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Chapter 1

An introduction to vector
spaces

Abstract linear algebra is one of the pillars of modern mathematics. Its theory
is used in every branch of mathematics and its applications can be found all
around our everyday life. Without linear algebra, modern conveniences such
as the Google search algorithm, iPhones, and microprocessors would not exist.
But what is abstract linear algebra? It is the study of vectors and functions on
vectors from an abstract perspective. To explain what we mean by an abstract
perspective, let us jump in and review our familiar notion of vectors. Recall
that a vector of length n is a n× 1 array

a1

a2

...
an

 ,
where ai are real numbers, i.e., ai ∈ R. It is also customary to define

Rn =



a1

a2

...
an

 | ai ∈ R
 ,

which we can think of as the set where all the vectors of length n live. Some of
the usefulness of vectors stems from our ability to draw them (at least those in
R2 or R3). Recall that this is done as follows:

2



[
a
b

]
x

y

b

a

 a
b
c



x

y

z

b
a

c

Basic algebraic operations on vectors correspond nicely with our picture of
vectors. In particular, if we scale a vector v by a number s then in the picture
we either stretch or shrink our arrow.

s ·
[
a
b

]
x

y

b

sb

a

sa

The other familiar thing we can do with vectors is add them. This corre-
sponds to placing the vectors “head-to-tail” as shown in the following picture.

[
a
b

]
+

[
c
d

]
x

y

b

a

b + d

a + c

c

d

In summary, our familiar notion of vectors can be captured by the following
description. Vectors of length n live in the set Rn that is equipped with two
operations. The first operation takes any pair of vectors u, v ∈ Rn and gives
us a new vector u + v ∈ Rn. The second operation takes any pair a ∈ R and
v ∈ Rn and gives us a new vector a · v ∈ Rn.

With this summary in mind we now give a definition which generalizes this
familiar notion of a vector. It will be very helpful to read the following in parallel
with the above summary.

3



1.1 Basic definitions & preliminaries

Throughout we let F represent either the rational numbers Q, the real numbers
R or the complex numbers C.

Definition. A vector space over F is a set V along with two operation. The
first operation is called addition, denoted +, which assigns to each pair u, v ∈ V
an element u + v ∈ V . The second operation is called scalar multiplication
which assigns to each pair a ∈ F and v ∈ V an element av ∈ V . Moreover, we
insist that the following properties hold, where u, v, w ∈ V and a, b ∈ F:

• Associativity

u+ (v + w) = (u+ v) + w and a(bv) = (ab)v.

• Commutativity of +
u+ v = v + u.

• Distributivity

a(u+ v) = au+ av and (a+ b)v = av + bv

• Multiplicative Identity

The number 1 ∈ F is such that

1v = v for all v ∈ V.

• Additive Identity & Inverses

There exists an element 0 ∈ V , called an additive identity or a zero,
with the property that

0 + v = v for all v ∈ V.

Moreover, for every v ∈ V there exists some u ∈ V , called an inverse of
v, such that u+ v = 0.

It is common to refer to the elements of V as vectors and the elements
of F as scalars. Additionally, if V is a vector space over R we call it a real
vector space or an R-vector space. Likewise, a vector space over C is called
a complex vector space or a C-vector space.

Although this definition is intimidating at first, you are more familiar with
these ideas than you might think. In fact, you have been using vector spaces in
your previous math courses without even knowing it! The following examples
aim to convince you of this.

Examples.
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1. Rn is a vector space over R under the usual vector addition and scalar
multiplication as discussed in the introduction.

2. Cn, the set of column vectors of length n whose entries are complex num-
bers, is a a vector space over C.

3. Cn is also a vector space over R where addition is standard vector addition
and scalar multiplication is again the standard operation but in this case
we limit our scalars to real numbers only. This is NOT the same vector
space as in the previous example; in fact, it is as different as a line is to a
plane!

4. Let P(F) be the set of all polynomials with coefficients in F. That is

P(F) = {a0 + a1x+ · · ·+ anx
n | n ≥ 0, a0, . . . , an ∈ F} .

Then P(F) is a vector space over F. In this case our “vectors” are poly-
nomials where addition is the standard addition on polynomials. For ex-
ample, if v = 1 + x+ 3x2 and u = x+ 7x2 + x5, then

u+ v = (1 + x+ 3x2) + (x+ 7x2 + x5) = 1 + 2x+ 10x2 + x5.

Scalar multiplication is defined just as you might think. If v = a0 + a1x+
· · ·+ anx

n, then

s · v = sa0 + sa1x+ · · ·+ sanx
n.

5. Let C(R) be the set of continuous functions

f : R→ R .

Then C(R) is a vector space over R where addition and scalar multiplica-
tion is given as follows. For any functions f, g ∈ C(R) we define

(f + g)(x) = f(x) + g(x).

Likewise, for scalar multiplication we define

(s · f)(x) = sf(x).

The reader should check that these definitions satisfy the axioms for a
vector space.

6. Let F be the set of all functions f : R → R. Then the set F is a vector
space over R where addition and scalar multiplication are as given in
Example 5.

You might be curious why we use the term “over” when saying that a vector
space V is over F. The reason for this is due to a useful way to visualize abstract
vector spaces. In particular, we can draw the following picture

5



V

F

where our set V is sitting over our scalars F.

1.2 Basic algebraic properties of vector spaces

There are certain algebraic properties that we take for granted in Rn. For
example, the zero vector  0

...
0

 ∈ Rn
is the unique additive identity in Rn. Likewise, in Rn we do not even think
about the fact that −v is the (unique) additive inverse of v. These algebraic
properties are so fundamental that we certainly would like our general vector
spaces to have these same properties as well. As the next several lemmas show,
this is happily the case.

Assume throughout this section that V is a vector space over F.

Lemma 1.1. V has a unique additive identity.

Proof. Assume 0 and 0′ are both additive identities in V . To show V has a
unique additive identity we show that 0 = 0′. Playing these two identities off
each other we see that

0′ = 0 + 0′ = 0,

where the first equality follows as 0 is an identity and the second follows since
0′ is also an identity.

An immediate corollary of this lemma is that now we can talk about the
additive identity or the zero of a vector space. To distinguish between zero, the
number in F and the zero the additive identity in V we will often denote the
latter as 0V .

Lemma 1.2. Every element v ∈ V has a unique additive inverse denoted −v.

Proof. Fix v ∈ V . As in the proof of the previous lemma, it will suffice to show
that if u and u′ are both additive inverses of v, then u = u′. Now consider

u′ = 0V + u′ = (u+ v) + u′ = u+ (v + u′) = u+ 0V = u,

where associativity gives us the third equality.
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Lemma 1.3 (Cancellation Lemma). If u, v, w are vectors in V such that

u+ w = v + w, (*)

then u = v

Proof. To show this, add −w to both sides of (*) to obtain (u + w) + −w =
(v + w) +−w. By associativity,

u+ (w +−w) = v + (w +−w)

u+ 0V = v + 0V

u = v.

Lemma 1.4. For any a ∈ F and v ∈ V , we have

0 · v = 0V

and
a · 0V = 0V .

Proof. The proof of this is similar to the Cancellation Lemma. We leave its
proof to the reader.

The next lemma asserts that −1 · v = −v. A natural reaction to this state-
ment is: Well isn’t this obvious, what is there to prove? Be careful! Remember
v is just an element in an abstract set V endowed with some specific axioms.
From this vantage point, it is not clear that the vector defined by the abstract
rule −1 · v should necessarily be the additive inverse of v.

Lemma 1.5. −1 · v = −v.

Proof. Observe that −1 · v is an additive inverse of v since

v +−1 · v = 1 · v +−1 · v = (1− 1) · v = 0v = 0V ,

where the last two equalities follow from the distributive law and the previous
lemma respectively. As v has only one additive inverse by Lemma 1.2, then
−1 · v = −v.

1.3 Subspaces

Definition. Let V be a vector space over F. We say that a subset U of V is
a subspace (of V ), provided that U is a vector space over F using the same
operations of addition and scalar multiplication as given on V .
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Showing that a given subset U is a subspace of V might at first appear to
involve a lot of checking. Wouldn’t one need to check Associativity, Commuta-
tivity, etc? Fortunately, the answer is no. Think about it, since these properties
hold true for all the vectors in V they certainly also hold true for some of the
vectors in V , i.e., those in U . (The fancy way to say this is that U inherits all
these properties from V .) Instead we need only check the following:

1. 0V ∈ U

2. u+ v ∈ U, for all u, v ∈ U (Closure under addition)

3. av ∈ U, for all a ∈ F, and v ∈ U (Closure under scalar multiplica-
tion)

Examples.

1. For any vector space V over F, the sets V and {0V } are both subspaces of
V . The former is called a nonproper subspace while the latter is called
the trivial or zero subspace. Therefore a proper nontrivial subspace of
V is one that is neither V nor {0V }.

2. Consider the real vector space R3. Fix real numbers a, b, c. Then we claim
that the subset

U =
{

(x, y, z) ∈ R3 | ax+ by + cz = 0
}

is a subspace of R3. To see this we just need to check the three closure
properties. First, note that 0R3 = (0, 0, 0) ∈ U , since 0 = a0 + b0 + c0. To
see that U is closed under addition let u = (x1, y1, z1), v = (x2, y2, z2) ∈ U .
Since

a(x1+x2)+b(y1+y2)+c(z1+z2) = (ax1+by1+cz1)+(ax2+by2+cz2) = 0+0 = 0

we see that u+ v = (x1 +x2, y1 + y2, z1 + z2) ∈ U . Lastly, a similiar check
shows that U is closed under scalar multiplication. Let s ∈ R, then

0 = s0 = s(ax1 + by1 + cz1) = asx1 + bsy1 + csz1.

This means that su = (sx1, sy1, sz1) ∈ U .

3. Recall that P(R) is the vector space over R consisting of all polynomials
whose coefficients are in R. In fact, this vector space is also a subspace
of C(R). To see this note that P(R) ⊂ C(R). Since the zero function
and the zero polynomial are the same function, then 0C(R) ∈ P(R). Since
we already showed that P(R) is a vector space then it is certainly closed
under addition and scalar multiplication, so P(R) is a subspace of C(R).
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4. This next examples demonstrates that we can have subspaces within sub-
spaces. Consider the subset P≤n(R) of P(R) consisting of all those poly-
nomials with degree ≤ n. Then, P≤n(R) is a subspace of P(R). As the
degree of the zero polynomial is (defined to be) −∞, then P≤n(R). Ad-
ditionally, if u, v ∈ P≤n(R), then clearly the degree of u + v is ≤ n, so
u+ v ∈ P≤n(R). Likewise P≤n(R) is certainly closed under scalar multi-
plication. Combining this example with the previous one shows that we
actually have the following sequence of subspaces

P≤0(R) ⊂ P≤1(R) ⊂ P≤2(R) ⊂ · · · ⊂ P(R) ⊂ C(R).

5. The subset D of all differentiable functions in C(R), is a subspace of the R-
vector space C(R). Since the zero function f(x) = 0 is differentiable, and
the sum and scalar multiple of differentiable functions is differentiable, it
follows that D is a subspace.

6. Let U be the set of solutions to the differential equation f ′′(x) = −f ′(x),
i.e.,

U = {f(x) | f ′′(x) = −f ′(x)} .

Then U is a subspace D, the space of differentiable functions. To see this,
first note that the zero function is a solution to our differential equation.
Therefore U contains our zero vector. To check the closure properties
let f, g ∈ U . Therefore f ′′(x) = −f ′(x) and that g′′(x) = −g(x) and
moreover,

(f + g)′′(x) = f ′′(x) + g′′(x) = −f ′(x) +−g′(x) = −(f + g)′(x).

In other words, f + g ∈ U . To check closure under scalar multiplication
let s ∈ R. Now

(s · f)′′(x) = sf ′′(x) = −sf ′(x) = −(sf)′(x),

and so s · f ∈ U .
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Chapter 2

Dimension

2.1 Linear combination

Definition. A linear combination of the vectors v1, . . . , vm is any vector of
the form

a1v1 + · · ·+ amvm,

where a1, . . . , am ∈ F. For a nonempty subset S of V , we define

span(S) = {a1v1 + · · ·+ amvm | v1, . . . , vm ∈ S, a1, . . . , am ∈ F} ,

and call this set the span of S. If S = ∅, we define span(∅) = {0V }. Lastly, if
span(S) = V , we say that S spans V or that S is a spanning set for V .

