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Definition of Gamma

We are interested in the map Γ where:

Γ : Sn(321)→ Sn(132)

For any σ ∈ Sn(321) define Γ(σ) iteratively as follows:

1. Identify the 132-pattern in σ, say σiσjσk , which is
position-smallest.

I By position-smallest we mean that if σxσyσz is another 132 pattern

then (ijk) < (xyz) in the lexicographical ordering of triples of

integers.

2. Modify σ by replacing σiσjσk with σjσkσi respectively.

3. Repeat until no 132-pattern remains.
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An Example of Gamma

Let σ = 1 3 4 6 2 5 ∈ S6(321). We compute Γ(σ) as follows:
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1
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So, Γ(σ) = 6 4 3 5 1 2
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Properties of Gamma

I Γ is a bijection (Robertson ’04)

I Γ preserves fixed points and excedances (Bloom, Saracino ’09)

I Γ(σ−1) = Γ(σ)−1 (Bloom, Saracino ’09)

The problem is that the iterative nature of Γ made these proofs
very technical and unintuitive.

Here we will give a pictorial description that will completely
elucidate these properties.
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Permutation Templates...

Definition: Given a σ ∈ Sn a permutation template T for σ is a
shading of an n x n grid such that if, for each row, we inductively
place a dot in the left most unshaded square which has no dot in a
square above then the squares with dots are precisely in row i and
column σi for i ∈ [n].

Example: A permutation template for σ = 1 3 4 6 2 5 ∈ S6(321) is:
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Facts and Notation for Sn(321)

Definition: For σ ∈ Sn(321)

I σi is called a 2-element (or a ”2”) if σiσj is a 21-pattern of σ
for some σj with i < j .

I σj is called a 1-element (or a ”1”) if σiσj is a 21-pattern of σ
for some σi with i < j .

Fact: For σ ∈ Sn(321) no σi is both a 1-element and a 2-element.
Else σ we would have 321-pattern!

Fact (Monotonicity): For σ ∈ Sn(321) the 2-elements are in
increasing order from left to right. Likewise, the 1-elements are in
increasing order from left to right.
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Permutation Templates for σ ∈ Sn(321) (Step 1)

To construct a permutation template for any σ ∈ Sn(321)

1. First identify the largest 21-pattern in σ.

2. Next identify the largest 21-pattern such that
I the 2-element < previous 2-element
I the 1-element < previous 1-element

3. Repeat step 2. until process terminates.

4. Record the position of the 2-element and the value of the
1-element for each of the 21-patterns found above.
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Permutation Templates for σ ∈ Sn(321) (Step 2)

For σ = 1 3 4 6 2 5 ∈ S6(321) the permutation template is:

Theorem (Bloom, Saracino): If σ ∈ Sn(321) then a
permutation template for σ, call it Tσ, is the union of
non-overlapping reversed L’s.
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Theorem: Γ preserves the number of fixed points and excedances.

T125346 T̂125346

•
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7−→
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•
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•
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•

I The number of dots in each quadrant is preserved from Tσ to T̂σ.

I Quadrant I in Tσ contains only excedances.

I In T̂σ these dots have moved up so they are still excedances.

I Quadrant II: Dots move one square diagonally from Tσ to T̂σ.

I Their relative positions (i.e. high, low, or fixed) remains unchanged.

I Quadrant III in Tσ contains only anti-excedances.

I In T̂σ these dots have moved left so they are still anti-excedances.

I Quadrant IV: The position of these dots are unchanged from Tσ to T̂σ.
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Lemma 1:
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)tr
= T̂σ−1

Lemma 2: If T is a template for σ then (T )tr is a template for
σ−1.

Theorem: If σ ∈ Sn(321) then Γ(σ−1) = Γ(σ)−1.

I Recall that T̂σ is a template for Γ(σ).

I By Lemma 2
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is also a template for Γ(σ−1).
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