Another Look at Pattern Avoiding Permutations

Jonathan Bloom

Dartmouth College

August, 2010

We are interested in the map Γ where:

$$\Gamma: S_n(321) \rightarrow S_n(132)$$

We are interested in the map Γ where:

$$\Gamma: S_n(321) \to S_n(132)$$

For any $\sigma \in S_n(321)$ define $\Gamma(\sigma)$ iteratively as follows:

1. Identify the 132-pattern in σ , say $\sigma_i \sigma_j \sigma_k$, which is position-smallest.

We are interested in the map Γ where:

$$\Gamma: S_n(321) \to S_n(132)$$

- 1. Identify the 132-pattern in σ , say $\sigma_i \sigma_j \sigma_k$, which is position-smallest.
 - ▶ By position-smallest we mean that if $\sigma_x \sigma_y \sigma_z$ is another 132 pattern then (ijk) < (xyz) in the lexicographical ordering of triples of integers.

We are interested in the map Γ where:

$$\Gamma: S_n(321) \to S_n(132)$$

- 1. Identify the 132-pattern in σ , say $\sigma_i \sigma_j \sigma_k$, which is position-smallest.
 - ▶ By position-smallest we mean that if $\sigma_x \sigma_y \sigma_z$ is another 132 pattern then (ijk) < (xyz) in the lexicographical ordering of triples of integers.
- 2. Modify σ by replacing $\sigma_i \sigma_j \sigma_k$ with $\sigma_j \sigma_k \sigma_i$ respectively.

We are interested in the map Γ where:

$$\Gamma: S_n(321) \to S_n(132)$$

- 1. Identify the 132-pattern in σ , say $\sigma_i \sigma_j \sigma_k$, which is position-smallest.
 - **b** By position-smallest we mean that if $\sigma_x \sigma_y \sigma_z$ is another 132 pattern then (ijk) < (xyz) in the lexicographical ordering of triples of integers.
- 2. Modify σ by replacing $\sigma_i \sigma_j \sigma_k$ with $\sigma_i \sigma_k \sigma_i$ respectively.
- 3. Repeat until no 132-pattern remains.

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

Let $\sigma=1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

 $1\; 3\; 4\; 6\; 2\; 5$

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1346**2**5

Let $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1 3 4 6 **2** 5 3 2 4 6 1 5

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1 3 4 6 **2** 5

3 2 4 **6** 1 **5**

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1346**2**5

3 2 4 **6** 1 **5**

6 2 4 5 1 3

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1 3 4 6 **2** 5

3 2 4 **6** 1 **5**

6 **2 4** 5 1 **3**

Let $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1346**2**5

3 2 4 **6** 1 **5**

6 **2 4** 5 1 **3**

 $6\ 4\ 3\ 5\ 1\ 2$

Let
$$\sigma=1$$
 3 4 6 2 5 \in $S_6(321)$. We compute $\Gamma(\sigma)$ as follows:

1 3 4 6 **2** 5

3 2 4 **6** 1 **5**

6 **2 4** 5 1 **3**

 $6\ 4\ 3\ 5\ 1\ 2$

So,
$$\Gamma(\sigma) = 6 \ 4 \ 3 \ 5 \ 1 \ 2$$

Γ is a bijection (Robertson '04)

- Γ is a bijection (Robertson '04)
- Γ preserves fixed points and excedances (Bloom, Saracino '09)

- Γ is a bijection (Robertson '04)
- Γ preserves fixed points and excedances (Bloom, Saracino '09)
- $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$ (Bloom, Saracino '09)

- Γ is a bijection (Robertson '04)
- Γ preserves fixed points and excedances (Bloom, Saracino '09)
- $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$ (Bloom, Saracino '09)

The problem is that the iterative nature of Γ made these proofs **very** technical and unintuitive.

- Γ is a bijection (Robertson '04)
- Γ preserves fixed points and excedances (Bloom, Saracino '09)
- $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$ (Bloom, Saracino '09)

The problem is that the iterative nature of Γ made these proofs **very** technical and unintuitive.

Here we will give a pictorial description that will completely elucidate these properties.

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•			

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•			
	•		

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•			
	•		
		•	

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•			
	•		
		•	
			•

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•				
		•		
			•	
				•
	•			

Definition: Given a $\sigma \in S_n$ a **permutation template** T for σ is a shading of an $n \times n$ grid such that if, for each row, we inductively place a dot in the left most unshaded square which has no dot in a square above then the squares with dots are precisely in row i and column σ_i for $i \in [n]$.

•					
		•			
			•		
					•
	•				
				•	

Let $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$

Let $\sigma = 1$ **3** 4 6 **2** 5 \in $S_6(321)$

Let $\sigma = 1$ **3** 4 6 **2** 5 \in $S_6(321)$

Definition: For $\sigma \in S_n(321)$

Let
$$\sigma = 1$$
 3 4 6 **2** 5 \in $S_6(321)$

Definition: For $\sigma \in S_n(321)$

▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.