For example, consider the vector space Rn and let S = {e1, . . . , en}, where

ei =



0
...
1
...
0

 ,

that is, the vector whose entries are all 0 except the ith, which is 1. Then

Rn = span(S), since we can express any vector

 a1

...
an

 ∈ R as

 a1

...
an

 = a1e1 + · · · anen.

The vectors e1, . . . , en play a fundamental role in the theory of linear algebra.
As such they are named the standard basis vectors for Rn.

10



Now consider the vector space of continuous functions C(R). For brevity let
us write the function f(x) = xn as xn and let S = {1, x, x2, . . .}. Certainly

span(S) =
{
a01 + a1x+ a2x

2 + · · ·+ anx
n | n ≥ 0, a0, . . . , an ∈ R

}
= P(R).

This example raises a subtle point we wish to make explicit. Although our set
S has infinite cardinality, each element in span(S) is a linear combination of a
finite number of vectors in S. We do not allow something like 1 + x+ x2 + · · ·
to be an element in span(S). A good reason for this restriction is that, in this
case, such an expression is not defined for |x| ≥ 1, so it could not possibly be
an element of C(R).

Example 3 in Section 1.3 shows that P(R) is a subspace of C(R). The next
lemma provides an alternate way to see this fact where we take S = {1, x, x2, . . .}
and V = C(R). Its proof is left to the reader.

Lemma 2.1. For any S ⊆ V , we have that span(S) is a subspace of V .

To motivate the next definition, consider the set of vectors from R2:

S =

{[
1
1

]
,

[
1
0

]
,

[
3
2

]}
.

Since [
a
b

]
= b

[
1
1

]
+ (a− b)

[
1
0

]
we see that span(S) = R2. That said, the vector

[
3
2

]
is not needed in order

to span R2. It is in this sense that

[
3
2

]
is an “unnecessary” or “redundant”

vector in S. The reason this occurs is that

[
3
2

]
is a linear combination of the

other two vectors in S. In particular, we have[
3
2

]
=

[
1
0

]
+ 2

[
1
1

]
,

or [
0
0

]
=

[
1
0

]
+ 2

[
1
1

]
−
[

3
2

]
.

Consequently, the next definition makes precise this idea of “redundant” vectors.

Definition. We say a set S of vectors is linearly dependent if there exists
distinct vectors v1, . . . , vm ∈ S and scalars a1, . . . , am ∈ F, not all zero, such
that

a1v1 + · · ·+ amvm = 0V .

If S is not linearly dependent we say it is linearly independent.
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As the empty set ∅ is a subset of every vector space, it is natural to ask if ∅ is
linearly dependent or linearly independent. The only way for ∅ to be dependent
is if there exists some vectors v1, . . . , vm in ∅ whose linear combination is 0V .
But we are stopped dead in our tracks since there are NO vectors in ∅. Therefore
∅ cannot be linearly dependent, hence, ∅ is linearly independent.

Lemma 2.2 (Linear Dependence Lemma). If S is a linearly dependent set,
then there exists some element v ∈ S so that

span(S − v) = span(S).

Moreover, if T is a linear independent subset of S, we may choose v ∈ S − T .

Proof. As S is linearly dependent we know there exist distinct vectors

v1, . . . , vi︸ ︷︷ ︸
∈T

, vi+1, . . . , vm︸ ︷︷ ︸
∈S−T

and scalars a1, . . . , am, not all zero, such that

a1v1 + · · ·+ amvm = 0V .

As T is linearly independent and v1, . . . , vi are distinct, we cannot have ai+1 =
· · · = am = 0. (Why?) Without loss of generality we may assume that am 6= 0.
At this point choose v = vm and observe that v /∈ T . Rearranging the above
equation we obtain

v = vm = −
(
a1

am
v1 + . . .+

ai
am

vi +
ai+1

am
vi+1 + . . .+

am−1

am
vm−1

)
,

which implies that v ∈ span(S − v). Moreover, since S − v ⊆ span(S − v), we
see that S ⊂ span(S − v). Lemma 2.1 now implies that

span(S) ⊆ span(S − v) ⊆ span(S),

which yields our desired result.

Lemma 2.3 (Linear Independence Lemma). Let S be linearly independent. If
v ∈ V but not in span(S), then S ∪ {v} is also linearly independent.

Proof. If V − span(S) = ∅, then there is nothing to prove. Otherwise, let v ∈ V
such that v /∈ span(S) and assume for a contradiction that S ∪ {v} is linearly
dependent. This means that there exists distinct vectors v1, . . . , vm ∈ S ∪ {v}
and scalars a1, . . . , am, not all zero, such that a1v1 + a1v1 + · · ·+ amvm = 0V .
First, observe that v = vi for some i and that ai 6= 0. (Why?) Without loss of
generality we may choose i = m. Just like the calculation we performed in the
proof of the Linear Dependence Lemma, we also have

v = vm = −
(
a1

am
v1 + · · ·+ am−1

am
vm−1

)
∈ span(S),

which contradicts the fact that v /∈ span(S). We conclude that S∪{v} is linearly
independent.
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2.2 Bases

Definition. A (possibly empty) subset B of V is called a basis provided it is
linearly independent and spans V .

Examples.

1. The set of standard basis vectors e1, . . . , en are a basis for Rn and Cn.
(This explains their name!)

2. The set {1, x, x2, . . . , xn} form a basis for P≤n(F).

3. The infinite set {1, x, x2, . . .} form a basis for P(F).

4. The emptyset ∅ forms a basis for the trivial vectors space {0V }. This might
seem odd at first but consider the definitions involved. First ∅ was defined
to be linearly independent. Additionally, we defined span(∅) = {0V }.
Therefore ∅ must be a basis for {0V }.

The proof of the next lemma is left to the reader.

Lemma 2.4. The subset B is a basis for V if and only if every vector u ∈ V is
a unique linear combination of the vectors in B.

Theorem 2.5 (Basis Reduction Theorem). Assume S is a finite set of vectors
such that span(S) = V . Then there exists some subset B of S that is a basis for
V .

Proof. If S happens to be linearly independent we are done. On the other hand,
if S is linearly dependent, then, by the Linear Dependence Lemma, there exists
some v ∈ S such that

span(S − v) = span(S)

If S − v is not independent, we may continue to remove vectors until we obtain
a subset B of S which is independent. (Note that sinceS is finite we cannot con-
tinue removing vectors forever, and since ∅ is linearly independent this removal
process must result in an independent set.) Additionally,

span(B) = V,

since the Linear Dependence Lemma guarantees that the subset of S obtained
after each removal spans V . We conclude that B is a basis for V .

Theorem 2.6 (Basis Extension Theorem). Let L be a linearly independent
subset of V . Then there exists a basis B of V such that L ⊂ B.

We postpone the proof of this lemma to Section 2.4.

Corollary 2.7. Every vector space has a basis.

Proof. As the empty set ∅ is a linearly independent subset of any vector space
V , the Basis Extension Theorem implies that V has a basis.
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2.3 Dimension

Lemma 2.8. If L is any finite independent set and S spans V , then |L| ≤ |S|.

Proof. Of all the sets that span V and have cardinality |S| choose S′ so that it
maximizes |L ∩ S′|. If we can prove that L ⊂ S′ we are done, since

|L| ≤ |S′| = |S|.

For a contradiction, assume L is not a subset of S′. Fix some vector u ∈ L−S′.
As S′ spans V and does not contain u, then D = S′∪{u} is linearly dependent.
Certainly, span(D) = V . Now define the linearly independent subset

T = L ∩D,

and observe that u ∈ T . By the Linear Dependence Lemma there exists some
v ∈ D − T so that

span(D − v) = span(D) = V.

Observe u 6= v. This immediately yields our contradiction since |D−v| = |S′| =
|S| and D− v has one more vector from L (the vector u) than S′ does. As this
contradicts our choice of S′, we conclude that L ⊂ S′ as needed.

Theorem 2.9. Let V be a vector space with at least one finite basis B. Then
every basis of V has cardinality | B |.

Proof. Fix any other basis B0 of V . As B0 spans V , Lemma 2.8, with S = B0

and L = B, implies that | B | ≤ | B0 |. Our proof will now be complete if we
can show that | B | ≮ | B0 |. For a contradiction, assume that n = | B | < | B0 |
and let L be any n + 1 element subset of B0 and S = B. (As B0 is a basis, L
is linearly independent.) Lemma 2.8 then implies that n + 1 = |L| ≤ |S| = n,
which is absurd.

Definition. A vector space V is called finite-dimensional if it has a finite
basis B. As all bases in this case have the same cardinality, we call this common
number the dimension of V and denote it by dim(V ).

A beautiful consequence of Theorem 2.9, is that in order to find the dimen-
sion of a given vector space we need only find the cardinality of some basis for
that space. Which basis we choose doesn’t matter!

Examples.

1. The dimension of Rn is n since {e1, . . . , en} is a basis for this vector space.

2. Recall that {1, x, x2, . . . , xn} is a basis for P≤n(R). Therefore dimP≤n(R) =
n+ 1.
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3. Consider the vector space C over C. A basis for this space is {1} since
every element in C can be written uniquely as s · 1 where s is a scalar in
C. Therefore, we see that this vector space has dimension 1. We can write
this as dimC(C) = 1, where the subscript denotes that we are considering
C as a vector space over C.

On the other hand, recall that C is also a vector space over R. A basis
for this space is {1, i} since, again, every element in C can be uniquely
expressed as

a · 1 + b · i

where a, b ∈ R. It now follows that this space has dimension 2. We write
this as dimR(C) = 2.

4. What is the dimension of the trivial vector space {0V }? A basis for this
space is the emptyset ∅, since by definition it is linearly independent and
span(∅) = {0V }. Therefore, this space has dimension |∅| = 0.

We now turn our attention to proving some basic properties about dimension.

Theorem 2.10. Let V be a finite-dimensional vector space. If L is any linearly
independent set in V , then |L| ≤ dim(V ). Moreover, if |L| = dim(V ), then L is
a basis for V .

Proof. By the Basis Extension Theorem, we know that there exists a basis B
such that

L ⊆ B . (*)

This means that |L| ≤ | B | = dim(V ). In the special case that |L| = dim(v) =
| B |, then (∗) implies L = B, i.e., L is a basis.

A useful application of this theorem is that whenever we have a set S of
n+ 1 vectors sitting inside an n dimensional space, then we instantly know that
S must be dependent. The following corollary, is another useful consequence of
this theorem.

Corollary 2.11. If V is a finite-dimensional vector space, and U is a subspace,
then dim(U) ≤ dim(V ).

It might occur to the reader that an analogous statement for spanning sets
should be true. That is, if we have a set S of n− 1 vectors which sits inside an
n-dimensional vectors space V can we conclude that spanS 6= V ? As the next
theorem shows, the answer is yes.

Theorem 2.12. Let V be a finite-dimensional vector space. If S is any spanning
set for V , then dim(V ) ≤ |S|. Moreover, if |S| = dim(V ) then S is a basis for
V .
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To prove this theorem, we would like to employ similar logic as in the proof
of the previous theorem but with Theorem 2.5 in place of Theorem 2.6. The
problem with this is that S is not necessarily finite. Instead, we may use the
following lemma in place of Theorem 2.6. Both its proof, and the proof of this
lemma are left as exercises for the reader.

Lemma 2.13. Let V be a finite-dimensional vector space. If S is any spanning
set for V , then there exists a subset B of S, which is a basis for V .

2.4 Zorn’s lemma & the basis extension theorem

Definition. Let X be a collection of sets. We say a set B ∈ X is maximal if
there exists no other set A ∈ X such that B ⊂ A. A chain in X is a subset
C ⊆ X such that for any two sets A,B ∈ C either

A ⊆ B or B ⊆ A.

Lastly, we say C ∈ X is an upper bound for a chain C if A ⊆ C, for all A ∈ C.

