)
for some m (depending on o) such that ¢ (o) = ¢™(0).

In other words, ¢* is obtained by repeatedly applying the map ¢
until no k...1-pattern remains.
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An Example of ¢*

Let k =3. For 0 =4 53 1 2 we obtain ¢*(0) as follows:

c = 45312
(o) = 35142
¢*(0) = 34125

There are no more 321-patterns to remove so

¢*(0) = ¢*(0) =34125
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History of ¢*

» The transformation ¢* was introduced by Backelin, West, Xin
in their paper “Wilf-equivalence for singleton classes” as a
tool to prove their main result that

1S0(12. .. kp)| = |Sn(k ... 1p)]

where n > k+/ and p is an permutation of {k+1,..., k+/}.
» Later Bousquet-Mélou and Steingrimsson proved that

h(12. .. kp)| = |In(k ... 1p)]

by proving the commutation result that ¢*(c ™) = ¢* (o)1
» This proof is long and difficult.
» Consequently, in their paper they ask for a better description

of the map ¢* "on which the commutation theorem would
become obvious.”
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History of ¢* Continued

» Lastly, C. Krattenthaler publishes the paper: “Growth Diagrams,
and increasing and decreasing chains in fillings of Ferrers shapes”
» Demonstrates a bijection using Fomin's Growth Diagrams
» It trivially commutes with inverses and...
» Provides alternative proofs of the results by BWX and by
Bousquet-Mélou and Steingrimsson.
» In this paper Krattenthaler asks (Problem # 4) whether the
map ¢* and growth diagrams are at all related.

We answer both Krattenthaler and Bousquet-Mélou and
Steingrimsson’s questions by providing a reformulation of ¢* in
terms of growth diagrams that makes the commutation result
obvious.
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Consider the Schensted correspondence:
(1 26 7 8
= 53 1 2

2
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Definition: The shape of P and Q is the partition (A1 A\2...\¢)
such that the top row of P and @ have A; entries, the second row
has \» entries, and so on.

> In our example the shape is (221).

Theorem: The length of the longest decreasing subsequence in 7
is t.

> Here the subsequence 431 is longest and t = 3.
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Fomin's Growth Diagram Construction

Given a placement P on a Ferrers board F a growth diagram
assign partitions to all the corners of all the squares in F in the
following way:

» Start by assigning the empty partition () on the left and bottom

edges of F. o

[ ]
o0 0 0 0 0 0 0

ISR

» To determine the partitions on the other corners we use the
following rules:
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Fomin's Growth Diagram Construction

Given partitions

if SE #£ NW

if SW = NW = SE

if SW # NW = SE

21 = NW + 1 top row

NW
S SE
2 21 = SE U NW
1 11
11 11 = NW 11
[
1 11 1

11

111 = NW + 001

11

11
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An Example

1 2 3
0 [
[} 1 2 2 3 4
[ ]
1 2 2 3 3] 31
0 [ ]
0 1 2 2 2 2 21| 211 221
[ ]
0 1 1 1 1 1 11| 111} 211
[ ]
1 11 21
0 [ [ [] [] 0 ®
1 2
0 [ [ [] 0 0 0 °
0 0 1 1
0 0 0 0 0 °

Theorem: Each partition is the shape of the recording/insertion
tableaux corresponding to the partial permutation southwest of the
partition’s location.
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0

0

1

1

1 31

1 21] 211] 221
1 11] 111] 211
0 .1 1] 2
0 0 1 .2
0 0 .1 1
0 0 0 0




The Example Continued

0 1 2 3

[ ]

1 2 2 3 4
0 [ J

1 2 2 3 3] 31
0 [ ]
0 1 2 2 2 2 21] 211] 221

[ ]
0 1 1 1 1 1] 11| 111] 211
°

0 ] ] 1] 11] 21
0 [] [] °
0 0 ] ] ] ] 0 1 2

°
1 1

0 0 [] ] ] ] ] °

Theorem: Since each step in the Growth Diagram Algorithm
(GDA) is reversible then

seq(P, F) = (0,1,2,3,2,3,4,3,31,21,211,221, 211,21, 2, 1, )

completely determines the placement P.
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Our Reformulation of ¢*

if SE #£ NW

11

if SW = NW = SE

21 = SE U NW

11

11 = NW 11 21 = NW + 1 top row
[

11 1 11

11

111 = NW + 001

*if SW #£ NW = SE

Modified Rule for GDAk....