Let
$$\sigma = 1$$
 3 4 6 **2** 5 \in $S_6(321)$

Definition: For $\sigma \in S_n(321)$

- ▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.
- ▶ σ_j is called a 1-element (or a "1") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_i with i < j.

Let
$$\sigma = 1$$
 3 4 6 **2** 5 \in $S_6(321)$

Definition: For $\sigma \in S_n(321)$

- ▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.
- ▶ σ_j is called a 1-element (or a "1") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_i with i < j.

Fact: For $\sigma \in S_n(321)$ no σ_i is both a 1-element and a 2-element. Else σ we would have 321-pattern!

Facts and Notation for $S_n(321)$

Let
$$\sigma = 1 \ \underline{3} \ \underline{4} \ \underline{6} \ 2 \ 5 \in S_6(321)$$

Definition: For $\sigma \in S_n(321)$

- ▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.
- ▶ σ_j is called a 1-element (or a "1") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_i with i < j.

Fact: For $\sigma \in S_n(321)$ no σ_i is both a 1-element and a 2-element. Else σ we would have 321-pattern!

Facts and Notation for $S_n(321)$

Let
$$\sigma = 1 \ 3 \ 4 \ 6 \ \overline{2} \ \overline{5} \in S_6(321)$$

Definition: For $\sigma \in S_n(321)$

- ▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.
- ▶ σ_j is called a 1-element (or a "1") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_i with i < j.

Fact: For $\sigma \in S_n(321)$ no σ_i is both a 1-element and a 2-element. Else σ we would have 321-pattern!

Facts and Notation for $S_n(321)$

Let
$$\sigma = 1 \ 3 \ 4 \ 6 \ \overline{2} \ \overline{5} \in S_6(321)$$

Definition: For $\sigma \in S_n(321)$

- ▶ σ_i is called a 2-element (or a "2") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_j with i < j.
- ▶ σ_j is called a 1-element (or a "1") if $\sigma_i \sigma_j$ is a 21-pattern of σ for some σ_i with i < j.

Fact: For $\sigma \in S_n(321)$ no σ_i is both a 1-element and a 2-element. Else σ we would have 321-pattern!

Fact (Monotonicity): For $\sigma \in S_n(321)$ the 2-elements are in increasing order from left to right. Likewise, the 1-elements are in increasing order from left to right.

To construct a permutation template for any $\sigma \in S_n(321)$

1. First identify the largest 21-pattern in σ .

- 1. First identify the largest 21-pattern in σ .
- 2. Next identify the largest 21-pattern such that
 - ▶ the 2-element < previous 2-element
 - ▶ the 1-element < previous 1-element

- 1. First identify the largest 21-pattern in σ .
- 2. Next identify the largest 21-pattern such that
 - ▶ the 2-element < previous 2-element
 - ▶ the 1-element < previous 1-element
- 3. Repeat step 2. until process terminates.

- 1. First identify the largest 21-pattern in σ .
- 2. Next identify the largest 21-pattern such that
 - ▶ the 2-element < previous 2-element
 - ▶ the 1-element < previous 1-element
- 3. Repeat step 2. until process terminates.
- 4. Record the position of the 2-element and the value of the 1-element for each of the 21-patterns found above.

For $\sigma = 1$ 3 4 6 2 5 \in $S_6(321)$ the permutation template is:

Theorem (Bloom, Saracino): If $\sigma \in S_n(321)$ then a permutation template for σ , call it T_{σ} , is the union of non-overlapping reversed L's.

For $\sigma=1$ 3 4 6 2 5 $\in \textit{S}_{\textit{6}}(321)$.

For $\sigma=1$ 3 4 6 2 5 $\in \textit{S}_{\textit{6}}(321)$.

For $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$.

So,
$$\Gamma(1\ 3\ 4\ 6\ 2\ 5)=6\ 4\ 3\ 5\ 1\ 2$$

For $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$.

So,
$$\Gamma(1\ 3\ 4\ 6\ 2\ 5) = 6\ 4\ 3\ 5\ 1\ 2$$

Theorem (Bloom, Saracino): For $\sigma \in S_n(321)$ \widehat{T}_{σ} is a permutation template for $\Gamma(\sigma)$.

▶ The number of dots in each quadrant is preserved from T_{σ} to \widehat{T}_{σ} .

- lacktriangle The number of dots in each quadrant is preserved from T_σ to \widehat{T}_σ .
- Quadrant I in T_{σ} contains only excedances.
 - In \widehat{T}_{σ} these dots have moved up so they are still excedances.