Observe that if C is a chain and A1, . . . , Am ∈ C, then there exists some
1 ≤ k ≤ m, such that

Ak = A1 ∪A2 ∪ · · · ∪Am.

This observation follows by a simple induction, which we leave to the reader.

Zorn’s Lemma. Let X be a collection of sets such that every chain C in X has
an upper bound. Then X has a maximal element.

Lemma 2.14. Let V be a vector space and fix a linearly independent subset L.
Let X be the collection of all linearly independent sets in V that contain L. If
B is a maximal element in X, then B is a basis for V .

Proof. By definition of the set X, we know that B is linearly independent. It
only remains to show that span(B) = V . Assume for a contradiction that
it does not. This means there exists some vector v ∈ V − span(B). By the
Linear Independence Theorem, B ∪{v} is linearly independent and hence must
be an element of X. This contradicts the maximality of B. We conclude that
span(B) = V as desired.

Proof of Theorem 2.6. Let L be a linearly independent subset of V and define
X to be the collection of all linearly independent subsets of V containing L. In
light of Lemma 2.14, it will suffice to prove that X contains a maximal element.
An application of Zorn’s Lemma, assuming its conditions are met, therefore
completes our proof. To show that we can use Zorn’s Lemma, we need to check
that every chain C in X has an upper bound. If C = ∅, then L ∈ X is an upper
bound. Otherwise, we claim that the set

C =
⋃
A∈C

A,
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is an upper bound for our chain C. Clearly, A ⊂ C, for all A ∈ C. It now
remains to show that C ∈ X, i.e., L ⊂ C and C is independent. As C 6= ∅, then
for any A ∈ C, we have

L ⊆ A ⊆ C.

To show C is independent, assume

a1v1 + · · ·+ amvm = 0V ,

for some (distinct) vi ∈ C and a1 ∈ F. By construction of C each vector vi must
be an element of some Ai. As C is a chain the above remark implies that

Ak = A1 ∪A2 ∪ · · · ∪Am,

for some 1 ≤ k ≤ m. Therefore all the vectors v1, . . . , vm lie inside the linearly
independent set Ak ∈ X. This means our scalars a1, . . . , am are all zero. We
conclude that C is an independent set.

17



Chapter 3

Linear transformations

In this chapter, we study functions from one vector space to another. So that the
functions of study are linked, in some way, to the operations of vector addition
and scalar multiplication we restrict our attention to a special class of functions
called linear transformations. Throughout this chapter V and W are always
vector spaces over F.

3.1 Definition & examples

Definition. We say a function T : V → W is a linear transformation or a
linear map provided

T (u+ v) = T (u) + T (v)

and
T (av) = aT (v) for all v ∈ V, a ∈ F

for all u, v ∈ V and a ∈ F. We denote the set of all such linear transformations,
from V to W , by L(V,W ) .

To simplify notation we often write Tv instead of T (v). It is not a coincidence
that this simplified notation is reminiscent of matrix multiplication; we expound
on this in Section 3.4.

Examples.

1. The function T : V →W given by Tv = 0W for all v ∈ V is a linear map.
Appropriately, this is called the zero map.

2. The function I : V → V , given by Iv = v, for all v ∈ V is a linear map.
It is called the identity map.

3. Let A be an m×n matrix with real coefficients. Then A : Rn → Rm given
by matrix-vector product is a linear map. In fact, we show in Section 3.4,
that, in some sense, all linear maps arise in this fashion.
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4. Recall the vector space P≤n(R). Then the map T : P≤n(R)→ Rn defined
by

T (a0 + a1x+ · · · anxn) =


a0

a1

...
an


is a linear map.

5. Recall the space of continuous functions C. An example of a linear map
on this space is the function T : C → C given by Tf = xf(x).

6. Recall that D is the vector space of all differentiable function f : R → R
and F is the space of all function g : R→ R. Define the map ∂ : D → F ,
so that ∂f = f ′. We see that ∂ is a linear map since

∂(f + g) = (f + g)′ = f ′ + g′ = ∂f + ∂g

and
∂(af) = (af)′ = af ′ = a∂f.

7. From calculus, we obtain another linear map T : C → R given by

Tf =

∫ 1

0

f dx.

The reader should convince himself that this is indeed a linear map.

Although the above examples draw from disparate branches of mathematics,
all these maps have the property that they map the zero vector to the zero
vector. As the next lemma shows, this is not a coincidence.

Lemma 3.1. Let T ∈ L(V,W ). Then T (0V ) = 0W .

Proof. To simplify notation let 0 = 0V . Now

T (0) = T (0 + 0) = T (0) + T (0).

Adding −T (0) to both sides yields

T (0) +−T (0) = T (0) + T (0) +−T (0).

Since all these vectors are elements of W , simplifying gives us 0W = T (0).

It is often useful to “string together” existing linear maps to obtain a new
linear map. In particular, let S ∈ L(U, V ) and T ∈ L(V,W ) where U is another
F-vector space. Then the function defined by

ST (v) = S(Tv)

is clearly a linear map in L(U,W ). (The reader should verify this!) We say
that TS is the composition or product of S with T . The reader may find the
following figure useful for picturing the product of two linear maps.
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U V W

v Sv T (Sv)

S T

There is another important way to combine two existing linear maps to
obtain a third. If S, T ∈ L(V,W ) and a, b ∈ F, then we may define the function

(aS + bT )(v) = aSv + bTv

for any v ∈ V . Again we encourage the reader to check that this function is a
linear map in L(V,W ).

Before closing out this section, we first pause to point out a very important
property of linear maps. First, we need to generalize the concept of a line in
Rn to a line in an abstract vector space. Recall, that any two vector v, u ∈ Rn
define a line via the expression av + u, where a ∈ R. As this definition requires
only vector addition and scalar multiplication we may “lift” it to the abstract
setting. Doing this we have the following definition.

Definition. Fix vectors u, v ∈ V . We define a line in V to be all points of the
form

av + u, where a ∈ F .

Now consider applying a linear map T ∈ L(V,W ) to the line av + u. In
particular, we see that

T (av + u) = aT (v) + T (v).

In words, this means that the points on our line in V map to points on a new
line in W , defined by the vectors T (v), T (u) ∈ W . In short we say that linear
transformations have the property that they map lines to lines.

In light of the preceding lemma, even more is true. Observe that any line
containing 0V is of the form av + 0V . (We think of such lines as analogues to
lines through the origin in Rn.) Lemma 3.1 now implies that such lines are
mapped to lines of the form

T (av + 0V ) = aT (v) + T (0W ) = aT (v) + 0W .

In other words, linear transformations actually map lines through the origin in
V to lines through the origin in W .
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3.2 Rank-nullity theorem

The aim of this section is to prove the Rank-Nullity Theorem. This theorem
describes a fundamental relationship between linear maps and dimension. An
immediate consequence of this theorem, will be an beautiful proof to the fact
that a homogeneous system of equations with more variables than equations
must have an infinite number of solutions.

We begin with the following definition.

Definition. Let T : V →W be a linear map. We say T is injective if Tv = Tu
implies that u = v. On the other hand, we say that T is surjective provided
that for every w ∈ W , there exists some v ∈ V such that Tv = w. A function
that is both injective and surjective is called bijective.

It might help to think of T as a cannon that shoots shells (elements in V ) at
targets (elements of W )1. From this perspective there is an easy way to think
about surjectivity and injectivity.

• Surjectivity means that the cannon T hits every element in W .

• Injectivity means that every target in W is hit at most once.

• Bijectivity means that every target is hit exactly once. In this case we can
think of T as “matching up” the elements in T with the elements in W .

u

v

Tu

Tv

V W

As is always the case in mathematics, it will be beneficial to have more
than one description of a single idea. Our next lemma provides this alternative
description of injectivity and surjectivity.

Definition. Fix T ∈ L(V,W ). Define the null space of T to be

nullT = {v ∈ V | Tv = 0W }

and the range of T to be

ranT = {Tv | v ∈ V } .
1D. Saracino, A first course in abstract algebra.
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Observe that the null space is a subset of V where as the range is a subset
of W .

Lemma 3.2. Let T ∈ L(V,W ).

1. T is surjective if and only if ranT = W .

2. T is injective if and only if nullT = {0V }.

Proof. Saying that T is surjective is equivalent to saying that for any w ∈ W
there exists some v ∈ V such that Tv = w. In other words,

ranT = {Tv | v ∈ V } = W,

as claimed. For the second claim, begin by assume T is injective. This means
that u = v whenever Tu = Tv. Consequently,

nullT = {v ∈ V | Tv = 0W = T (0V )} = {0V },

as desired. For the other direction, assume {0V } = nullT and consider any two
vectors u, v ∈ V such that Tu = Tv. To prove T is injective we must show that
u = v. To this end, the linearity of T yields

T (u− v) = 0W .

This means that u − v ∈ nullT = {0V }. Hence u − v = 0V or u = v as
desired.

The next lemma, whose proof we leave to the reader, states that our two
sets nullT and ranT are no ordinary sets; they are vector spaces in their own
right.

Lemma 3.3. Let T ∈ L(V,W ). Then null(T ) is a subspace of V and ran(T ) is
a subspace of W .

Examples.

1. Consider the linear map T : Rn+1 → P≤n given by

T (a0, . . . , an+1) = a0 + a1x+ · · · anxn.

Then nullT = {(0, . . . , 0)} = {0R2} and ranT = P≤n.

2. The T : P → P given by T (f)(x) = f ′(x) is linear with nullT = constant
polynomials and ranT = P. Therefore, T is surjective but not injective.

3. Consider the map T : R2 → R3 given by

T

([
x
y

])
=

 x
y

−(x+ y)

 .
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Then nullT = {0R2}, but ranT 6= R3. In fact,

ranT =


 x
y
z

 ∈ R3 | x+ y + z = 0


which is the equation of a plane in R3. So this map if injective but not
surjective.

Before reading any further, can you spot a relation among the dimensions
of the domain, range and null space in example 3)?

As the next theorem shows, there is one and an important one at that! The
reader should check that in fact, both examples 1) and 3) do indeed satisfy this
theorem.

Theorem 3.4 (Rank-Nullity). Assume V is finite-dimensional. For any T ∈
L(V,W ),

dimV = dim(nullT ) + dim(ranT ).

Proof. As nullT is a subspace of V , and hence a vector space in its own right, it
has a basis. Let {e1, . . . , ek} be such a basis for nullT . By the Basis Extension
Theorem (Theorem 2.6), there exists vectors f1, . . . , fm so that

B = {e1, . . . ek, f1, . . . , fm}

is a basis for V . Since

dimV = k +m = dim nullT +m,

we must show dim ranT = m. To this end, it suffices to show that S =
{Tf1, . . . , T fm} is a basis for ranT . We do this in two parts.

We first show that span(S) = ranT . This readily follows from the following:

ranT = {Tv | v ∈ V }
= {T (a1e1 + · · ·+ akek + b1f1 + · · ·+ bmfm) | ai, bi ∈ F}
= {a1Te1 + · · ·+ akTek + b1Tf1 + · · ·+ bmTfm) | ai, bi ∈ F}
= {b1Tf1 + · · ·+ bmTfm) | bi ∈ F}
= span(S),

where the second equality uses the fact that B is a basis for V and the third
equality follows since e1, . . . , ek ∈ nullT .

We now turn our attention to showing that S is linearly independent. To do
this we must show that if a1Tf1 + · · ·+ amTfm = 0W , then all the scalars are
zero. By the linearity of T we have

0W = T (a1f1 + · · ·+ amfm),

which means that a1f1 + · · ·+amfm ∈ nullT . As e1, . . . , ek are a basis for nullT
it follows that

b1e1 + · · ·+ bkek = a1f1 + · · ·+ amfm,
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for some scalars bi. Rearranging we see that

0V = −(b1e1 + · · ·+ bkek) + a1f1 + · · ·+ amfm.

The linear independence of B = {e1, . . . ek, f1, . . . , fm} forces all the scalars to
be zero. In particular, a1 = a2 = · · · = 0 as needed. As we have shown that S
is independent and spans ranT , we may conclude that it is a basis for ranT as
desired.