*if last rule rule makes |NE| > k then

11

11 21

1 11

> As the partitions correspond to the shape of the recording/insertion
tableaux the modified rule effectively “removes”’ decreasing
subsequence with length > k from our placement P.
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Our Reformulation of ¢*
GDA3 on (P, F)

GDA on (¢*(P), F

)

o 1] 2f .3
[ ]
o 1 2 2 3] _a
[ ]
0] 1 2] 2| g3 3] 31
O 1] 2| 2| 2| 2| 21| 22] 32
[ ]
o 1] 2 2| 2| 2| 21] 22 22
)
o 1| 1| 1| 1| 1] 1 21f 21
)
1 2] 2
ol o] o o o 0 °
1 1] 1
@@VJVJ(Z)@.
o o o 0o 0o 0 0 0 0




Our Reformulation of ¢*

GDAs on (P, F) GDA on (¢*(P), F)
o 1] 2f .3
[ ]
o 1 2 2 3] _a
[ ]
0] 1 2] 2| g3 3] 31
O 1] 2| 2| 2| 2| 21| 22] 32
[ ]
o 1] 2 2| 2| 2| 21] 22 22
)
o 1| 1| 1| 1| 1] 1 21f 21
)
1] 1] 0 0 0 0 1 .2 2
1] 1] 0 0 0 0 .1 1 1

o 0o o 0o 0o 0o 0 0 0

Main Theorem: For any rook placement P on a Ferrers board F,

seqk('Dv F) :Seq((b*(P)aF)
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Our Commutation Result

Definition: For any rook placement P on F, the inverse P’ of P is
the placement on the conjugate board F’ obtained by reflecting F
and all the markers for P across the SW-NE diagonal.

Note: seq(P’, F) = rev(seq(P, F))

Corollary: For any rook placement P on a Ferrers board F,
¢"(P") = (¢"(P))

Proof. By the Main Theorem and the note above we have:

seq(¢”(P'),F) = seqi(P',F)

rev(seqi(P, F))
= rev(seq(¢*(P), F)
seq((¢"(P))', F)

Hence we conclude that ¢*(P’) = (¢*(P))’.
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GDAs on (P, F)

0 1 2 3
([ ]

GDAs on (¢(P), F)

o 1] 2] 2 1l 2] 2 4

[ ]
o 1] 2 2 31 1l 2] 2 3] 3]
o1 .2 2 21 22[ 32 1 .2 2 20 21 22 32
0 .1 1 1 11 21 22 1 1 1 1| 17 .21 22
o[ o] o] 0 .1 11 21 1 1 1 1| 11 11| 21

2
0 0 0 0 0 1 ° 0 0 0 0 1 1 .2
0 0 0 0 [] 1 1 0 0 0 0 1 1 1
[ J [ J

0 0 0 0 o 0 0 [ o 0 0 0

» The red rectangle is the smallest rectangle containing markers moved by ¢.
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Idea Behind Main Theorem
GDAs on (P, F)

GDAs on (¢(P), F)

0 1 2 3 0
([ ] [
0 1 2 2 0 1 2 2 4
[

0 1 2 2 31 0 1 2 2 3| 31
0 1 .2 2 21 22| 32 0 1 .2 2 2| 21 22| 32
0 .1 1 1 11 21| 22 0 1 1 1 1 11 .21 22

1 11 21 1 1 1 1 117 11 21
o o o 0 ° 0 °

2
o o o o o o o 1 ° o o o o o o 1] 1 °
o o o o o o o 1] 1 o o o o o o 1] 1
[ ] [

o o o o o0 © 0 0 0 o 0o o o 0 0 0 0

» The red rectangle is the smallest rectangle containing markers moved by ¢.
» The partitions created by GDAj along the red are the same in P and ¢(P).
> So GDA, outside the red, is identical on P and ¢(P) and we may conclude

seqx(P, F) = seqk(¢(P), F)
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So...

sequ(P,F) = seq(

I

%]

[0)

Q

==

—
< 9 o

= seqk(¢™(P),F)
= seqi(¢*(P), F)

Yet, ¢*(P) has no decreasing subsequence of length > k hence
GDAy and GDA agree on P. So...

SeCIk(P> F) = seqk(d)*(P)vF) = Seq(¢*(P)7F)