- lacktriangle The number of dots in each quadrant is preserved from T_σ to \widehat{T}_σ .
- Quadrant I in T_{σ} contains only excedances.
 - In $\widehat{T_{\sigma}}$ these dots have moved up so they are still excedances.
- **Q**uadrant II: Dots move one square diagonally from T_{σ} to \widehat{T}_{σ} .
 - ▶ Their relative positions (i.e. high, low, or fixed) remains unchanged.

- lacktriangle The number of dots in each quadrant is preserved from T_σ to \widehat{T}_σ .
- Quadrant I in T_{σ} contains only excedances.
 - In \widehat{T}_{σ} these dots have moved up so they are still excedances.
- **Q**uadrant II: Dots move one square diagonally from T_{σ} to \widehat{T}_{σ} .
 - ▶ Their relative positions (i.e. high, low, or fixed) remains unchanged.
- Quadrant III in T_{σ} contains only anti-excedances.
 - In \widehat{T}_{σ} these dots have moved left so they are still anti-excedances.

- lacktriangle The number of dots in each quadrant is preserved from T_σ to \widehat{T}_σ .
- Quadrant I in T_{σ} contains only excedances.
 - In \widehat{T}_{σ} these dots have moved up so they are still excedances.
- **P** Quadrant II: Dots move one square diagonally from T_{σ} to \widehat{T}_{σ} .
 - ► Their relative positions (i.e. high, low, or fixed) remains unchanged.
- Quadrant III in T_{σ} contains only anti-excedances.
 - In \widehat{T}_{σ} these dots have moved left so they are still anti-excedances.
- Quadrant IV: The position of these dots are unchanged from T_{σ} to \widehat{T}_{σ} .

Let $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$

Let $\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$

Let
$$\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$$

Let
$$\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$$

$$\widehat{T_{\sigma}} = \text{Template for } \Gamma(\sigma)$$

Let
$$\sigma = 1 \ 3 \ 4 \ 6 \ 2 \ 5 \in S_6(321)$$

$$\widehat{T_{\sigma}} = \text{Template for } \Gamma(\sigma)$$

Lemma 1:
$$\left(\widehat{T_{\sigma}}\right)^{tr} = \widehat{T_{\sigma^{-1}}}$$

Lemma 1:
$$\left(\widehat{T_{\sigma}}\right)^{tr} = \widehat{T_{\sigma^{-1}}}$$

Lemma 2: If T is a template for σ then $(T)^{tr}$ is a template for σ^{-1} .

Lemma 1:
$$\left(\widehat{T_{\sigma}}\right)^{tr} = \widehat{T_{\sigma^{-1}}}$$

Lemma 2: If T is a template for σ then $(T)^{tr}$ is a template for σ^{-1} .

Theorem: If $\sigma \in S_n(321)$ then $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$.

▶ Recall that \widehat{T}_{σ} is a template for Γ(σ).

Lemma 1:
$$\left(\widehat{T}_{\sigma}\right)^{tr} = \widehat{T}_{\sigma^{-1}}$$

Lemma 2: If T is a template for σ then $(T)^{tr}$ is a template for σ^{-1} .

Theorem: If $\sigma \in S_n(321)$ then $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$.

- Recall that \widehat{T}_{σ} is a template for Γ(σ).
- ▶ By Lemma 2 $(\widehat{T}_{\sigma})^{tr}$ is a template for $(\Gamma(\sigma))^{-1}$.

Lemma 1:
$$\left(\widehat{T}_{\sigma}\right)^{tr} = \widehat{T}_{\sigma^{-1}}$$

Lemma 2: If T is a template for σ then $(T)^{tr}$ is a template for σ^{-1} .

Theorem: If $\sigma \in S_n(321)$ then $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$.

- Recall that \widehat{T}_{σ} is a template for Γ(σ).
- ▶ By Lemma 2 $\left(\widehat{T_{\sigma}}\right)^{tr}$ is a template for $\left(\Gamma(\sigma)\right)^{-1}$.
- ▶ By Lemma 1 $(\widehat{T}_{\sigma})^{tr}$ is also a template for $\Gamma(\sigma^{-1})$.

Lemma 1:
$$\left(\widehat{T}_{\sigma}\right)^{tr} = \widehat{T}_{\sigma^{-1}}$$

Lemma 2: If T is a template for σ then $(T)^{tr}$ is a template for σ^{-1} .

Theorem: If $\sigma \in S_n(321)$ then $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$.

- Recall that \widehat{T}_{σ} is a template for Γ(σ).
- ▶ By Lemma 2 $\left(\widehat{T_{\sigma}}\right)^{tr}$ is a template for $\left(\Gamma(\sigma)\right)^{-1}$.
- ▶ By Lemma 1 $\left(\widehat{T_{\sigma}}\right)^{tr}$ is also a template for $\Gamma(\sigma^{-1})$.
- As a template uniquely determines a permutation we must have $\Gamma(\sigma^{-1}) = \Gamma(\sigma)^{-1}$