To motivate our first corollary recall the following fact about plain old sets.
If X and Y are sets and f : X → Y is injective then |X| ≤ |Y |. On the other
hand if f is surjective, then |X| ≥ |Y |. As dimension measures the “size” of a
vector space, the following is the vector space analogue to this set theory fact.

Corollary 3.5. Let V and W be finite-dimensional vector spaces and let T be
an arbitrary linear map in L(V,W ).

1. If dimV > dimW , then T is not injective.

2. If dimV < dimW , then T is not surjective.

Proof. Fix T ∈ L(V,W ). To prove the first claim, assume dimV > dimW . By
the Rank-Nullity Theorem we see that

dim(nullT ) = dimV − dim(ranT ) ≤ dimV − dimW > 0,

where the second inequality follows since ranT is a subspace of W . Conse-
quently, nullT is not the trivial space, so by Lemma 3.2 T is not injective.
Likewise, if dimV < dimW , then

dim(ranT ) = dimV − dim(nullT ) ≤ dimV < dimW.

Consequently, ranT cannot be all of W , i.e., T is not surjective.

In general mathematical function can be injective without being surjective
and vice versa. For example consider the functions f, g : Z → Z given by
f(n) = 2n and

g(n) =


n+ 1 if n > 0

0 if n = 0

n+ 2 if n < 0.

.

Then f is injective but not surjective and g is surjective but not injective since
g(−2) = 0 = g(0). Consequently the next theorem is quiet amazing. It states
that if two vector spaces have the same dimension, then a linear map between
them is surjective if and only if it is injective!

Corollary 3.6. Let V and W be finite-dimensional vector spaces with the same
dimension. For any linear map T ∈ L(V,W ) we have that T is surjective if and
only if T is injective.
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Proof. By the Rank-Nullity Theorem states we always have

dimV = dim(nullT ) + dim(ranT ).

Now, observe that

T is surjective ⇐⇒ ranT = W

⇐⇒ dim(ranT ) = dimW

⇐⇒ dim(ranT ) = dimV

⇐⇒ dim(nullT ) = 0

⇐⇒ nullT = {0V }
⇐⇒ T is injective,

where the third equivalence is the fact that dimV = dimW and the fourth
equivalence follows from the Rank-Nullity Theorem.

Before closing this section, let demonstrate two beautiful applications of
the Rank-Nullity Theorem. First, consider a homogeneous system of linear
equations

a11x1 + . . .+ a1nxn = 0

a21x1 + . . .+ a2nxn = 0

...

am1x1 + . . .+ a1nxn = 0.

A standard result from any elementary linear algebra course is that if this system
has more variable than equations (n > m), then a non-trivial solution to the
system exists, i.e., one other than x1 = · · ·xn = 0. We are now in a position to
give an elegant proof of this fact. First, rewrite this system in matrix form as
Ax = 0, where

A =

 a11 · · · a1n

...
. . .

...
am1 · · · amn

 and x =

 x1

...
xn

 .
Recall that A : Rn → Rm is a linear map given by matrix vector multiplication.
As n > m, Corollary 3.5 states that T is not injective and hence {0V } ( nullT .
Therefore there exists some nonzero x ∈ nullT . As x is nonzero and Ax = 0,
we see that our system has a nontrivial solution as claimed.

For our second application, consider a system of (not necessarily homoge-
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neous) linear equations

a11x1 + . . .+ a1nxn = b1

a21x1 + . . .+ a2nxn = b2

...

am1x1 + . . .+ a1nxn = bm.

In matrix form this becomes Ax = b. Another standard result from elementary
linear algebra is that if our system has more equations than unknowns, i.e., n <
m, then there exists some choice of b ∈ Rm so that our system is inconsistent
(has no solutions). To prove this, again think of A : Rn → Rm as a linear map.
Corollary 3.5 tell us that A is not surjective. This means there exists some
b ∈ Rm so that no choice of x ∈ Rn gives Ax = b. In other words, for this b,
our system is inconsistent.

3.3 Vector space isomorphisims

Our next goal is to identify when two vectors spaces are essential the same.
Mathematically, we say they are isomorphic which is latin for “same shape”.
To see what we mean by this, imagine you are given an F-vector space V and you
paint all its elements red to obtain a new space W . Although this new space W
“looks” different (all its vectors are red!), it still has the same algebraic structure
as V .

A more concrete example of isomorphic vector spaces has been in front of
us almost since page one! In fact, it might have already occurred to you that as
vector spaces Rn+1 and P≤n were strikingly similar. Certainly as sets they are
very different – one is a set of vectors while the other is a set of polynomials!
In terms of their vector space structure this is just a cosmetic difference. To
convince you note that an arbitrary vector in Rn+1 looks like a0

...
an


while an arbitrary vector in P≤n looks like a0 +a1x+ · · ·+anx

n. In either case,
a vector is just a list of n+ 1 numbers {a0, . . . , an}. Moreover, the operation of
addition and scalar multiplication are essentially the same in both spaces too.
For example, addition in Rn+1 is given by a0

...
an

+

 b0
...
bn

 =

 a0 + b0
...

an + bn


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which is really no different then addition in P≤n which looks like

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn.

. Intuitively, these two spaces are the “same”. With this example in mind
consider the formal definition for vector spaces to be isomorphic.

Definition. We say two vector spaces V and W are isomorphic and write
V ∼= W , if there exists T ∈ L(V,W ) which is both injective and surjective. We
call such a T an isomorphism.

Theorem 3.7. Two finite-dimension vector spaces V and W are isomorphic if
and only if they have the same dimension.

Proof. Assume V and W are isomorphic. This means there exists a linear map
T : V → W that is both surjective and injective. Corollary 3.5 immediately
implies that dimV = dimW . For the reverse direction, let BV = {v1, . . . , vn}
be a basis for V and BW = {w1, . . . , wn} be a basis for W . As every vector
v ∈ V can be written (uniquely) as

v = a1v1 + · · ·+ anvn

for ai ∈ F, we may define a function T : V →W by

Tv = a1w1 + · · ·+ anwn.

Observe that the uniqueness of our representation of v implies that T is a well-
defined function. Moreover, a straightforward check reveals that T is indeed a
linear map. It only remains to show that T is an isomorphism. To see that T is
injective, let that v ∈ nullT and let bi ∈ F be such that v = b1v1 + · · · + bnvn.
This means

0W = Tv = b1w1 + · · ·+ bnwn.

Since BW is an independent set, it follows that all our scalars bi must be 0 and,
in turn, v = 0. This shows that nullT = {0V }, i.e., T is injective.

To see that T is also surjective, note that any vector w ∈W can be written
as

w = c1w1 + · · ·+ cmwm,

for some choice of scalars ci (why?). Now consider the vector c1v1+· · ·+cmvm ∈
V and observe that

T (c1v1 + · · ·+ cmvm) = c1w1 + · · ·+ cmwm = w.

This shows that T is surjective.

Definition. Let T ∈ L(V,W ). We say T is invertible provided there exists
some S ∈ L(W,V ) so that ST : V → V is the identity map on V and TS :
W →W is the identity map on W . We call S an inverse of T .
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As a consequence of the next lemma, we are able to refer to the inverse of
T which we denote by T−1.

Lemma 3.8. Let T ∈ L(V,W ). If T is invertible, then its inverse is unique.

Proof. Assume S and S′ are both inverses for T . Then

S = SIW = STS′ = IV S
′ = S′

where IV and IW are the identity maps on V and W respectively.

Lemma 3.9. Let T ∈ L(V,W ). Then T is invertible if and only if T is an
isomorphism.

Proof. Let us first assume that T is invertible. We must prove that T is both
injective and surjective. To see injectivity, let u ∈ nullT , then

u = IV u = T−1Tu = T−10W = 0V ,

where IV is the identity map on V . We conclude that nullT = {0V } and hence
T is injective. To see that T is also surjective fix w ∈W . Observe that T maps
the vector T−1w ∈ V onto w since

T (T−1w) = TT−1w = IWw = w.

We conclude that T is surjective.
Now assume T : V → W is an isomorphism. As T is both injective and

surjective, then for every w ∈W there exists exactly one v ∈ V so that Tv = w.
Now define the function S : W → V by S(w) = v. We claim T−1 = S. By
definition we have S(Tv) = v for all v ∈ V and TS(w) = w for all w ∈ W . It
only remains to show that S is linear. Let w1, w2 ∈ W and let v1, v2 be the
unique vectors in V so that Tvi = wi. As T is linear then T (v1 +v2) = w1 +w2.
By definition of S we now have

S(w1 + w2) = v1 + v2 = S(w1) + S(w2).

Likewise,
S(aw1) = aw1 = aS(w1).

We may now conclude that T−1 = S and hence T is invertible.

3.4 The matrix of a linear transformation

In this section we study a striking connection between linear transformations
and matrices. In fact, we will see that linear transformations and matrices are
really two sides of the same coin! Before beginning let us review the basics of

28



matrix multiplication. Let A = [~a1 · · ·~an] where ~ai ∈ Rm, so that A is an m×n
matrix whose ith column is the vector ~ai. For any ~b ∈ Rn we define

A~b := [~a1 · · ·~an]

 b1
...
bn

 = b1~a1 + · · ·+ bn~an.

So A~b is the linear combintion of the columns of A using the coefficients in ~b.

Example. [
1 4 5
2 3 6

] a
b
c

 = a

[
1
2

]
+ b

[
4
3

]
+ c

[
5
6

]

Moreover, if B = [~b1 · · ·~bk] where each ~bi ∈ Rn, then we define

AB = A[~b1 · · ·~bk] = [A~b1 · · ·A~bk],

so that the ith column of AB is A~bi.
With this review under our belt, let us begin our study. As usual, fix finite-

dimensional F-vector spaces V and W with bases B = {v1, . . . , vn} for V and
C = {w1, . . . , wm} for W .

Definition. For any v ∈ V , we define

[v]B =

 b1
...
bn


where v = b1v1 + · · · + bnvn. We call this vector the coordinates of v with
respect to the basis B.

The next fact follows directly from the definition of coordinates. We leave
its proof to the reader.

Lemma 3.10 (Linearity of Coordinates). For any u, v ∈ V and a, b ∈ F, we
have

[au+ bv]B = a[u]B + b[v]B

Now fix T ∈ L(V,W ) and consider the action of T on some v ∈ V . First let

[v]B =

 b1
...
bn

 .
Now we see that

Tv = T (b1v1 + · · ·+ bnvn)

= b1Tv1 + · · ·+ bnTvn.
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As Tvi ∈W and C is a basis for W we must have

Tvi = b1iw1 + · · ·+ bmiwm

for some scalars bij ∈ F where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Solving for the
coordinates of Tv with respect to C we have

By the linearity of coordinates we now have

[Tv]C = [b1Tv1 + · · ·+ bnTvn]C = b1[Tv1]C + · · ·+ bn[Tvn]C .

If we set

[Tvi]C =

 c1i
...
cmi


then we see that

[Tv]C = b1

 c11

...
cm1

+ b2

 c12

...
cm2

+ · · ·+ bn

 c1n
...

cmn



=

 c11 · · · c1n
...

...
cm1 · · · cmn


 b1

...
bn

 .
This discussion proves the following theorem.

Theorem 3.11. Fix T ∈ L(V,W ). Then

[Tv]C = [T ]CB [v]B,

where [T ]CB is the matrix whose columns are [Tvi]C. That is

[T ]CB =

 c11 · · · c1n
...

...
cm1 · · · cmn

 where [Tvi]C =

 c1i
...
cmi

 .
The reader should take note that [T ]CB is an m× n matrix and T is a linear

map from an n-dimensional space V to an m-dimensional space W .
Having developed this connection let consider the following concrete exam-

ple.

Examples.
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1. Define the linear map
T : R3 → P≤2

by T

 a
b
c

 = (a+ b)x+ (a+ c)x2. Now let

B =


 1

1
0

 ,
 1

0
1

 ,
 0

1
1


be our basis for R3 and take C = {1, x, x2} as our basis for P≤2. As

T

 1
1
0

 = 2x+x2, T

 1
0
1

 = x+2x2, T

 0
1
1

 = x+x2,

we have

[T ]CB =

0 0 0
2 1 1
1 2 1

 .
Next, consider the vector v =

 3
4
5

 ∈ R3 so that [v]B =

 1
2
3

. By

Theorem 3.11 we have

[Tv]C =

0 0 0
2 1 1
1 2 1

 1
2
3

 =

 0
7
8

 ,
which is consistent as Tv = 7x+ 8x2.

2. For any n-dimensional vector space V , let I : V → V be the identity map.
If B is any basis for V , the reader should check that

[I]BB =

1 0
. . .

0 1


where the matrix on the right has size n × n. For obvious reasons this
matrix is often called the identity matrix and is denoted by In.

In the past, you may have wondering why matrix multiplication is defined
in the way it is. Why not just multiply corresponding entries? Why is this
definition so great? We are now in a position to answer this question! Consider
our next theorem.
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Theorem 3.12. Let U be another finite-dimensional vector space with basis D.
For any T ∈ L(V,W ) and S ∈ L(W,U), we have

[ST ]DB = [S]DC · [T ]CB

where the operation · on the left is the usual matrix multiplication.

In other words, matrix multiplication is precisely the operation needed in
order to obtain the matrix [ST ]DB from the matrices [S]DC and [T ]CB. Another
way to look at this is that composition of functions on the linear transformation
side corresponds to matrix multiplication on the matrix side. Let us now prove
this pretty result.

Proof. To simplify notation let us denote [T ]CB by [T ] and [S]DC by [S]. Theo-
rem 3.11 tells us that

[STvi]D = [S][Tvi]C .

As ST ∈ L(U,W ), then

[ST ]DB =
[
[STv1]D · · · [STvn]D

]
=
[
[S][Tv1]C · · · [S][Tvn]C

]
= [S][T ],

where the last equality is our definition of matrix multiplication.

We are now in a position to answer our last fundamental question regarding
this correspondence between linear transformations and matrices. Assume B′
and C′ are also bases for V and W respectively. For any T ∈ L(V,W ) how are
the matrices [T ]CB and [T ]C

′

B′ related to each other?

Theorem 3.13 (Change of Basis).

[T ]C
′

B′ = [J ]C
′

C [T ]CB [I]BB′ ,

where J and I are the identity maps on V and W respectively.

Proof. Certainly we have the following equality

T = JTI.

Several applications of Theorem 3.12 now yields

[T ]C
′

B′ = [JTI]C
′

B′ = [J ]C
′

C [TI]CB′ = [J ]C
′

C [T ]CB [I]BB′ .

You might be mislead into thinking that [I]BB′ must be the identity matrix
since I is the identity map plus we know this to be true when B = B′ (see Ex-
ample 2 above). The following simple example shows that this is NOT generally
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true. Consider the identity map I : R3 → R3 where B′ is the standard basis

and B =


 1

1
0

 ,
 1

0
1

 ,
 0

1
1

. Since

e1 =
1

2

 1
1
0

+

 1
0
1

−
 0

1
1

 , e2 =
1

2

 1
1
0

−
 1

0
1

+

 0
1
1

 ,

and

e3 =
1

2

−
 1

1
0

+

 1
0
1

+

 0
1
1


We see that

[I]BB′ =
[
[e1]B [e2]B [e3]B

]
=

 1/2 1/2 −1/2
1/2 −1/2 1/2
−1/2 1/2 1/2


is certainly not the identity matrix. We hope this example dispels any possible
confusion.
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Chapter 4

Complex operators

In this chapter we study linear transformations that map a vector space V into
itself. Such maps, formally called operators, are the foundation for a rich theory.
This chapter aims to provide an introduction to this theory.

4.1 Operators & polynomials

Definition. We call a linear map T from V to V an operator. If V is a
complex vector space we say T is a complex operator. Likewise, if V is a real
vector space we say T is a real operator. We denote the set of operators L(V )
instead of L(V, V ).

As the domain and range of an operator T ∈ L(V ) is the same, we may com-
pose such function with themselves an arbitrary number of times. In particular,
we write

T i = TT · · ·T︸ ︷︷ ︸
i

,

for integers i > 0 and define T 0 = IV to be the identity map on V . If p(x) =
a0+a1x+· · · anxn is any polynomial with coefficients in F we define the function
p(T ) : V → V given by

p(T )u = a0u+ a1Tu+ · · ·+ anT
nu,

for any u ∈ V . A straightforward check, which we leave to the reader, shows
that p(T ) is an operator. For example consider the operator T : C → C given
by

T

([
a
b

])
=

[
2a
3b

]
.
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If p(x) = 2 + 3x+ x2, then

p(T )

[
a
b

]
= (2 + 3T + T 2)

[
a
b

]
= 2

[
a
b

]
+ 3T

[
a
b

]
+ T 2

[
a
b

]
=

[
2a
2b

]
+ 3

[
2a
3b

]
+

[
4a
9b

]
=

[
12a
20b

]
.

Continuing in this vain we note that if f(x), g(x), and h(x) are polynomials
such that f(x) = g(x)h(x), then f(T ) = g(T )h(T ). We encourage the reader to
check this fact for themselves. Moreover, since f(x) = g(x)h(x) = h(x)g(x) we
see that

g(T )h(T ) = h(T )g(T ). (4.1)

Returning to the example above, observe that p(x) = (1 + x)(2 + x). Com-
puting we obtain

p(T )

[
a
b

]
= (1 + T )(2 + T )

[
a
b

]
= (1 + T )

(
2

[
a
b

]
+

[
2a
3b

])
= (1 + T )

[
4a
5b

]
=

[
4a
5b

]
+

[
8a
15b

]
=

[
12a
20b

]
,

which agrees with our computation above. The reader is encouraged to check
that one gets the same answer by computing

(2 + T )(1 + T )

[
a
b

]
.

For the remainder of this section we review some basic facts about polyno-
mials that will be needed throughout the remainder of this chapter. We start
with one of the most famous theorems in algebra.

Theorem 4.1. (Fundamental Theorem of Algebra) Every non-constant p(z) ∈
P(C) has at least one root. Consequently, p(z) factors completely into linear
terms as

p(z) = a(z − λ1) · · · (z − λn),

for some c, λi ∈ C.

Recall that for integers a, b, we say a divides b, and write a|b provided there
exists some integer c such that b = ac. We now give an analogous definition for
polynomials.

Definitions. For polynomials p(x), q(x) we say q(x) divides p(x) and write
q(x)|p(x), provided there exists some polynomials s(x) such that p(x) = q(x)s(x).
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We define the greatest common divisor or GCD of p(x) and q(x) to be
the monic polynomials of greatest degree, written (p, q), that divides both p
and q. We can easily extend this definition to a finite number of polynomials
p1, . . . , pk by defining their GCD (p1, . . . , pk) to be the monic polynomials of
largest degree that divides each pi.

Lastly, we say p1, . . . , pk are relatively prime provided their GCD is 1.

For example, observe that x−1|x3−1 since (x−1)(x2 +x+1) = x3−1. We
also have that that the polynomials (x− a)n and (x− b)m are relatively prime
provided a 6= b and if a = b then their GCD is (x− a)k, where k = min(n,m).

The next lemma, whose proof can be readily found in many algebra books,
will serve as a critical ingredient in Section 4.4.

Lemma 4.2 (Bézout). Let p1(x), . . . , pk(x) ∈ P(C) with GCD d(x). Then there
exists polynomials, a1(x), . . . , ak(x) ∈ P(C) such that

a1(x)p1(x) + · · ·+ ak(x)pk(x) = d(x).

4.2 Eigenvectors & eigenvalues

Definition. Let T ∈ L(V ). We say a subspace U of V if T -invariant provided
that T (U) = {Tu | u ∈ U} ⊆ U .

The utility of this definition is that if U is T -invariant, then we can restrict
T to the “smaller” linear map

T : U → U.

A particularly, important T -invariant subspace is given by the following
definition.

Definition. Let T ∈ L(V ). A scalar λ ∈ F is said to be an eigenvalue, if there
is a nonzero vector v ∈ V , such that

Tv = λv.

In this case, we say v is an eigenvector for λ and refer to the tuple (λ, v) as
an eigenpair for T .

Observe that if (λ, v) is an eigenpair for T then span(v) is T -invariant and

T : span(v)→ span(v)

is given by multiplication by λ. Geometrically, this means that along the line
generated by v, i.e., span(v), T acts by simply stretching the line by a factor of
λ as if the line were made of rubber. To illustrate consider the following picture
where the dashed line is span(v).
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0V

λv
v

V

The significance of this is that although T may be wildly complicated in general,
the existence of an eigenpair (λ, v) means that at least in the v direction T acts
in a very simple way – it just stretches the line by a factor of λ.

Examples.

1. For the identity operator, IV , every nonzero vector v is an eigenvector
with corresponding eigenvalue 1. What are the eigenvalues/vectors for
the zero map on V ?

2. Let A =

[
2 0
0 −1

]
. As an operator A : R2 → R2 we see (by inspection)

that (
2,

[
1
0

])
and

(
−1,

[
0
1

])
are its two eigenpairs.

3. Now define the operator T on R2 by T

([
x
y

])
=

[
x+ 2y
4y − x

]
. Unlike

the previous example, it is a bit harder to just spot the eigenpairs for this
operator. Instead, let us appeal to some simple algebra. We seek values
x, y and λ such that [

x+ 2y
4y − x

]
= λ

[
x
y

]
.

Equating the first and second coordinates we obtain two equations:

x+ 2y = λx and 4y − x = λy. (?)

Using the second equation to obtain an expression for x we then plug this
expression into the first equation to obtain (after simplifying)

0 = y(λ2 − 5λ+ 6) = y(λ− 3)(λ− 2). (4.2)

Therefore y = 0 or λ = 3, 2. We see from above that when y = 0, x is also
0. Since the zero vector cannot be an eigenvector we are not interested
in this solution. If λ = 2, then solving (?) yields x = 2, y = 1. Hence
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(
2,

[
2
1

])
is an eigenpair for T . Likewise, when λ = 3, we get the

eigenpair

(
3,

[
1
1

])
.

4. Let T be the operator on the space of continuous function C(R) given by

Tf =

∫
f(x) dx.

Now consider the function eλx with λ 6= 0. Since

T (eλx) =

∫
eλx dx =

1

λ
eλx

we see that
(

1
λ , e

λx
)

is an eigenpair for this operator.

Lemma 4.3. Let T ∈ L(V ) and λ ∈ F. Then the nonzero vectors in null(T −λ)
are precisely the eigenvectors for T corresponding to λ.

Proof. To prove this lemma we must show that 0V 6= v ∈ null(T − λ) if and
only if (λ, v) is an eigenpair for T . This follows directly from the definitions
involved. In particular, we have

0V 6= v ∈ null(T − λ)⇔ (T − λ)v = 0V and v 6= 0V

⇔ Tv − λv = 0V and v 6= 0V

⇔ Tv = λv and v 6= 0V

⇔ (λ, v) is an eigenpair for T.

We first remark that a straightforward consequence of this lemma is that λ
is an eigenvalue for T if and only if null(T − λ) is not trivial.

This lemma also suggests that the subspace null(T − λ) is intimately con-
nected to the eigenvectors for λ. As such, it makes sense to formally name this
subspace.

Definition. Let T ∈ L(V ) and λ ∈ F be an eigenvalue for T . Then null(T −λ)
is called the eigenspace of T corresponding to λ.

Theorem 4.4. Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of
T with corresponding eigenvectors v1, . . . , vm. Then the vectors v1, . . . , vm are
linearly independent.

Proof. Let ai be scalars such that

a1v1 + · · ·+ amvm = 0V .

Next define the new operator

Tj = (T − λ1) · · · (T − λj−1)(T − λj+1) · · · (T − λm).
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As we can write the factors of Tj in any order, it follows that Tjvi = 0V , provided
i 6= j. Next we determine the value of Tjvj . To compute this, first observe that

(T − λk)vj = Tvj − λkvj = λjvj − λkvj = (λj − λk)vj .

Using this repeatedly, we obtain

Tjvj = (T − λ1) · · · (T − λj−1)(T − λj+1) · · · (T − λm)vj

= (λj − λ1) · · · (λj − λj−1)(λj − λj+1) · · · (λj − λm)︸ ︷︷ ︸
Λ

vj .

It now follows that

0V = Tj(a1v1 + · · ·+ amvm) = ajΛvj .

As our eigenvalues are distinct, then Λ 6= 0. Dividing through by Λ now yields
0V = ajvj . Therefore aj = 0, since vj is an eigenvector and cannot be the zero
vector. As j was arbitrary, this shows that all our scalars must indeed be zero,
completing our proof.

Corollary 4.5. Any operator on a finite-dimensional vector space V has at
most dimV distinct eigenvalues.

Proof. If V has dimension n, then any set of linearly independent vectors must
have at most n vectors. The result now follows immediately from the preceding
theorem.

What can we say if T has exactly dimV linearly independent eigenvectors.
In fact, we can say a lot! To motivate consider the operator T on R3 given

by T

 a
b
c

 =

 a+ 2b
4b− a

3c

. Straightforward calculations show that T has

eigenpairs 2,

 2
1
0

 ,

3,

 1
1
0

 and

3,

 0
0
1

 ,

where we denote the ith vector by vi. In other words, T simply stretches the
lines given by v1, v2, and v3 as shown in the following illustration.
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x

y

z

Tv1

Tv2

Tv3

v1

v2

v3

Since that these three eigenvectors are linearly independent, they form a
basis

B =


 2

1
0

 ,
 1

1
0

 ,
 0

0
1


for R3. Consequently, T is completely determined by these eigenvectors. More-
over, observe that

[T ]B =

2 0 0
0 3 0
0 0 3

 .
As we have just seen, operators that have “enough” eigenvectors are easy

to understand – they essentially just stretch space. Such operators also have a
very nice description in terms of their matrix representations as described by
our last theorem. We leave the details to the reader.

Definition. Let T be any operator on an F-vector space. We say T is diag-
onalizable provided there exists a basis B for V such that [T ]B is a diagonal
matrix, i.e.,

[T ]B =


λ1 0λ2

0
. . .

λn

 ,
for some scalars λ1, . . . , λn ∈ F.

Theorem 4.6. Let T ∈ L(V ). Then T is diagonalizable if and only if V has a
basis consisting entirely of eigenvectors for T .

We now turn our attention to the following question: When do operators
have eigenvectors? We would hope that all operators have eigenvectors but, as
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the next example shows, this is unfortunately not true! To illustrate such an
operator consider T ∈ L(R2) given by T (x, y) = (−y, x). If T had eigenvectors,
then we would be able to find values x, y, and λ such that

(−y, x) = T (x, y) = λ(x, y) (?)

Equating the first and second coordinates yields

−y = λx and x = λy.

Combining we obtain y(λ2 + 1) = 0. Since y = 0 cannot be a solution (why?)
and the equation

(λ2 + 1) = 0 (†)
has no real solutions, we conclude that T has no eigenvectors.

As you might already suspect, what if we work over C instead of over R? In
that case, the equation (†) has a solution, namely, λ = ±i. If we indeed do this
by considering T as an operator on C2 then we obtain the eigenpairs:

(i, (i, 1)) and (−i, (−i, 1)) ,

since

T (i, 1) = (−1, i) = i(i, 1) and T (−i, 1) = (−1,−i) = −i(−i, 1).

More generally, since polynomials always have roots over C, then it stands to
reason that any complex operator should have at least one eigenvector. Not only
does the next theorem assert this but its proof relies solely on the Fundamental
Theorem of Algebra!

Theorem 4.7. Every operator T on a non-trivial finite-dimensional complex
vector space V has at least one eigenvalue.

Proof. Set n = dimV and fix any nonzero vector u ∈ V . Now consider the n+1
vectors

u, Tu, . . . , Tnu.

As the dimension of V is n, these n+ 1 vectors must be dependent and so there
exists scalars ai ∈ C not all zero such that

0V = a0u+ a1Tu+ · · ·+ anT
nu

= (a0 + a1T + · · ·+ anT
n)u

= p(T )u,

where p(z) = a0 + a1z + · · · + anz
n. Let m be the largest index such that

am 6= 0. As u is a nonzero vector we must have 0 < m ≤ n. In particular,
p(z) is a nonconstant polynomial. By the Fundamental Theorem of Algebra
p(z) factors as p(z) = am(z − λ1)(z − λ2) · · · (z − λm), where λ1, . . . , λm ∈ C.
Plugging this into the above equation yields,

0V = am(T − λ1)(T − λ2) · · · (T − λm)u.

It now follows that one of the factors (T −λi) must have a nontrivial null space.
In other words, λi is an eigenvalue for T .
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The above theorem only guarantees that a complex operator has at least
one eigenvalue. It does not guarantee that we have lots of distinct eigenvalues,

say dimV of them! To see an example of this, consider the matrix A =

[
0 1
0 0

]
thought of as an operator A : C2 → C2. To find its eigenpairs we set up the
usual eigenvector/value equation[

w
0

]
= A

[
z
w

]
= λ

[
z
w

]
,

to obtain the equations w = λz and 0 = λw. We see that the only eigenpairs for

A are

(
0,

[
z
0

])
where z 6= 0. Additionally, this example demonstrates that

complex operators may not even have dimV linearly independent eigenvectors.
(In this case all the eigenvectors for A are multiplies of (1, 0).) This means,
thanks to Theorem 4.6, that not every complex-operator is diagonalizable.

That said, all is not lost! The next theorem demonstrates that, for the
right choice of basis, every complex operator can be represented by an “upper-
triangular” matrix. We start with a few definitions.

Definition. Let T ∈ L(V ). We say an basis B = {v1, . . . , vn} for V is T -
triangularizing provided that

Tvk ∈ span(v1, . . . , vk),

for each k ≤ n.

The next definition and lemma reveal why the term “triangularizing” is used.

Definition. We say a square matrix M is upper triangular provided it is of
the form 

λ1 ∗λ2

0
. . .

λn

 ,
so that the values weakly above the diagonal are arbitrary (indicated by the ∗)
but the values strictly below the diagonal must be zero.

Lemma 4.8. Let T be an operator on V with basis B = {v1, . . . , vn}. Then the
following are equivalent.

(a) The basis B is T -triangularizing.

(b) For all k ≤ n, the subspaces span(v1, . . . , vk) are T -invariant.

(c) The matrix [T ]B is upper triangular.
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Proof.
Case: (a) ⇒ (b)

Assume B is T -triangularizing and fix k ≤ n. Now for any i ≤ k we have

Tvi ∈ span(v1, . . . , vi) ⊂ span(v1, . . . , vk).

To see that this implies T -invariance, consider an arbitrary u ∈ span(v1, . . . , vk).
We know that u = a1v1 + · · ·+ akvk for some scalars ai. Thus

Tu = T (a1v1 + · · ·+ akvk) = a1Tv1 + · · ·+ akTvk ∈ span(v1, . . . , vk),

where the last step follows since subspaces are closed under linear combinations.
This shows span(v1, . . . , vk) is T -invariant.

Case: (b) ⇒ (c)

Assume span(v1, . . . , vk) is T -invariant for each k ≤ n. To show that

[T ]B = {[Tv1]B · · · [Tvk]B · · · [Tvn]B}

is upper triangular, it will suffice to show that the bottom n−k rows of the kth
column [Tvk]B are all zeros. To see this, observe that Tvk ∈ span(v1, . . . , vk),
as B is T -triangularizing. This means there exists scalars a1, . . . , ak so that

Tvk = a1v1 + · · ·+ akvk + 0vk+1 + · · ·+ 0vn.

Hence the coordinates of this vector and hence the kth column of our matrix is

[Tvk]B =



a1

...
ak
0
...
0


← kth row

.

As the bottom n − k rows are indeed all zero, we conclude that [T ]B is upper
triangular.

Case: (c) ⇒ (a)

In this case we know that [T ]B is an upper triangular of the form
a1,1 a1,2 a1,3 . . . a1,n

a2,2 a2,3 . . . a2,n

a3,3

. . .
...

0 an,n

 .
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We must show that Tvk ∈ span(v1, . . . , vk). To do this lets consider the coordi-
nates of Tvk (with respect to B) first.

[Tvk]B = [T ]B [vk]B = [T ]B ek =



a1,k

...
ak,k

...
0

 ,

where the first equality follows from Theorem 3.11 and ek is the kth standard
vector. By definition we thus have

Tvk = a1,kvk + · · ·+ ak,kvk ∈ span(v1, . . . , vk).

So B is T -triangularizing as needed.

Theorem 4.9. Let T be a complex operator on V . Then there exists a T -
triangularizing basis B for V .

Proof. We proceed by induction on dimV . The result is clear when dimV = 1
since basis in this case is T -triangularizing.

Now let T be an operator on an n > 1 dimensional space V . By Theorem 4.7,
we know there exists some eigenpair (λ, v1) for T . As v1 is nonzero (why?) then
we can extend this single vector to a basis {v1, u2, . . . , un} for all of V . Set
U = span(u2, . . . , un). Observe dimU = n − 1 and v1 /∈ U . Next, define the
function S : U → U by

Su = a2u2 + · · · anun
where Tu = a1v1 + a2u2 + · · ·+ anun. A straightforward check shows that S is
indeed an operator. By induction we know that U has a S-triangularizing basis
BU = {v2, . . . , vn}.

We now claim that
B = {v1} ∪ {v2, . . . , vn}

is a T -triangularizing basis for all of V . Certainly, B is a basis for V as it is
linearly independent (why?) and | B | = n = dimV . It only remains to see that
B is T -triangularizing. When k = 1, we see that Tv1 = λv1 ∈ span(v1), since
(λ, v1) is an eigenpair for T .

For k ≥ 2 we observe that as BU is S-triangularizing, then

Svk ∈ span(v2, . . . , vk)

where Tvk = a1v1 + Svk. So, Tvk ∈ span(v1, . . . , vk). This concludes our
proof.
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4.3 Direct sums

To motivate this section consider the vector space R2 thought of as the xy-plane.
From this perspective the two subspaces

X = {(x, 0) | x ∈ R} and Y = {(0, y) | y ∈ R}

of R2 have a more familar description – they are just the x- and y-axes. The
fact that these axes only intersect at the origin is reflected in the fact that

X ∩ Y = {(0, 0)}.

We also know that every vector in R2 can be written (uniquely) as vector in the
x-axis plus a vector in the y-axis. This is mirrored by the fact that

R2 = {u+ v | u ∈ X, v ∈ Y } .

It now makes sense to denote the set on the right by X + Y , in which case we
write R2 = X + Y . That is R2 is the “sum” of two of its subspaces. We can
perform a similar decomposition to R3 as well. Redefining X, Y and Z to be
the subspaces given by the x-, y-, and z-axis, then we certainly have

R3 = X + Y + Z.

Our first definition formalizes these ideas.

Definition. Let U1, . . . , Um be subspaces of V . We define their sum to be the
set

U = U1 + · · ·+ Um = {u1 + · · ·+ um | ui ∈ Ui} .
We say U is the direct sum of the Ui provided that the only choice of ui ∈ Ui
that gives

u1 + · · ·+ um = 0V ,

is ui = 0V . In this case we write,

U = U1 ⊕ · · · ⊕ Um.

A straightforward check shows that U is a subspace of V . As it is clear that
Ui is a subset of U (check!), it now follows that Ui is a subspace of U . There
is also an important analogy that is not to be missed. The subspaces Ui are
behaving a lot like vectors. Saying that U = U1 + · · · + Um is reminiscent of
a spanning set of vectors, while the definition of a direct sum is reminiscent
of linear independence. The next few lemmas make this analogy stronger. We
leave the proof of the first lemma to the reader.

Lemma 4.10. Let U1, . . . , Um be subspaces of V and consider the space

U = U1 + · · ·+ Um.

Then, U is a direct sum of the Ui’s if and only if for every u ∈ U there is a
unique choice of ui ∈ Ui so that vector u = u1 + · · ·+ um.
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make this an iff, so that we can create direct sums by

partitioning a basis.
ToDo

Lemma 4.11. Let U1, . . . , Um be subspaces of V such that

V = U1 ⊕ · · · ⊕ Um.

If Bi is a basis for each Ui, then

B = B1

⋃
· · ·

⋃
Bm

is a basis for V . Consequently, dimV = dimU1 + · · ·+ dimUm.

Proof. To simplify notation we prove the claim when m = 2. As the reader
should check, the same proof works in general. Let U = U1 and W = U2 and
fix bases BU = {u1, . . . , uk} and BW = {w1, . . . , wm} for U and W respectively.
A simple computation shows that B spans all of V :

span(B) = {(a1u1 + · · ·+ akuk) + (b1w1 + · · ·+ bmwm) | ai, bi ∈ F}
= {u+ w | u ∈ U,w ∈W}
= U +W

= V

where the second equality follows since BU spans U and BW spans W . To see
that B is linearly independent, assume ai and bi are such that

(a1u1 + · · ·+ akuk) + (b1w1 + · · ·+ bmwm) = 0V .

By definition of our sum being direct, we must have

a1u1 + · · ·+ akuk = 0V and b1w1 + · · ·+ bmwm = 0V .

By the independence of the ui’s and the wi’s we see that all the ai’s and all the
bi’s are zero.

Continuing our analogy between direct sums and bases, the next lemma is a
generalization of the Basis Extension Theorem. In fact the main ingredient in
its proof is exactly this theorem.

FIX the wording of this lemma ToDo

Lemma 4.12. Fix vector space V and subspace U . Let S = {v1, . . . , vk} be a
set of vectors such that U ∩ span(S) = {0V }. Then there exists a subspace W
such that

V = U ⊕W

and S ⊂W .
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Proof. Let W ′ = span(S). If V = U ⊕W ′ we are done. Otherwise, let BU be
a basis for U and BW ′ be one for W ′. By the previous lemma BU ∪ BW ′ is
a basis for U ⊕W ′. Now extend BU ∪ BW ′ to a basis for all of V by adding
vectors v1, . . . , v`. Then

W = span(BW ′ ∪ {v1, . . . , v`})

is the desired space.

A nice consequence of this lemma is that if U is a subspace of V , so that
V = U ⊕W . Simply choose S = {0V } in the lemma!

As we have already seen, direct sums decompose our vector space into
(smaller) vector spaces. Interestingly, we can also use direct sums to decom-
pose operators as well. The one requirement is that the operator must behave
“nicely” with respect to the subspaces involved. Our next definition makes this
precise.

Definition. Let T ∈ L(V ). We say a subspace U of V if T -invariant provided
that T (U) = {Tu | u ∈ U} ⊆ U .

To motive what is to come, let us consider an example. Let T ∈ L(R3) be
given by

T (x, y, z) =

(
x− y√

2
,
x+ y√

2
, 3z

)
.

Observe that T decomposes into two parts. The first is a rotation by 45◦ in the
xy-plane and the second is scaling by 3 along the z-axis. To illustrate consider
the following picture.

x

y

z

Te3

e3

e1 Te1
45◦

Now define the following subspaces of R3

U = {(x, y, 0) | x, y ∈ R} and W = {(0, 0, z) | z ∈ R} .

It is clear from our description of T that U and W are both T -invariant sub-
spaces. Moreover, it is clear that R3 = U ⊕ W . Now consider [T ]B, where
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B = {e1, e2} ∪ {e3}. That is B is the union of a basis for U and a basis for W .
Computing we see that

[T ]B =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 3

 .
Looking closely, we see this matrix consists of a 2×2 block (encodes the rotation)
and 1×1 block (encodes the scaling) along its diagonal and all the other entries
are zero.

The significance of all this, is that if we can decompose our vector space
into the direct sum of T -invariant subspace, then this means that our operator
also decomposes into operators on smaller spaces as seen in this example. We
consider this idea in complete generality. The reader is encouraged to keep our
specific example in mind when reading the general ideas. We begin with an
expected definition.

Definition. We say a square matrix M is block diagonal provided it is of the
form

M =



A1 0

A2

. . .

0 Am


,

where each of the Ai are square matrices lying along the diagonal of M and all
other entries in M are zero. In the case each block is just a 1 × 1 matrix, we
say M is diagonal.

As suggested by our motivating example, we now have the following lemma.

Lemma 4.13. Assume U1, . . . , Um are T -invariant subspaces of V such that

V = U1 ⊕ · · · ⊕ Um.

If Bi is a basis for Ui, then

[T ]B =



[T |U1
]B1

0

[T |U2
]B2

. . .

0 [T |Um]Bm


,

where B = B1 ∪ · · · ∪ Bm. Conversely, if B is any basis for V such that [T ]B is
block diagonal, then V is the direct sum of T -invariant subspaces.
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The reader should pause to convince themselves that this lemma is a direct
generalization of Theorem 4.6. In fact, it further strengthens our analogy be-
tween linear independent vectors and direct sums. This should be somewhat
expected since the 1-dimensional space spanned by an eigenvector is just an
invariant subspace. The proof of this lemma is left to the reader.

4.4 Generalized eigenvectors

In Section 4.2, we saw that the (real) operator that rotates R2 by 90◦ fails to
have a single eigenvector. From this we concluded that, in general, not all real
operators decompose into their eigenspaces, i.e., they are not all diagonalizable.
In the same section, we also showed that the complex operator A : C3 → C3,
where

A =

1 1 0
0 1 0
0 0 3

 ,
only has eigenspaces

null(A− 1) = span

 1
0
0

 and null(A− 3) = span

 0
0
1

 .

Consequently, it follows that not all complex operators are diagonalizable either.
Since the final goal of this chapter is to decompose (complex) operators into
invariant subspaces, these examples demonstrate that eigenspaces are the wrong
invariant subspaces to consider. The question now is: Which are the right
invariant subspaces? To help answer this question, let us revisit the operator
A : C3 → C3 from above. In particular, observe that

null(A− 1)2 = null

0 1 0
0 0 0
0 0 2

2

= null

0 0 0
0 0 0
0 0 4

 .
It now follows that

null(A− 1)2 = span(

 1
0
0

 ,
 0

1
0

 ,

and moreover, that

null(A− 1)2 ⊕ null(A− 3) = C3 .

This example suggests the following definition.

Definition. Let λ be an eigenvalue of T and define the generalized eigenspace
(corresponding to λ) to be the subspace

Gλ = null(T − λ)dimV .

We call 0V 6= v ∈ Gλ a generalized eigenvector (corresponding to λ).

49



Just like eigenspaces, we next show that generalized eigenspaces are also
invariant subspaces.

Lemma 4.14. Let λ be an eigenvalue of T . Then Gλ is a T -invariant.

Proof. Fix n = dimV and let u ∈ Gλ = null(T − λ)n. To prove invariance, we
must show that Tu ∈ null(T − λ)n. Computing, we see that

(T − λ)nTu = T (T − λ)nu = T0V = 0V ,

where the first equality follows as T commutes with itself. Hence Tu ∈ null(T −
λ)n as needed.

As suggested by the above example, our goal now is to prove the following
structure theorem for complex operators.

Theorem 4.15. Let T be an operator on a finite-dimensional complex vector
space V . If the distinct eigenvalues of T are λ1, . . . , λm, then

V = Gλ1 ⊕ · · · ⊕ Gλm .

In order to prove this theorem, we will need to establish a few lemmas and a
deeper understanding of generalized eigenvectors. We do this first, postponing
the proof of this theorem to the end of the section. We begin with a technical
lemma.

Lemma 4.16. Assume U is a T -invariant subspace of V with dimension m.
Then

Tm(U) = Tm+1(U) = Tm+2(U) = · · · .
Proof. First observe that T i(U) ⊇ T i+1(U). To see this note that

T i+1u = T i(Tu) ∈ T i(U),

since Tu ∈ U as U is T -invariant. This gives us the following sequence of
inclusions

U ⊇ T (U) ⊇ T 2(U) ⊇ · · · .
Observe we must have some i such that T i(U) = T i+1(U). If not then

m = dimU > dimT (U) > dimT 2(U) > · · ·

would be an infinite decreasing sequence of positive integers! Therefore there
must exist a smallest i ≤ m so that T i(U) = T i+1(U). (Why must i ≤ m?)
Now observe that

T i+1(U) = TT i(U) = TT i+1(U) = T i+2(U).

Doing this again we get

T i+2(U) = TT i+1(U) = TT i+2(U) = T i+3(U).

Repeating this argument indefinitely yields

T i(U) = T i+1(U) = T i+2(U) = · · ·

and completes the proof.
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We now turn our attention to exploring an important connection between
T -triangularizing bases and generalized eigenspaces. To warm-up, let T be a
complex operator on V with T -triangularizing basis B = {v1, . . . , vn} so that

[T ]B =



λ1 . . . a1,k ∗
λ2 . . . a2,k

. . .
...
λk

. . .

0 λn


.

As suggested by our choice of notation, we claim that every entry on the diagonal
is actually an eigenvalue. To see this it will suffice to show that null(T − λk)
is not trivial. This follows almost immediately. As B is T -triangularizing, we
know that

(T − λk)vi ∈ span(v1, . . . , vi) ⊂ span(v1, . . . , vk−1)

for all i < k. Additionally,

(T − λk)vk = (a1,kv1 + · · · ak−1,kvk−1 + λkvk)− λkvk ∈ span(v1, . . . , vk−1).

This means (T − λk) is a map from the k-dimensional space span(v1, . . . , vk) to
the k − 1-dimensional space span(v1, . . . , vk−1). Consequently, it must have a
nontrivial nullspace. (Why?) We now see that all the values on the diagonal of
[T ]B are eigenvalues for T .

In fact, the next lemma states an even deeper connection between eigenvalues
and triangularizing bases.

Lemma 4.17. Fix a complex operator T on the n-dimensional vector space V
and let B = {v1, . . . , vn} be any T -triangularizing basis for V . Then every scalar
on the diagonal of [T ]B is an eigenvalue for T .

Moreover, if λ1, . . . , λm are the distinct eigenvalues for T , then λi appears
on the diagonal of [T ]B precisely dimGλi

times. Consequently,

dimV = dimGλ1 + · · ·+ dimGλm .

Proof. As we have already proved the first claim, we concentrate on the second.
To this end, it suffices to prove the following special case:

If S is an arbitrary operator on V with S-triangularizing basis B, then
zero appears on the diagonal of [S]B exactly dim nullSn times.

The general result follows from this special case as follows. Let λ be an eigen-
valueIf

d = dim null(T − λi︸ ︷︷ ︸
S

)n = dimGλi
,
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then by the special case d is the number of times zero appears on the diagonal
of

[S]B = [T − λi]B = [T ]B − [λi]B = [T ]B −


λi 0λi

0
. . .

λi


which, we now see, is the same as the number of times λi appears on the diagonal
of [T ]B. This proves the general result.

We now concentrate on proving the special case. For concreteness, set

[S]B =


a1,1 a1,2 a1,3 . . . a1,n

a2,2 a2,3 . . . a2,n

a3,3

. . .
...

0 an,n

 ,

and let d be the number of zero entries along the diagonal of [S]B. The number
of nonzero entries along this diagonal is then n− d. The proof will certainly be
complete if we can establish that

dim ranSn = dimSn(V ) = n− d,

since an application of Rank-Nullity shows that

dim nullSn = dimV − dim ranSn

= n− (n− d)

= d, the number of zeros on the diagonal of [S]B,

as needed. To this end set

Vi = span(v1, . . . , vi),

for 0 < i, and V0 = {0V }. As Vi ⊆ Vi+1, for 0 ≤ i, we obtain the following
sequence of inclusions

{0V } ⊆ Sn(V1) ⊆ Sn(V2) ⊆ · · · ⊆ Sn(Vn) = Sn(V ). (?)

Instead of proving directly that dimSn(V ) = n − d, it will be easier to show
that

dimSn(V ) = # of strict inclusions in (?) = n− d.
At this point, we have reduced the problem to establishing these two equalities.
The first equality will be proved by establishing the claim that

dimSnVi + 1 = dimSnVi+1 (1)

provided SnVi ( SnVi+1. Likewise, the second equality will follow from the
claim that

SnVi ( SnVi+1 if and only if ai+1,i+1 6= 0. (2)
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We now turn our attention to proving claims (1) and (2). To prove claim (1),
observe that since

Sn(Vi) = span(Snv1, . . . , S
nvi),

it follows that the spanning sets, for any two consecutive spaces in (?), differ by
exactly one vector. This proves claim (1).

To prove claim (2), let us first assume that ai+1,i+1 = 0. As we already
know that Sn(Vi) ⊆ Sn(Vi+1), we need only establish the reverse inclusion. To
this end observe that since ai+1,i+1 = 0, our matrix representation of S implies
that

Svi+1 = a1,iv1 + · · ·+ ai,ivi ∈ Vi.
Additionally, as B is S-triangularizing, we also have Sv1, . . . , Svi ∈ Vi. This
implies that

S(Vi+1) = span(Sv1, . . . , Svi+1) ⊆ Vi.
Now consider,

Sn(Vi+1) = Sn−1S(Vi+1) ⊆ Sn−1(Vi) = Sn(Vi),

where the last equality follows from Lemma 4.16 since dimVi = i < n. It only
remains to consider the case when a = ai+1,i+1 6= 0. In this case, we see that

Snvi+1 = b1v1 + · · ·+ bivi + anvi+1,

for some scalars b1, . . . , bi. As a 6= 0 and the vj are linearly independent, we
see that Snvi+1 /∈ span(v1, . . . , vi) = Vi. Consequently, Snvi+1 /∈ Sn(Vi) ⊆ Vi,
where the inclusion follows as B is S-triangularizing. So, SnVi ( SnVi+1, which
completes our proof.

fix working of statement; awk ToDo

Lemma 4.18. Let T be a complex operator whose distinct eigenvalues are
λ1, . . . , λm. Assume ui ∈ Gλi are such that

0V = u1 + · · ·+ um,

each ui = 0V . Consequently, if W is the sum of the subspaces Gλi
, then

W = Gλ1
⊕ · · · ⊕ Gλm

.

Proof. For brevity set n = dimV and Gi = Gλi
. Assume for a contradiction

that there exists ui ∈ Gi, not all zero, so that

0V = u1 + · · ·+ um. (?)

Without loss of generality let us assume u1 6= 0V . We now argue that we
can further assume that u1 is an eigenvector. To show this observe that since
(T − λ1)nu1 = 0V , then there must exists a largest k ≥ 0 so that

(T − λ1)ku1 6= 0V and (T − λ1)k+1u1 = 0V
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This means the (T − λ1)ku1 is an eigenvector for T . As each of the Gi are
T -invariant, and hence (T − λ1)k-invariant, applying the operator (T − λ1)k to
both sides of (?), and relabeling the ith vector as ui, allows us to assume u1 is
an eigenvector.

We now model the remainder of our proof on the proof in Theorem 4.4. As
such define the operators

S = (T − λ2)n · · · (T − λm)n

As in the proof of Theorem 4.4 we have

Sui =

{
0V if i 6= 1

Λu1 6= 0V if i = 1

for some Λ 6= 0 in C. Multiplying (?) through by S now reveals that 0V = Λu1.
This is a contradiction since Λ 6= 0 and u1 6= 0V .

Proof of Theorem 4.15. It follows from the previous lemma that

Gλ1 ⊕ · · · ⊕ Gλm ⊆ V.

To complete the proof we must show this is actually an equality. The easiest
way to do this is to show the dimension of the direct sum is n = dimV . Now
consider

dim(Gλ1
⊕ · · · ⊕ Gλm

) =

m∑
i=1

dim(Gλi
) = dimV,

where the second equality follows directly from Lemma 4.17.

4.5 The characteristic polynomial

Throughout this section let T be a complex operator on V with distinct eigen-
values λ1, . . . , λm. Additionally set di = dimGλi . We then have the following
definition.

Definition. The characteristic polynomial of a complex operator T is the
polynomial

ρT (x) = (x− λ1)d1 · · · (x− λm)dm .

For example, consider the operator A : C3 → C3, where

A =

1 5 5
0 1 5
0 0 3

 .
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Then by Lemma 4.17, it follows that

ρA(x) = (x− 1)2(x− 3).

Now let us compute the operator ρA(A). We see that

ρA(A) = (A− 1)2(A− 3) =

0 5 5
0 0 5
0 0 2

2 −2 5 5
0 −2 5
0 0 0

 =

0 0 0
0 0 0
0 0 0

 .
Our next (famous) theorem states that this always occurs.

Theorem 4.19 (Cayley-Hamilton). Let T be any complex operator, then ρT (T ) =
0.

Proof. Let B = {v1, . . . , vn} be a T -triangularizing basis for V so that

[T ]B =



λ1 . . . b1 ∗
`2 . . . b2

. . .
...
`k

. . .

0 `n


.

Now set Vi = span(v1, . . . , vi). First observe that Tv1 = `1v1 or equivalently,

(T − `1) : V1 → {0V }.

Next we claim that for any k > 1 we have

(T − `k) : Vk → Vk−1.

If i < k, then, as B is T -triangularizing, we have

(T − `k)vi = Tvi − `kvi ∈ Vk.

Additionally, we have

(T − `k)vk = (b1v1 + · · ·+ bk−1vk−1 + `kvk)− `kvk ∈ Vk−1.

We now have the following sequence of maps

V = Vn
T−`n−−−−→ Vn−1

T−`n−1−−−−−→ · · · T−`2−−−→ V1
T−`1−−−→ {0V }.

For any u ∈ V we now get

0 = (T − `1) · · · (T − `n)u = (T − λ1)d1 · · · (T − λm)dmu = ρT (T )u,

where the second equality follows from Lemma 4.17. As u ∈ V is arbitrary,
ρT (T ) has to be the zero map as claimed.
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4.6 Jordan basis theorem

Definition. We say an operator N on V is nilpotent if there exists some
positive integer k such that Nk = 0.

Examples. 1. The zero operator is nilpotent.

2. The operator N : C3 → C3 given by N(a, b, c) = (0, a, b) is nilpotent since
N3 = 0.

3. The matrix operator A : C3 → C3 where

A =

0 0 0
1 0 0
0 1 0


is nilpotent as A3 is the zero matrix. Do the nilpotent operators A and
N look similar? They should since they are the same! In fact, you should
convince yourself that

[N ]{e1,e2,e3} = A,

so that A is just the matrix representation of N with respect to the stan-
dard basis for C3. A good way to think about N is that it forces the
vectors e1, e2, e3 to “walk the plank”:

e1 e2 e3 0C3

N N N

4. The operator M : C5 → C5, given by

M(a, b, c, d, e) = (0, a, 0, c, d)

is nilpotent as the reader should check that M3 = 0. In this case M forces
our standard vectors to walk two planks:

e3 e4 e5 0C3

M M M

e1 e2 0C3

M M

From this we see that span(e1, e2) and span(e3, e4, e5) are M -invariant
spaces such that C5 = span(e1, e2) ⊕ span(e3, e4, e5). Consequently,
Lemma 4.13 gives us

[M ]{e1,e2}∪{e3,e4,e5} =


0 0 01 0

0
0 0 0
1 0 0
0 1 0

 .
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5. Let T be any operator with eigenvalue λ. Then (T − λ) restricted to the
generalized eigenspace corresponding to λ is nilpotent.

Definition. Let N be a nilpotent operator on V . We say a basis J is a Jordan
basis with respect to N , provided there exists vectors v1, . . . , vs ∈ J such that

J = {v1, Nv1, . . . , N
k1v1} ∪ · · · ∪ {vs, Nvs, . . . , Nksvs}

and N(Nkivi) = 0V . We say the vectors vi are J -generating vectors.

Definition. Let k ≥ 0. We define a Jordan block of size k + 1 to be the
(k + 1)× (k + 1) matrix

J(k) =


0
1 0

1
. . .

1 0

 ,

so that J(k) has k + 1 zeros down the diagonal and k ones on the off diagonal.

As a warm-up for the proof of our next lemma, assume that N is a nilpotent
operator on V and that J = {v,Nv, . . . , Nkv} is a basis for V where Nk+1v =
0V . Before continuing, the reader should convince themselves that

[N ]J = J(k).

Lemma 4.20. Let N be a nilpotent operator on V and assume J is a Jordan
basis for V with respect to N . Then

[N ]J =



J(k1) 0

J(k2)

. . .

0 J(ks)


,

where k1, . . . , ks are as defined in our definition of a Jordan basis.

Proof. As

J = {v1, Nv1, . . . , N
k1v1} ∪ · · · ∪ {vs, Nvs, . . . , Nksvs}

we see that

V = span(v1, Nv1, . . . , N
k1v1)⊕ · · · ⊕ span(vs, Nvs, . . . , N

ksvs).
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Certainly the ith summand is N -invariant. Moreover, denoting the ith sum-
mand Ui and its basis Bi = {vi, Nvi, . . . , Nkivi}, we see from our warm-up
that [

N |Ui

]
Bi

= J(ki).

An application of Lemma 4.13 now yields the final result.

Theorem 4.21. Let V be a nontrivial finite-dimensional vector space and let
N be a nilpotent operator on V . Then there exists a Jordan basis for V with
respect to N .

Proof. Begin by setting V0 = {0V } and defining Vi+1 = {v ∈ V | Nv ∈ Vi}. A
straightforward argument shows that Vi = nullN i and

V0 ⊂ V1 ⊂ · · · ⊂ Vm = V,

for some m. In fact, as V is nontrivial we must have m ≥ 1.
We now aim to prove the following, slightly stronger, result. Given any set

S of linearly independent vectors such that

span(S) ∩ Vm−1 = {0V }, (?)

there exists a Jordan basis J for V such that S is a set of (not necessarily all) J -
generating vectors. We proceed by induction on m. If m = 1, then V = nullN ,
and the result follows by the Basis Extension Theorem. Now assume m > 1 and
let S = {v1, . . . , vk} be such that (?) holds. By Lemma 4.12 we see that there
exists a subset W such that

V = Vm−1 ⊕W

and S ⊂W . Extending S, if necessary, we may assume it is a basis for W .
Now observe that S′ = {Nv1, . . . , Nvk} ⊂ Vm−1. We claim that (?) holds

with S′ in place of S and Vm−2 in place of Vm−1. For the moment, let us assume
this to be true. Applying our inductive hypothesis to the vector space Vm−1

and the set S′ then gives us a Jordan basis J ′ for Vm−1 such that S′ is a set of
J ′-generating vectors. It now follows that J = J ′ ∪ S, is a Jordan basis for
all of V and S is a set of J -generating vectors. In light of this, it only remains
to prove our claim.

First we show span(S′) ∩ Vm−2 is trivial. To this end, assume ai are such
that

a1Nv1 + · · ·+ akNvk ∈ Vm−2.

By linearity, we see that N(a1v1 + · · ·+ akvk) ∈ Vm−2. Therefore a1v1 + · · ·+
akvk ∈ Vm−1 ∩W = {0V }. As the vi are independent, we must have all ai = 0.
We conclude span(S′) ∩ Vm−2 is trivial as needed.

A similar argument shows that S′ is independent. If the ai are now such
that

0V = a1Nv1 + · · · akNvk = N(a1v1 + · · · akvk),
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then we see that

a1v1 + · · ·+ akvk ∈W ∩ nullN ⊂W ∩ Vm−1 = {0V }.

As the vi are independent, then all the ai’s are zero. This shows S′ is a inde-
pendent.

Corollary 4.22. (Jordan Form) Let T be a complex operator on an n-dimensional
space V with distinct eigenvalues λ1, . . . , λm. Then there exists a basis B for V
so that

[T ]B =



A1 0

A2

. . .

0 Am


,

and Ai is some dimGi×dimGi block diagonal matrix whose blocks are of the
form 

λi
1 λi

1
. . .

1 λi

 .

Proof. By Theorem 4.15 we know that

V = Gλi ⊕ · · · ⊕ Gλm .

As each Gi is T invariant, it will suffice to show, thanks to Lemma 4.13, that
there exists a basis Bi for Gi so that Ai may be taken to be[

T |Gi

]
Bi
.

From Example 5 above, we know that T − λi is nilpotent when restricted to
Gi. Theorem 4.21 now provides us with a Jordan basis Bi for Gi with respect
to (T − λi). This indeed finishes the proof since Lemma 4.20 tells us that the
matrix [

T |Gi

]
Bi

=
[
(T − λi)|Gi

]
Bi

+
[
λi
]
Bi

has the desired form.
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